PARAMETRIZATION OF KLOOSTERMAN SETS AND
SL;-KLOOSTERMAN SUMS

EREN MEHMET KIRAL!, MAKI NAKASUJI?

1. INTRODUCTION

We give explicit and comprehensible formulas for the SL3 long word Kloosterman sum,
and related mathematical objects. This proceeding is a survey of the results in [KN20].

Our work is motivated by aesthetic considerations, believing that a beautiful expression
for a Kloosterman sum would increase its comprehensibility and its recognizability when
encountered elsewhere in nature. We hope that this work encourages the use of the explicit
form of the Kloosterman sum, and leads to deeper results, better bounds and discovery of
new identities for moments of L-functions.

1.1. Definitions. The generalized Kloosterman sums are defined as certain exponential
sums on U, (Z)-double-cosets on matrix groups SL,(Z). Here we denote the group of r x r
unipotent matrices, i.e. upper triangular matrices with 1’s on the diagonal entries, by U,.
We will drop the r from the notation when we fix its value throughout a section.

For a vector ¢ € (R*)""! define, t(c) := diag(cy,ca/c1,c3/Co,...,1/c,—1) and w € W a
Weyl group element of SL,, define

Qu(c) == {urwt(c)ur € SL(Z) : up,up € U, }.

For a matrix A € SL,(Z) N BwB the ¢; are integers given by minors of A, and they not
changed upon multiplication by elements of U from either side. Therefore we obtain the
stratification

U(Z)\BwB NSL,.(Z)/ U(Z) = U U(Z)\Qy(c)/ U(Z).

cezr—1
of the double U(Z)-coset Bruhat cell into finite sets indexed by integral lattice points.
Let n = (ny,ng,...,n,—1) € Z"! and define the additive character v, as follows: Let u

be a unipotent matrix, where for 7 < j its entries are denoted by w; ;. Then
Yn(u) = e(niur 2 + notias + -+ + Np_1Up—1,).

For m,n € Z"~! the usual Kloosterman sum is defined as

(1.1) Sw(m, n;c) = > Ve (UL )¥n (ur).

A€U(Z)\Quw (c)/ U(Z)
A=urwt(c)ur
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This sum is well defined if m and n satisfy certain conditions.
Specifically, the Kloosterman sets of the “big cell” in SL3 are written as

c1
(].2) QwO(Cl,Cg) = {A S SLg(Z) A S Ug(Z)UJO ( ﬁ | ) Ug(Z)} 5
€2
where c1, co are nonzero integers and the set of conditions on m and n that need to be satisfied
is void. The long word SLj3 Kloosterman sum with modulus ¢ = (¢;,c2) can be described
as a sum over €, (c1,ce). In this paper we give a finer decomposition of (1.2) via the sets

Q(dy, dy, f) defined as follows. Given dy, ds, f nonzero integers, define,
(1.3) Qdy, dy, [) = {A € SL3(Z)| ged(As1, Asz) = [, Az1 = du f, Mya3y {12y = d2f} .

These sets stratify the coarse Kloosterman set as follows,

(1.4) Qupler,e2) = | | )Q(Cl CQ,f).

=, =
flged(cer,e2 f f

The sets on the right hand side of this finer decomposition are invariant under the action
of U(Z) from both sides, thus the decomposition carries over to U(Z) double-cosets. This
stratification gives a decomposition of the long word SL3 Kloosterman sum into what we call
fine Kloosterman sums. In order to distinguish it, we denote by script 8.,:

(1.5) Swo(m, n;dy, dy, f) := S Yen(ur)n(ug).

AET 6 \Q(d1,d2, ) /Too

Acugwot(difida flur
This finer decomposition is inspired by a reduced word decomposition of wy and the sub-
sequent Bott-Samelson factorization of flag varieties. Thus we are able to write the usual
(coarse) Kloosterman sum as a sum of fine Kloosterman sums,

(1.6) Swe (M, n; (c1, ¢2)) = Z Suwe <m,n; C—fl,c—;,f) .

fleed(er,e2)

1.2. Statement of Results. We parametrize 2(dy, ds, f), thus obtaining nice expressions
for 8., (m,n;dy, ds, [).

Theorem 1.1. Let ny,no,my,mg € Z. The Kloosterman sum 8,,(m,n;dy,ds, f) is zero
unless (mads, f) = (naody, f). If this is satisfied, then the Kloosterman sum equals,

/ Z S(n1, (mady + nadiys)/ [ di)S(ma, (nedy + madaxs)/ f; dz).

x3,y3 (mod f)
z3y3=1 (mod f)
mada+naediyz3=0 (mod f)

(1.7) Swo(m,n;dy,do, [)= [ Z S(ny, N(y);dy)S(my, M(x);ds).
z,y (mod f)
zy=1 (mod f)
mada+nadiy=0 (mod f)

Notice that when f = 1 this simplifies to S(n1, mads; d1)S(my, nady; ds).
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Note that (1.6) and (1.7) together give us that S,,(m,n, (c1,cs)) lies in a real algebraic
number field. In fact it lies in a compositum of fields of the form Q(cos (2”)), for various
primes p and integers k.

Another application is the following explicit formula for the triple divisor sum. Let us

define
E E E 81+S2 32 81
0-51 52 n’l? ,L2

e1|n1 ez|no 63|n;f2

These arithmetic functions are multiplicative and show up in the Fourier coeflicients of
SL3 Eisenstein series. Their values at prime powers are also related to Schur polynomials.

Substituting n; = 1 the above lemma simplifies as follows

Ts1.5,(1,m) Za” stl = Z e tees?,
aln bla n=ejeze3

and in particular ds(n) = ogo(1, n).

Now using the expression for the Kloosterman sum in Theorem 1.1, we write the Ramanu-
jan sum. Compare with [Bum8&4, (6.3)].

Lemma 1.2. Given c1,c3 € 27, let us call Re, ¢,(n1,m2) = Sy (0,1; (c1, 2)) the Ramanujan
sum. Then,

c1n
Rojea(mima) = 3 @ﬁqmmnqm@%ﬁf(iﬁ)‘

2
flged(e,e2) /
fI=3E

Now using the same identity as Bump [Bum84] we start to calculate the sum

()t + 50— 1) 3 Hevealrinma)

c1,c2>0

in order to obtain oy, s, (1n1,n2). Such equality can be justified via a study of Fourier co-
efficients SL3 Eisenstein series. Yet, this is an elementary statement expressing a divisor
function as a double Dirichlet series of finite exponential sums. Discovering the form of the
formula took us through SLj; however, as we see in the proof of the next proposition, an
elementary proof can also be given.

Proposition 1.3. For Re(s;), Re(s2) > 1, we have the identity

(18 oraiallin) = C)C()C(o 52— 1) Y A% (*ﬁﬁ213

di,da=1 dy' d; fldin

where c4(n) is the classical Ramanugan sum.

This proposition will be proved in Section 3.
Stevens, in [Ste87], has bounded the coarse long word Kloosterman sums as

(1.9) [ Sy (M, 15 (c1, €2))] < 7(e1)7(e2) (mana, €)% (many, C)2 (1, 2) 2 /rca,

where C' = lem(cy, ¢2). See [Butl3, Theorem 4] for the above formulation.
Using the Weyl bound on the classical Kloosterman sum for the Kloosterman sum decom-
position we get the following theorem.
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Proposition 1.4. Given m,n € Z? — (0,0), and ci,c; > 0, we may bound the long word
coarse Kloosterman sum as

|Sw0 (m7 n, C)| < \/@(Cl, 02)%7((61, CQ))T<C1)T(CQ) min{A, B}

where T(c) is the number of divisors of ¢ and

=
=

A= (m2n1701) (n2m1702) )

D=

1
B = (many, c2)2(namy, c1)2.

Notice that this is still stronger than (1.9) in its m and n dependence and only weaker
in its ¢ dependence by a very small factor of 7((cy,c2)). This is despite the fact that in the
above proof we used many potentially not sharp inequalities.

As an example we may see that using this proposition we obtain the bound

Suo((L,p), (1,p); (0%, p)) = O(p*?),

which is sharp. The bound (1.9), on the other hand, would imply an upper bound on the
order of O.(p**e).

Let I'y(N) C SL3(Z) be the congruence subgroup consisting of matrices such that the
bottom row is congurent to (O 0 *)) modulo N. We note that the pieces of our stratification
(1.6) encodes the level structure in a simple manner. The fine Kloosterman sums appearing
in Bruggeman-Kuznetsov trace formula for the congruence group I'g(N) are exactly those fine
Kloosterman sums 8, (n, m;d;, dy, f) with N|f. This is a simple condition, which implies
Nlc; and N|cs in the notation of (1.6), but is not conversely implied by it.

1.3. The historical background and the previous literature. The exponential sum

S(m,n;c) := e<@+n—d>,
( ) a,d %n:od c) ¢ ¢

ad=1 (mod c)
is called the classical Kloosterman sum, first introduced by H. D. Kloosterman in [Klo27]
in the context of bounding the error term arising from the circle method of G.H. Hardy, J.
E. Littlewood and S. Ramanujan [HL19, HR18]. Here we use the notation e(z) = ¢*"%, for
z e C.

A second context in which the Kloosterman sums appear is in exponential sums over
v =(2Y) € SLy(Z), for example in the computation of the Fourier coefficients of the classical
Poincaré series.

In this second context the presence of Kloosterman sums on the geometric side of the
Petersson and Bruggeman-Kuznetsov trace formulas, forges a connection with the spectral
theory of automorphic forms. Thus Kloosterman sums are abound in works estimating
L-function moments, obtaining hyperbolic equidistribution results, quantum ergodicity on
hyperbolic spaces. For SLy, automorphic forms, the Bruggeman-Kuznetsov/Petersson trace
formulas have been the workhorse of virtually any result in analytic number theory concerning
a family of automorphic forms and L-functions.

Given the central importance of Kloosterman sums in the rank 1 theory, attention has
turned also to higher rank calculations. In the seminal work of [BFG88|, the authors used
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Pliicker coordinates to parametrize the double cosets of the Bruhat cells of SL3. This for-
mulation has recently has been used in myriad applications, especially in the context of SLj
Kuznetsov trace formula, see [Blo13], [GK13], [Youl6], [BBM17|, [BB]. For the general higher
rank case, the explicit calculation of certain Kloosterman sums in SL, have been performed
in [Fri87], [Ste87].

The work of [Fri87] notices the general rank r hyperkloosterman sum as the Kloosterman
sum associated to the cyclic element (12---7) of the Weyl group Sym, of SL,. Our work
shares the use of the exterior algebra in determining the coordinates of various factorizations.

1.4. Method of Proof. Our calculation is heavily influenced by, but does not directly use,
the Bott-Samelson decomposition of a flag variety. We saw this approach first in the work
of Brubaker and Friedberg in [BF15], in the context of calculating the Fourier coefficients of
metaplectic Eisenstein series. Especially for the GLj3 case, the Bott-Samelson factorization
has also been studied by Bump and Choie [BC14]. They have done this in the context of
Schubert Eisenstein series, a new object introduced by the authors where the summation of
the Eisenstein series is not over the full flag variety but over a Schubert cell. Given a Weyl
group element w and w = s,, - - - S,, & reduced word decomposition of w, we can write

(1.10) BwB = (Bsy, B)(Bsa,B) -+ - (BSa,B).

In fact we can accomplish this in quite a generality, see [Gar05]. Our approach in this work
is to find the necessary conditions such that given an A € BwB N SL,.(Z), we can write

boy (A/l) T by (78) S FOOAFOO,

where v; € SLs, in the big cell, i.e. with a nonzero lower left entry. It would be simplest
if we could independently choose each v; € Uy(Z)\B (, ') BN SLy(Z)/ Uy(Z). However,
the reality is subtler. In this paper, we work out the various integrality conditions and the
interdependencies among the ;’s.

1.5. Discussion. Historically Kloosterman introduced his sum [Klo27], in the context of the
circle method applied to the sum of four squares. The problem had no Bruhat decomposition
in sight. An understandable formula for a SLj (or higher rank) Kloosterman sum may allow
researchers to recognize Kloosterman sums when they see them in their research. Thus,
for the researchers working on more complicated problems involving the circle method, the
exponential sums they obtain may signal to them that there may be a hidden connection to
higher rank automorphic forms.

We expect that our detailed investigation into the structure of the higher rank Kloosterman
sums will also lead to a refined understanding of higher rank automorphic forms. As an
example, recently there has been a flurry of activity in spectral reciprocity formulas, see
[BLM19], [BK19], [AK18], [Zacl9], [Petl5] and of course the seminal work of Motohashi
[Mot93]. These are formulas where both sides contain a moment, or a twisted moment
of a family of L-functions with possibly some correction terms. One way to obtain these
results is to pass from either side, perhaps via a trace formula, to a sum of exponential
sums and connect these exponential sums. At this step precise and practical knowledge of
the exponential sums is necessary. Great insight is to be gained from finding connections
between various moments.



6 EREN MEHMET KIRAL', MAKI NAKASUJI?

In a more straightforward way we also expect our results to be useful in the spectral theory
of higher rank automorphic forms. Even though there have been deep results concerning
higher rank automorphic forms, see [Lill], [BLM19], [LY12], these have all used the SL,
spectral theory and Bruggeman Kuznetsov formula. The notable exceptions to these are
[Blo13], [BBM17], and [Youl6] where the sums are over SL3 automorphic forms. We should
note however that most of these results have used only upper bounds on Kloosterman sums,
and not their explicit form.

Also we can use the methods of this paper to consider the metaplectic case. As noted
in [BF15] and [BBF11] the decomposition of A = [T;_; ta, (( & Zi )) helps us easily write the
Kubota symbol #(A) using n'" power residue symbols (%)n multiplicatively.

In [Mot97, Chapter 5.4, p.215] Motohashi has noted that just as the Ramanujan formula
for the divisor function was used in an essential manner in obtaining the spectral formula for
the fourth moment of the Riemann zeta function in [Mot93], its generalization for the triple
divisor function forms a connection between the sixth moment of the Riemann zeta function
and the SL3(Z) theory, and continues to emphasize that “..it is highly desirable to have
an honest extension to SL(3,7Z) of the theory developed in Chapters 1-3”. Bump in [Bum84]
has found such a formula, as Motohashi notes, even though this establishes the connection
to the SL3(Z) theory, the exact form of the divisor formula was not amenable to concrete
calculations.

Notice that for s; = sy = 1 the left hand side of (1.8) is the triple divisor function
73(1) = D1 ans—n 1. Our formula gives a way to ezpand 73(n) into a double Dirichlet series
of exponential sums, which hopefully can be useful in separating additive terms that appear
in shifted convolution sums such as ) _ . 73(n)73(n + h).

2. MAIN CALCULATIONS

First, some notation.
Let V be an r dimensional vector space, with eq,...,e, as standard basis vectors. Given
an element A € GL, the action of A on elements of the k-fold wedge product are defined as
A(vp ANvg A+ ANog) = (Avy) A (Avg) A=+ A (Aug).

For subsets [ = {i; < iy < ... <ig} C {1,...,r} the vectors e; := e;, A--- A e, form a
basis of /\k V. The action of A is calculated explicitly via the minors as,

Ae] = Z ]\Ly]et}.
JC{1,...,r}
|J|=k
Writing €7 := e* Aet A---Aet e (A"V)* 2 A"V* where e e’ are the dual standard
) J - J1 J2 Jk / - ’ Lrero®r
basis elements of V*, we can also write M; ; = (e¥, Aey).

2.1. Reduced Word Decomposition and the parametrization of the fine Klooster-
man cells. In the symmetric group Ss, let us call the simple transpositions s, = (12), 55 =
(23). Using the reduced word decomposition wy = s,535, we parametrize the fine Klooster-
man sets, that is, given

) b2 T3 D i bl
2.1 _ _ o
( ) V2 <d2 y2> U3 (f y3) ) /1 <d1 y1> )
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we use the product

(2.2) ta(72)t5(73)ta(71)

to express elements of Q(dy, da, f).

Every product of the form (2.2) with the matrices (2.1) in SLy(Z) gives an element of
Q(dy,ds, [). Tt is, however not true that any element of Q(dy, ds, /) can be expressed as such
a product. Firstly it is sometimes necessary to pick the matrices (2.1) in SLy(Q), and secondly
some matrices A cannot be obtained in such a manner as can see by taking a matrix with
D = 0 in the notation of Proposition 2.1 below. However it is possible to find a representative
A’ € T Al that factorizes.

Call As3Ms3 —1 = fD. D is an integer. Multiplying with an element of U3(Z) element on
either side we can make sure that D # 0.

Given a vector space V with a three dimensional basis, and using the action of A =
urwolug, on various basis elements e; of the exterior algebra A V', one obtains this explicit
Bruhat decomposition

1 Mys/ Mg A /As Az y 1 Agp/As  Asz/As
(23) A= 1 A21/A31 Wo ﬁ ) 1 ]\'112/]\113
1 ~ 1

comparing coordinates from both sides of the action.

Proposition 2.1. Let A be an integral matriz in the big Bruhat cell. Assume (by changing to
a different element in the double coset U3(Z)A Us(Z) if necessary) that fD := Ag3Msz—1 # 0.
We have the explicit decomposition,

M. Aoz /D M.
A=e, <%/f> Saha(d2)eq (%) e <%> sgha(f)

A33 M32 D A32
X eg <T> Ca ( dl/ ) Saha(dr)eq <d—1/f> .

This proposition states that the double cosets

Us(Z)ta(v2)t5(73)ta(11) Us(Z),

with v; as in (2.1) with b; = %1_1 for i =1,2 and b3 = %3_1 = D and x9,y1,23,Yys3,b3 € Z
and x1,ys € %Z gives a surjective map onto I'n,\Q(dy, da, f)/T'«. Furthermore it is enough
to take a single representative y; (mod d), x2 (mod ds) and x3,ys (mod f).

We omit the details of the proof. The result is achieved by first assuming that A is
of the form ¢ (72)t5(73)ta(71) with the coordinates of 75,73 and 7, as in (2.1). Using the
word-based factorization coordinates we calculate the action on various basis elements of the
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exterior algebra. We get that A3y = dy f, M3 = dof, as well as,

A Ap
(e} 5, Aei ) Az Az (eh, Aeg)  Agg
To = = ) y2 = T T
f f D D
. A A .
(2‘4) T3 = <91,2>Ae1,2> = 4; A;z ) Ys = <e3,Ae3> = Asz,
A A
(€lg, Aers) Az A (e5, Aey)  Agy
1’1 g = s yl = - — =
D D f f
Also from the fact that f divides Az and Ms3 we deduce that zo,x3,y3,41 € Z and
Yo, T1 € %Z.

Multiplying these gets A back, justifying our assumption.

Let us now express the coordinates of the Bruhat decomposition using these coordinates.
So we write A = upwotugr and also A = 14(72)t8(73)ta(m)-

From (2.3) we know that

1 <ef,37Ae1«2> <eT7Ael> 1 <e§,Ae2> <e§,Ae3>
tito <e*t}le > d t1 e t}lel 2
— » 1 — 2,3 >
ur, 1 Eamen an UR 1 e
1 1
Denoting u = x1ds + yox3dy, and v = z1y3ds + yod;, we have
(€] 3, Aeiz) = zaf, (€53, Ae13) = T1ysdy + diys = v,
<e§, Ae2> =/ <e§7 Ael> = z1dy + Yox3dy = u,
and
ToUu — $3d1

<e>{, Ael> = (.’E11E2 + l’gbgdl) = s (e§, A63> = Ys.

do
Notice that u,v € Z. Combining these calculations, we obtain the following result.
Proposition 2.2. Given a matriz A € SL3(Z), choose dy,ds, f as in (1.3). After replacing

A with A" ~ A if necessary, we can write A = 14(72)t5(73)ta(m1) with ~; as in (2.1), and
u, v € Z as above its Bruhat decomposition has the coordinates

T rou—x3d
1 g s Nl o\ (LR
1 1 BT 1

with all the visible parameters integral, xo,y1,T3,y3 relatively prime to didsf, and x3ys = 1

(mod f).

In the next proposition we give the conditions under which the coordinates in (2.5) give
rise to the same Us(Z)-double coset.

Proposition 2.3. Given nonzero integers dy,ds, [ and y1 € (Z/d1Z)*, xo € (Z/d2Z)* and
r3,ys € Z/[Z satisfying x3ys = 1 (mod f), the product in (2.5) gives rise to an integral
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matriz if and only if the following congruence conditions are satisfied:

(2.6) ure = dixs  (mod dy),

(2.7) uyy = dy  (mod dy),

(2.8) uroyy = dixsyr + dexe  (mod dids),

(2.9) v=uys (mod df),

(2.10) vy = uysxe + di(1 — z3y3) (mod didyf).

Furthermore a matriz B that formed in the same way from the coordinates Y1, Xo, U,V and
x3,ys 15 i Us(Z)AUs(Z) if and only if
y1 =Y) (mod dy),
re = Xo  (mod dy),
u=U (HlOd dldgf),
v=V (mod didyf).
Remark 1. If we choose yy, xo to be relatively prime to didsf (which we can via switching

to a different matriz in the U(Z) double coset if necessary) then (2.8) and (2.10) imply the
remaining congruence relations.

From now on we will assume x5 and y; are chosen to be relatively prime to didsf.
Since the equation (2.8) determines u up to dyds but u determines the double coset up to
modulo dyds f, the set of allowed solutions are

(2.11) u = d1x3T3 + dotih + didok  (mod dida f),
with k € Z/ fZ.

This then determines v (mod d;dsf) completely and we have for each such u,
v = (di2372 + doyy + didak)ys + di(1 — 73y3)7T2 = dof1ys + diT2 + didaysk  (mod dydaf).
This gives a parametrization of the fine Kloosterman cells.
Corollary 2.4. Let dy,ds, f be nonzero integers, and fix the sets Yy, and Xy, a complete
set of reduced residue class representatives y; (mod dy)*, o (mod dy)* such that zo,,, are

relatively prime to didyf. Let Fr = {(z3,y3) € {f+1,...,2f}xsys = 1 (mod [)} and let
k€ Ky simply run through integers from 0 to f — 1. There is a bijection

Xd2><yd1><]-"f><}CF — Ug(Z)\Q(dth,f)/Ug(Z)
uzo—dizs uayi—dizayi—zody  —VT2tuzoys+di(1-z3y3)
do dldzd didaf
($27y1» (.773,?/3),]{7) — U3<Z) u uytl—:2 %}U U3<Z),
dif S Ys

where u = dyx3T5 + dojy + didok and v = dyTrys + di T3 + didaysk.

Remark 2. The condition that f < x3,y3 < 2f is not important. Any fized set of reduced
residue classes would work as long as x3ys — 1 # 0.
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Corollary 2.5. The number of elements in §y,(c1,c2) is given by

P\ e )Tl = 3 6 (7) " (7) ]

Fllerse2)

2.2. Evaluation of Fine Kloosterman Sums. According to this parametrization we eval-
uate 8,,(m,n;dy, ds, f). The k sum will give us a restriction on the set of (z3,y3) pairs as
well as the condition that (nqds, f) = (mads, f).

Proof of Theorem 1.1. We calculate by using the definition of the fine Kloosterman sum, the
coordinatization of the Kloosterman set from 2.4, and the explicit form of the superdiagonal
elements in the unipotent factors of the Bruhat decomposition in terms of these coordinates
as in (2.5),

Swo (m7 n; d17 d27 f) = Z w(ml,mz) (uL)w(nl,nz)(uR)

Y€l \2(d1,d2,f) /Too
y€urwot(dif,da flur

miyTo 777211 ni1y1 ToU
SD3ED Db B (CL R
dif di  daof
T2€Xay (23,y3)€Ff k=0
y1€Va,y

Then we plug in the values for u and v in terms of the given coordinates,

Swo (l’n, n; dl, dQ, Z Z (TTZ1$2 HQCZ}"L’Q + m2§3x2>

©2€Xa, (23,y3)E€Fy
Yy1€Vay

‘e (nlyl n mzdzyl n2y3y1) A . (’mzdz + nadiys k) .
d; dy f

k=0
The innermost sum over k gives us the congruence condition

(2.12) Mady +nadiys =0 (mod f),

for otherwise the sum vanishes. Some y3 € (Z/fZ)* satisfies this if and only if (mads, f) =
(n2ds, f). Thus,

Swo (M, m;dy, dy, f) = f > Yoo (”1!/1 " (mads + na 1!/3)&/1)

dy dy
(x3,y3)EFs 1€V, J
maoda+nad;ys=0 (mod f)

mixo (mgdgl'g + ngdl)fﬂ_g
<Y e ( s |

T2 €Xd2

Let y3 be chosen so that (2.12) is satisfied. Define the integers N = N(y3) := (mady +
nodyys)/f and M = M(x3) = (madaxs + nady)/f. These are both integers, due to the
condition on (x3,ys3). Note that if z3 = x4 (mod f) then M(x3) = M(x%) (mod d;) and
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similarly for N(y3). The fine Kloosterman sum is

Suo (M, 1;dy, d, f) = f > S(n1, N(ys); di)S(my, M(x3); ds). O

z3,ys  (mod f)
z3ys=1 (mod f)
mada+nad; y3=0 (mod f)

Let us show just how explicitly we can calculate coarse Kloosterman sums using the above
result. We calculate, for an odd prime p,

Suo((L,p), (Lp): (0%, 1)) = Suo((1,p), (1,p); 9%, p, 1) + 8w, (1,p), (1,p); p, 1, p).

The first term with / = 1 is easy to calculate, we can take x3 = y3 = 0 in (1.7) and get,

Suo((1,p), (1,p);p* p, 1) = S(1,p*%p)S(1,p°; p) = u(p*)u(p) = 0.

The second fine Kloosterman sum can be evaluated as

Suo((Lp), (Lp)ip, Lp)=p Y S(1, L p)§(1 22 1) = p(p — 1)S(1, 1; p),

p
r3y3=1 (mod p)
p+y3p*=0 (mod p)

since (p — 1) many (x3,ys) pairs all yield the same answer. Thus we get

(2.13) Suo((1,p), (L. p): (p°,p)) = p(p — 1)S(1,1; p).

Another example would be Sy, ((1,1), (p,p), (p.p)) =2 —p.
Finally let’s take integers mq, mo, nq, ny all coprime to p.

Swo (M, 15 (p,p)) = 8o (M, n;p,p, 1) + 84y (m, n; 1, 1, p).

The f = 1 case is simply S(ny, map; p)S(mi, nap;p) = cp(n1)cy,(my) = p(p)® = 1 and the
[ = p case is pS(ny, (Mg + nays)/p; 1)S(my, (maxs + ny)/p; 1) for the unique (z3,ys) pair
modulo p, that makes the second arguments integers. Thus we get p. Together we get the
identity [BB, (1.3)], i.e. that S(m,n; (p,p)) =p+ 1.

3. PROOFS

We now include proofs of statements made in the Section 1.2

Proof of Lemma 1.2. Simply by using (1.6) and Theorem 1.1, we write,

C1 C
Rcl,CQ(nth) = Z fSwO(Oan;Tl7727f)
flged(er,c2)

- Y ¥ s <n1, n2(jtly3,d1> S (o, ”Qle;dz) .

flged(e1,e2) x5 (mod f)
flnad1  ged(zs3,f)=1
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Here d; := 071 and dy 1= 072 We can evaluate the y3 sum as

Z* 5(711,7126;12/3 d1>— Z* 6(@) Z* e(m?ms)

da
y3 (mod f) u (mod dy) z3  (mod f)
= Y () etmm
dy
u (mod di)
= ca,(n1)cy(na).

In the last line, we used the fact that c;(m ) = cf(my). We can do this because we have
freedom to choose @ as any element of the reduced residue classes (mod ds), so @ can be a
large prime, and in particular we can assume w is an integer relatively prime to f. This gives
the result. U

FElementary proof of Proposition 1.3. In this proof we use the simplified notation (a,b) =
ged(a, b).

Substituting the form of the general Ramanujan sum from Lemma 1.2, we start our cal-
culation

C(s1)C(s2)C(s1+ 52 — 1) Z d311d82 Z Cdy (n1)cj}(sflli)si[i21(nzd1/f)

dido=1 "1 "2 flnydy

Z Car ()¢5 (n2)01-s, (R2di/ f)
:C(S) Sl+52_1 s s1+82—1
di=1 dy flnady frven

Here we used the classical Ramanujan identity (i.e. o1_s(n) = ¢(s) > 2, ce(n)¢~*) on the
dy-sum. Let us assume n; = 1 now, so that cg, (n1) = p(dy). Also put (f,ny) = e. This gives
ged(ne/e, f/e) =1, and so f]dl. Changing variables f/e — [ we have,

ng dl
w( d1 Cfe(n2)01—52(77)
C(Sl)c(sl + S2 — 1 Z 651+52 1 Z Z (f51+5271

elna fldi
(finz2/e)=1
na di
B p(d M(f)01—32(?27)
- C(Sl)c<51 + 52 — 1 Z P31+S2 1 Z,LL Z (]Sl Z fsl+s2—1 ’
e|na gle d1=1 flda

(fn2/g)=1

Here we inserted cq(n) = > ) #(1)g, noting that (fe,n2) = e. The coefficient of the
dy-Dirichlet series is almost a multiplicative function. We note that for a fixed n the function
0a(nd)/o,(d) is a truly multiplicative function of d. Exchanging the order of the e and g
sum we obtain,

01 32 e /’L -
C<31)C<51 + S9 — 1) Z 51+52 2 Z esitsa—1 Z Z f51+52_10'1 (nz/g)'
—sy

glnz elna/g flda
(fin2/g)=1
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For a cleaner notation we drop the subscripts at this point, and write d, n. Using the fact
that the coefficients of the Dirichlet seris in the d-variable are multiplicative, this sum equals

/
/1 0-1 82 e )
C(Sl)C(Sl + S2 — 1 Z gsl-‘rsz 2 Z 651+52 1

gln eln/g

T - (28

at

1 1 S DA
- qu - q51+52—1 + q251+52—1 - - qu - q51+52—1 ’

which cancel with the Euler factors of the two zeta functions.
So let us assume n = p*. If g = n then the e sum is simply 1 = oy_,,(n/g). Now if g # n,
we have the e sum as,

O1—s, n/g O1_s, (M
<a¢_@<n/g>—-”1‘”(p”/g)—- 5) | 2ml /9>>.

psl p31+82—1 p231+82—1

The ¢ factor is

We then apply the Hecke relation for divisor sums, i.e. that if p|n,
Ua<np) = Uoz(n‘)aoz(p) - pa0a<7l/p).

Thus we have

T1-s2 e O1-s e O1-s,(N
Guaww—ﬂﬂ@ﬁ%1am 50 SN 2<mv

psl - p51+52—1 p51 +s9—1 p251 +s9—1

1 1 1
- 01—52 (n/q) 1 - ]E 1 + p52—1 + p251+52—1

= (p(51)Gp(51 + 52 — 1)a1-5,(n/9).

Here (,(s) = (1 —p~%)~1, is the p-Euler factor, that cancels with the Riemann zeta function.
Therefore we obtain that the whole sum is, 37, —+5=301-5,(1/9). O

Proof of Proposition 1.4. Given the decomposition of Kloosterman sum as a sum of product
of two classical Kloosterman sums as in Theorem 1.1, and using the Weyl bound on individual
terms,

’Swo (mv 1’1;(017 CQ))‘

>oof > (n1,d1)2(my, do)2\/didor(dy)7(ds)

fl(e1,c z3ys=1l (mod f
(3.1) ere2) mzdzizznzdléo (m)od o)
< > (S mady)(na, di)E (my, do) /ercy(dy)T(dy).
fl(e1,e2)

(mads,f)=(n2d1,f)
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Here d; = ¢;/ f and we bounded the number of solutions to the congruence equation mody 4+
ysnady =0 (mod f) with ys € (Z/fZ)* by simply (mads, f).

Notice that this answer is not symmetric in the variables. However the decomposition of
Sy into the stratification induced by wy = sgs. Sz comes to the rescue.

Given A = 14(72)t5(73)ta(11) the involution At := wy(*A~)wy ' is a homomorphism fix-
ing U(Z), and therefore it preserves U(Z)-double cosets. This involution does not preserve
our finer decomposition, however it sends the stratification based on one reduced word de-

composition to the other. Indeed AT = 15(72)ta(73)ts(71). The entries of Al are given by

Mss M3z Ms1 . .. .
Al = <%23 %22 %21 ) The Kloosterman sums based on this fine decomposition are written
13 12 11

the same way except we exchange mq <+ mg, ny <> ny and dy <> ds. So we get

(32)  Swmmi(ene)) < Y (fomudi)(ma, di)? (ng, do) 2 \/eroar(di)T(da).
fl(e1,e2)
(n1d27f)=(77211d1,f)

Since we are adding over f such that (mads, f) = (nady, f), we write in (3.1),

(f.mada)® = (f,mads)(f, nady) = (f,d2)(f, di) (i m2) (s 2)-

Combining this with (ﬁ,mg)(dl,nl) < (dif,meny) = (c1,mqnq), and similarly with

(@%,ng)(dg,ml) < (cg,ming) we get the term +/(dy, f)(dz, f)A. Assume that c¢; = p* and
cy = p* with £ < k. Then as f runs through powers of p, the maximum value of (dy, f)(ds, f)
is achieved for f = p" with é <r< g and that value is < p’. By multiplicativity we get
that,

max (2, f)(2, f) <(c1,ca).
max (3,1)(F./) < (e1,0)

There are at most 7((c1, ¢2)) many summands. This gives us the bound with A. Starting
with (3.2) instead, we get the bound with B. Considered together, we obtain the given
statement. |
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