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ABSTRACT. A Riemmanian foliated dynamical system of 3-dimension (RFDS?)
is a closed Riemannian 3-manifold with additional structures: foliation, dynam-
ical system. In the context of arithmetic topology, it is a geometric/analytic
analogue of an arithmetic scheme with a conjectural dynamical system sug-
gested by C. Deninger. In this paper, we show leafwise cohomological expres-
sion of dynamical zeta function on a Riemannian foliated dynamical system.

1. INTRODUCTION

In a series of papers (c.f. [1],[4],]6],[7],[8]), C. Deninger considered arithmetic
schemes spec Ok with a conjectural dynamical system for a number field K/Q.
He interpreted the completed Dedekind zeta function (x(s) of K in terms of

infinite dimensional cohomology groups Hg,, (spec O, R):

2 O
R 1 ; —
Ci(s) = il_!detoo (%(s — ©)|Hj,, (spec Ok, R)) ,

where det,, denotes the zeta-regularized determinant and © denotes an infinites-
imal generator of the flow.

This idea is extended to smooth closed 3-manifold M with 1-codimensional
foliation structure JF, transverse flow ¢ and a bundle-like metric g via Arith-
metic topology ([9]). We call the manifold with the additional structure a Rie-
mannian foliated dynamical system of 3 dimension, simply RFDS?. It is a
geometric/dynamical analogue of the above arithmetic scheme with a conjectural
dynamical system, where closed orbits correspond to finite primes. Note that dy-
namical zeta function corresponds to Dedekind zeta function in this context. The
purpose of this paper is to show leafwise cohomological expression of dynamical
zeta function on a Riemannian foliated dynamical system. We describe our main
results in the following.

Let (M, F,¢,9r) be a RFDS®. The additional structures give a reduced
leafwise cohomology H$% (M) and an infinitesimal generator ©. Then we
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consider infinite series

Eis,2)= Y (s—p)7,

PESP(Op)

where ©, denotes the operator © acting on H%(M). We have our first main
theorem:

Theorem 1.1. The following assertions hold:

(1) The series &y(s, z) is absolutely convergent on Re(z) >> 0 for any s € C.
(2) It extends to a meromorphic function of z € C and s € C which is holo-
morphic at z = 0.

As a consequence of the theorem, the series defines a Hurwitz-type spectral
zeta function associated with the infinitesimal generator. It follows that a zeta-
regularized determinant can be defined since the spectral zeta function is regular
at z = 0.

For the second result, we define the dynamical zeta function for RFDS?.

Cr(s) = H(l — e o)

Y

where 7 runs over closed orbits of ¢ and {(7) is the length of . Here, ¢, denotes
the index of a closed orbit. We give our second main theorem as follows:

Theorem 1.2. The dynamical zeta function on a Riemmanian foliated dynamical
system of 3 dimension has a leafwise cohological expression

Cr(s) = [ [ detoo(s — O] HE(M)) "D

1=0

The contents of this paper are organized as follows: In section 2, 3, 4, we
introduce a Riemannian foliated dynamical system of 3 dimension (RFDS?) and
basic notions: leafwise cohomology and infinitesimal generator. In section 5, we
give a proof of the main theorem 1.1. In section 6, 7, we recall the zeta-regularized
determinant and dynamical zeta function for RFDS?. In section 8, we show a
leafwise cohomlogical expression of the dynamical zeta function on RFDS?.

2. RIEMANNIAN FOLIATED DYNAMICAL SYSTEM (RFDS?)

We consider a smooth, compact, orientable, closed 3-manifold M with addi-
tional structure: foliation F, transverse flow ¢.

2.1. Foliation. A foliation F of d-codimension is a partition of sub-manifolds
of d-codimension. Let M be a smooth, connected, closed and oriented manifold
of n-dimension. It is equipped with a foliation of d-codimension as follows: let
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(Ui, ¢i)icr be an atlas. The transition maps ¢;; := ¢;0¢; ' which are defined over
U; NU; take forms

¢ij('r17"' s Tds Yd+1, - 7yn):( zlj(mlv ,.Qfd),"' 7@%('x17”'7$d>7
ledj_‘—l(xlv oy Xdy Yda, 7yn)7 ¢Z‘<x17 oy Tdy Yda, 7yn))
for i,j € I. By piecing together the stripes, where (z1,---,x,) are constant,

from chart to chart, we obtain a maximal immersed sub-manifold £ whose first d
local coordinates are constant on each U;. We call the sub-manifold a leaf of the
foliation. The foliation consists of the disjoint union of leaves.

2.2. Transversal flow. A transverse flow ¢ is a smooth R-action on a manifold
M

o RxM—>M

which maps leaves of a foliation to leaves. For any two points z and y in a same
leaf £, there is a leaf £ containing ¢(t,x) and ¢(t,y) for any t € R. Let ¢ be
the vector field giving the velocity vector at a point. We denote by wy the dual
1-form of the vector field ¢ .

2.3. Bundle-like metric. A Riemannian metric g on (M, F,¢) is called a
bundle-like metric whose geodesics are perpendicular to all leaves whenever
they are perpendicular to one leaf. Note that any 1-codimensional foliation with-
out singularities is Riemannian.

We consider 3-manifolds with additional structures as follows:

Definition 2.1. We define a foliated dynamical system on a 3-manifold by a
triple (M, F, ¢), where

(1) M is a smooth, compact, orientable 3-manifold,
(2) F is a 1-codimensional foliation on M,
(3) ¢ is a smooth R-action acting on M such that
(a) The flow is transverse to the leaves of the foliation up to a finite
number of compact leaves;
(b) The R-action maps leaves to leaves.

The manifold and the flow may have boundaries and fixed-points. For this
paper, we assume that the manifold is closed and the flow has no fixed-point. It
is known that only mapping torus allows such a foliated dynamical system on
itself.

3. LEAFWISE COHOMOLOGY

3.1. Leafwise de Rham complex. For the triple (M, F, ¢), let TF be a sub-
bundle of the tangent bundle T'M which is tangent to the leaves of the foliation.
The restriction of T'F on a leaf £ is identified with the tangent bundle T'L of the
leaf. We call T'F the leafwise tangent bundle.



We define the space of leafwise i-forms by
Q% (M) :=T(M,NT*F) C Q'(M).
Let dr (resp. dy) be the exterior derivative acting only along leaves (resp. the

flow). Then the de Rham complex (QZ(M ), d") has a decomposition:

C— Q% (M) N QFN (M) —— -

\l\l

e QM) —I QTN (M) —— -
where QY (M) is the complement of Q}(M ). '
We simply denote the restriction d' ai () by d’. Since we have dF' odiz =0
on Q% (M), the pairs {(Q%(M), d%)}; form a cochain complex:

0 1 2
0— Q%) % k) B a2(m) 5 o,
We call the complex leafwise de Rham complex.
3.2. Leafwise cohomology. We denote the kernel of d by Z%(M) and the im-

age of di= by BH'(M). Note that a leafwise i-th form in Z%(M) (resp. BZ'(M))
is called leafwise closed i-th form (resp. leafwise exact i-th form).

Definition 3.1 (Leafwise cohomology). We define the i-th leafwise cohomology
group by
HL(M) := Z1(M)/BH(M).

The leafwise cohomology group is trivial for ¢ > 2.

Unfortunately, the leafwise cohomology group is of infinite dimension in general
and not a Hausdorff space. We modify it by taking a quotient with respect to
the closure in the smooth topology.

Hyp(M) = Zx(M)/B5(M).

We call it the reduced leafwise cohomology group.

3.3. Leafwise Hodge theorem. For a bundle-like metric g, we have the Hodge
x-operator. If we denote by § the adjoint operator of the exterior derivative d, it
has a decomposition into = and 60

C—— O <— QZ“(M) — -
o (M Ql+1M)<—---.

Definition 3.2 (Leafwise Laplacian). An operator defined by
A]: = d]:(S]: + (S]—'d]-‘ on Q?;_—(M)
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is called the leafwise Laplacian. A leafwise form w € ker Ax is called a leafwise
harmonic form.

If we define Ag on Q% (M) by dodp, the restriction of the Laplacian A on Q% (M)
can be represented by

A

We have a significant proposition by Alvarez Lépez and Kordyukov ([3]):
Proposition 3.3 (Leafwise Hodge theorem). Given a bundle-like metric, An leaf-
wise cohomology class can be uniquely represented by a leafwise harmonic form.

We have an isomorphism

H (M) = ker(A%).

4. INFINITESIMAL GENERATOR

Assume that the R-action ¢ is conformal on Q% (M) with respect to the bundle-
like metric gz, i.e.

(¢"w, @™ n) = (w,n) for vt € R.
It is easy to check that ¢ on Hi(M) is surjective and strongly continuous, i.e.

lim ¢ [h] = ¢'*[h] for Vi, € R, [h] € HR(M).

t—to

Then the following lemma follows from the Stone’s theorem

Lemma 4.1 (Stone’s theorem). We define the infinitesimal generator of (¢™)ier
by

(2 d
0 :—lim 19
t—0 t
Since (gﬁt*)teR_is the strongly continuous one-parameter unitary group on the
Hilbert space H'-(M), then A := —i0© is self-adjoint on H'=(M) and we have
P = e = €' for vt € R.

The infinitesimal generator is a first-order differential operator along the transver-
sal flow. Then the exterior derivative dy along the flow (resp. adjoint operator
dp) can be represented by

dow = Ow N we,
do(w A wy) = —Ow.

It leads the following lemma.

Lemma 4.2. The negative square of the infinitesimal generator on a leafwise
cohomology group coincide with the Laplacian on a space of leafwise harmonic
forms

—0?2

() = Dolker(ar)

= A‘ker(A].-)~



Since M is compact and closed, the Laplacian has pure point spectrum which
consists of non-negative eigenvalues with finite multiplicity. Hence the infinitesi-
mal generator has pure imaginary cigenvalues with finite multiplicity.

For a leafwise harmonic form wr € ker Ar, a fundamental solution of the heat
equation whose initial value is wx, i.e.

{(%Jer)ij:O,

0 _
Wr = Wr,

is given by

L(z,y,s) = Jor K(t,s,8" ) wr(z,y,5)ds" if (z,y,s) is periodic,
xT,Y, .
. Je K(t,s,8")wr(z,y,s')ds’  otherwise

where K (t,s,s') is a factor of the heat kernel of the Laplacian A. Hence we have
an asymptotic expansion for the heat kernel around ¢t =0

tr(e‘AOt] ker Ar) s (ap + art + agt? +---).

Then the spectral zeta function (a,(s) associated with Ay has only simple poles

at s=3—n(n=0,1,2--).

Fixing a positive number 7" > 0, we consider a series

2 : epit

Im(p)>T

where p runs over the spectrum of © on H%(M). It follows from the lemma
4.2 that it is a partial sum of tr(e” V2| ker Az). Since tr(e”V20! ker Ay) is the
inverse Mellin transform of I'(s )QAO( ) with simple poles at s = 1, —2n and double
polesat s =—-2n—1(n=0,1,2,---), we deduce that the series V?(t) converges
absolutely and has an asymptotic expansion around ¢ = 0 as follows:

)

N
VP(t) % at™ + ) (b + cxtlog )17 + Oy (V") + Oo(tV )t log .

k=0

5. PROOF OF THEOREM 1.1

Proof. We fix a positive number T > 0. We consider the 2 series for s € C such
that |Im(s)| < T
—sit
05 0) = VP(t)e ",
0, (t) = VP(t)e™.

They play a role like a partition function.
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We take the Mellin transform for the series and define the following functions

iz

_i - z—1
5;(8,2)—F(Z)/0 O (1)t dt,

— Tz

e 2 &
N =—— [ 6, ()t dt.
&= [ 0
Since VP(t) is convergent, we have for Re(z) > 1

E(s,2)= D (s—p)7

Im(p)>T
&)= Y (s=p) "
Im(p)<—T

Next, we consider

[NIE)

e

=

&0 =1 [ O
0

— F(i; (/01 eg(t)tz—ldtJr/loo 0;(t)tz‘1dt),

&)=ty [ o

_ F_(i) (/Ohlezj(t)tz—ldtf/lm eg(t)tz—ldt> .

Since VP(t) is of rapid decay at infinity, the second terms are convergent for any
z € C. Hence we have

Tiz 1 00
+ _ ¢ + -1 Tga—1
£ (s,2) = e (/ o+ (1)t cht+/1 o+ (1)t dt)

g

N

®

N
N

®

0
B ez? a ast + by bosi Co N
S T(2) \z—1 z z4+1 (2+1)
at
_ +
- Z—l +77p (872)7

where 7} (s, 2) is a meromorphic function of (s, z) for [Im(s)| < 7" and z € C and
is regular at z = 0. The meromorphic function 771;Ir (s, z) has only simple poles at
z=-2n—1(n =0,1,2,---). The same result holds for £ (s,z) by the same
argument:
_ —al _
fp <S>Z) = -1 + 1, (S’Z)'

Note that 7, (s, z) is meromorphic in [Im(s)| < 7" and z € C and is regular at
z = 0. Since (s, 2) differs from & (s, 2) +&, (s, 2) by the sum of the finite terms,
we have that &,(s, z) is a meromorphic function for all [Im(s)| < 7" and all z € C
and is regular at z = 0. 0




6. ZETA-REGULARIZED DETERMINANT

We recall the notion of the zeta-regularized determinant. Let © : V' — V be a
linear operator acting on a complex vector space V' of countable dimension. We
assume that V' is the direct sum of finite-dimensional ©-invariant sub-spaces. Let
Sp(O) be the set of eigenvalues of ©. The spectral zeta function associated with
the operator © is defined by the analytic continuation of Dirichlet series

Co(s) = Z A7 with A7% = |A|"Se AN _p < Argh < 7.
A£0ESp(O)
We assume that the Dirichlet series converges absolutely on some right-half plane
and has an analytic continuation to the half plane Re(s) > —¢ for some ¢ >
0 which is holomorphic at s = 0. Under these conditions, we define a zeta-
regularized determinant by

detoo (O]V) := exp (—05¢e(0)) .

7. DYNAMICAL ZETA FUNCTION ON RFDS?

Let (M, F,®,gr) be the foliated dynamical system with a bundle-like metric
which we discussed above. We define the dynamical zeta function for a RFDS?
by the analytic continuation of the infinite product

Cr(s) = H(l sy,

Y

where y runs over periodic orbits of ¢ and [(7) is the length of . Here, €, is the
index of a closed orbit.

7.1. Index of a closed orbit. For a closed orbit v of ¢, we set an index
¢, :=sgn det(1 — To¢'V|T,F) forz € v,

where T,¢" : T, F — Tye(y) F is the differential of ¢'. It does not depend on the
choice of the point x € v. We call a closed orbit v non-degenerate in a sense
that ¢, is non-zero.

7.2. Absolute convergent condition. It is known that the infinite product
converges absolutely on Re(s) > h(¢) where h(¢) is topological entropy and
only if it is finite. Note that the topological entropy h(¢) is defined by

1
N e L >
h(o) = Jim o N(T) >
where N(T') denotes the cardinality of orbits whose length is less than or equal to
T, ie. N(T)= Card{~|l(y) < T}. We assume that the topological entropy h(¢)
of a foliated dynamical system (M, F, ¢) is finite so that ((s) converges absolutely
on the right-half plane.



8. PROOF OF THEOREM 1.2

8.1. Dynamical Lefschetz trace formula. For the foliated dynamical system
(M, F, ¢, gr) whose closed orbits are all non-degenerate, Alvarez-Lopez and Ko-
rdyukov developed the dynamical Lefschetz trace formula:

Proposition 8.1 ([5]). For every test function ¢ € D(R) = C§°(R), the operator
A, = / Q(t)p*dt
R

on HL-(M) is of trace class. Setting:
TH(¢ | HE(M))(¢) = trA,
defines a distribution on R. The following formula holds in D' (R):

dim F

Z (=)' Te(¢™|HE(M)) = xcolF, 97)d0 + ZZ(V) Z € Oki()-

i=0 ¥ kEZ\O

Here xco(F, 1) denotes Connes’ Euler characteristic of the foliation with respect
to the bundle-like metric (c.f. [2]) and §, is the Dirac delta function in D (R)
which is non-zero at T.

The lemma 4.1 (Stone’s theorem) leads to the corollary:

Corollary 8.1.1. The following equality holds in D' (Rsg):
2 2
D (DT HFM) =D (-1 D e
=0 =0 pESP(O;)
where ©; denotes the operator © acting on Hx-(M).
It is enough to show that the zeta-regularized determinant coincides with the

infinite product of periodic orbits on some right-half plane of the topological
entropy, i.e.,

Gr(s) = [0 — ey

.
2

= [ [ det(s — ©|HE(M)) ™" for Re(s) > P,
=0

where P is a sufficiently large number P > h(¢). Then the assertion follows from
the uniqueness of analytic continuation.

We apply the Laplace transform for the dynamical Lefschetz trace formula. We
have

2 2

LAY ()" D w7 () =T(=) ) (-1 > (s=p)7 (1)

=0 pESp(@l) =0 pESp(@l)
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for the left hand side, and

£ |3 Y0t () = 33 S i) (2)

7 neN v neN

for the right hand side. Both sides are defined for Re(z) > 1 over where the former
infinite series (1) is defined from the proof of theorem 1.1, and Re(s) > h(¢) over
where the latter infinite series (2) is defined. We denote by P a sufficiently large
number bigger than h(¢).

Let Ls_ be a contour consisting of the lower edge of the cut from —oo to —9,
the circle t = de*® for —m < ¢ < 7 and the upper edge of the cut from —6 to

—00.
/ eNt~*dt = 2isin(z7) / e v dv+ 1
Ls_ 5

where [ denotes the integral along the circle ¢ = |0|. Since I tends to zero as
6 — 0, we have

lim eMt~#dt = 2isin(zm)(1 — 2)

d—0 Ls_
B 271
- I(2)
Hence we have the formula for A > 0
P 1
= —lim eNtTAdL .

I(z)  2mio=o fy,

By applying the formula for the series (2), we get

—nl () (s—t) —z
i = skt [ (St )

v neN

¥ neN

-1
= —lim C—F(s — t)t~*dt.

Since the series (1) has a meromorphic extension and is holomorphic at z = 0
from theorem 1.1, we obtain the two equalities for —7 < arg(t) < =

2

Z(—l)ié}(s,z) = _—1 lim Cf( )t~ 7dt,

2mi 60 Ji, CF

Z(_l)iazgi(sa 0) L lim C}— (S _ t) log(‘tlearg t)z)d

2mi 60 Ji. CF
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It remains to see the following:

1
L Jim Cf(s — ) log(|#|e™E 0 dt

271 6—0 - CF

= — gf(s — t)(log(|t|) — mi)dt + —/ (s — t)(log(|t]) + mi)dt
2m J_o CF

[T, G

—/0 r S t dt = / S +t

= log(Cx(s))

Therefore we have

Hexp 0.€(s,0)) D

= Hdews — O[Hi (M)

for Re(s) > P > h(¢). Hence the theorem 1.2 follows from the uniqueness of the
analytic continuation.
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