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1 Introduction

Harmonic numbers
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have direct generalizations. One is the higher-order harmonic number,
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When r =1, H, = 567(11) is the original harmonic number. The third type is
related to this generalized harmonic number. Another is the hyperharmonic
number,
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with H,(ll) = H, and Hr(LO) = 1/n. The second type is related to this gener-
alized harmonic number.

Harmonic numbers also have several different g-generalizations. Some
keep good relations in extensive ways, and some do not. Any generalization
has each advantages and disadvantages. We consider three different kinds
of g-generalizations with their applications.

One type of g-harmonic numbers [9] are defined by
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Another type of g-harmonic numbers [4] are defined by




where [k], = 1_ . Still other g-harmonic numbers [2] are given by
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2 First type of g-harmonic numbers

The first type of g-harmonic numbers are related to the generating function
of the sum of the jth powers of the divisors of n. If o;(n) = Zd‘n d’, then
for ¢ € C and |q| < 1,
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Van Hamme [7] gave the following identity.
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where the g-binomial is defined as
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There exist several generalizations of identity (1).

The generalized g-harmonic numbers Hq(lm) are defined by

Hgm):z:m (n:1,2,...),
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When m =1, 7-[%1) = H,, is the g-harmonic number.
We give a continued fraction expansion of the generaing funciton of gen-
eralized g-harmonic numbers, given by
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Theorem 1.
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We study the summations
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where ’H,gmh M) are the multiple generalized g-harmonic numbers defined
by
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If my =mo=---=my =mand £ = 1, the generalized ¢g-harmonic numbers
H™ are studied in [8]. Note that ’H(ml’ “™0) can be considered as a ¢-

analogue of the multiple generalized harmonic numbers of order m
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We give some finite summation identities of generalized ¢g-harmonic num-
bers.

Theorem 2. Ifp andn are positive integers and my, ms,

...,my are complex
numbers, the
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Some particular cases of Theorem 2 can be seen in simple forms. For
example,

e When m; =---=my=1and p=1:
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Corollary 1. If p,n and s are positive integers, then
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with My = (my,...,myg).

Some particular cases of Corollary 1 can be seen in simple forms. For
example,

e Whens=n,m=---=my=1and p=1:
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Theorem 3. If p and n are positive integers and my, mo, . .., my are complex
numbers, then
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Corollary 2. If p,n and s are positive integers then
Zq”(” Dp ") = Gn+ s, p, ) — 7" G (s, p,my)

where
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with m) = (my,...,myg).

3 Second type of ¢g-harmonic numbers

In [4], a g-hyperharmonic number Hr(f)(q) is defined by
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In this g-generalization,
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is a g-harmonic number. When ¢ — 1, H,(f) = limy 1 H,(f)(q) is the hyper-
harmonic number and H,, = lim,,; H,(q) is the original harmonic number.

Weighted sums of this kind of g-hyperharmonic numbers can be ex-
pressed in terms of several types of g-analogue of the sum of consecutive
integers.

Theorem 4. For positive integers n and r,
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Remark. When ¢ — 1, we have for n,r > 1,
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where ()™ = z(x 4+ 1)---(x +n — 1) (n > 1) denotes the rising factorial
with (z)© = 1.

Next, we show a square weighted summation formula, which is yielded
from the following identity.

Theorem 5. For positive integers n and r,
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Remark. When ¢ — 1, we have
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Combining Theorem 4 and Theorem 5, we can obtain the square weighted
summation formula.

Corollary 3. For positive integers n and r,
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Remark. When ¢ — 1, we have for n,r > 1,
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We can obtain the following summation of the cubic powers, but no
g-generalization has been found yet. For n,r > 1,
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Nevertheless, when r = 1, we can get more general summation formulas.
Fpr example,

Theorem 6. For n, N > 1, we have
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Remark. When ¢ — 1, we have the ordinary relation
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4 Third type of g-harmonic numbers

The results for the third type of g-harmonic numbers are yielded from Abel’s
Lemma on summation by parts [1], for two sequences { fi} and {gx}:
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where A7, = 7,11 — T; is a forward difference of an arbitrary complex
sequence {7x}.

There are many definitions for g-zeta functions. For 0 < z < 1, s € C,
and Re(s) > 1, define the Hurwitz g-zeta function ([5]) as
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When z = 1, (4(s) = (4(s,1) is the g-zeta function. Following [2], define a
generalized g-harmonic number hgf) () by
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The main result can be stated as follows.
Theorem 7. Forr € N, 0 <z <1 and s € C with Re(s) > 1, we have
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When x = 1 in Theorem 7, we have the following corollary.
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([6]).-
In order to get more g-generalization results, we introduce different two
g-binomial coefficients. We define the shifted g-binomial coefficients by
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We define the (g1, g2)-binomial coefficients (Z) q1,42 by
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We define more generalized Hurwitz g-zeta functions (s 4(s,z) by
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where r,t € N, 0 < z <1 and s € C,Re(s) > 1. We define the generalized
g-harmonic numbers hg‘?z(x) by
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It is clear that the right hand side of (7) is absolutely convergent as 0 < g <
1. When s =1 and 0 < ¢ < 1, the right hand side of (7) is also absolutely
convergent. We have hﬁﬂ(z) — (rq(s,z) (n — 00).

With the help of Abel’s Lemma on summation by parts, we show that
infinite sums involving the generalized g-harmonic numbers hgsg(x) in terms

of linear combinations of the generalized Hurwitz g-zeta values (; 4(s, x).

Theorem 8. Forr,s,t,a e N witht>s,a>1 and 0 <z <1, we have
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When g — 1, G—s+11(1,2) — G—s1,1(1, 2+ b) is interpreted as
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When ¢ — 1 and z = 1 in Theorem &8, we get the following formulas,
which are given in [6].

Corollary 5.
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