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1 Introduction

We denote by [x] the integral part of real x, namely, the largest integer not exceeding
z. Let w be a real number. The generating function of the sequence {[kw]}?2, is the
Hecke-Mabhler series

ho(2) = [kw]z*
k=1
where z is complex with |z| < 1. Hecke [3] proved that, if w is irrational, then h,(z) has
the unit circle |z| = 1 as its natural boundary, which implies that h,,(z) is transcendental
over C(z). Mahler [7] proved that, if w is a quadratic irrational number, then the number
h,(a) is transcendental, where « is a nonzero algebraic number inside the unit circle.
The Hecke-Mahler series can be modified into two variables as follows. For any positive

number w, we define
oo [k1w]

H,(z1,22) Z Zzl 252, (1)

k1=1ko=1

In the case where w is a real quadratic irrational number, known are the following
theorems on the arithmetic properties of the values of the Hecke-Mahler series.

Theorem 1 (Nishioka [11], see also Nishioka [12]). Let w be a positive quadratic irra-
tional number. If ay, ag are algebraic numbers with 0 < |a;| <1 and 0 < |ay]|as|” < 1,
then the infinite set of the numbers

o' g
{321l82 p(o1;02) ‘ L= 0}

s algebraically independent.

In what follows, we denote by f()(z) the derivative of f(z) of order [. Letting ap = 1 and
I =0 in Theorem 1, Nishioka obtained the algebraic independence of the derivatives of
the Hecke-Mahler series at any fixed nonzero algebraic number inside the unit circle.
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Theorem 2 (Nishioka [11]). Let w be a real quadratic irrational number. If o is an
algebraic number with 0 < |«| < 1, then the infinite set of the numbers {hg)(a) |1 >0}
15 algebraically independent.

On the other hand, Masser proved the algebraic independence of the values of h,(z) at
any nonzero distinct algebraic numbers inside the unit circle.

Theorem 3 (Masser [8]). Let w be a real quadratic irrational number. Then the infinite
set of the numbers {h,(a) | a € Q, 0 < |a] < 1} is algebraically independent.

We denote by w’ the conjugate of the real quadratic irrational number w. Tanaka and
the author proved the following

Theorem 4 (Tanaka and Tanuma [13]). Let w be a real quadratic irrational number.
Assume that w satisfies |w —w'| > 2. Then the infinite set of the numbers {hg) () | 1>
0, € Q, 0 < |a| <1} is algebraically independent.

In this paper we give a sketch of the proof of the following

Theorem 5 (Tanuma [14]). Let w be a positive quadratic irrational number. Then the
infinite set of the numbers

{ O H,

W(O"l) ’ LU >0, aeQ o<ya,<1}

15 algebraically independent.

As a corollary, we can remove the assumption of Theorem 4 and obtain the algebraic
independence of the “direct product” of the infinite sets treated in Theorems 2 and 3.

Corollary 1. Let w be a real quadratic irrational number. Then the infinite set of the
numbers {h () | 1 >0, a € Q, 0< |a| < 1} is algebraically independent.

For the arithmetic properties of the values of the Hecke-Mahler series for arbitrary
irrational w, the following three theorems are known.

Theorem 6 (Loxton and van der Poorten [5]). Let w be a real irrational number. Then
the number hy,(c) is transcendental for any algebraic number o with 0 < | < 1.

Theorem 7 (Flicker [2]). For any real irrational number w, there exists a real number
A, depending on w, for which the following property holds: If o, ..., «, are algebraic
numbers with 0 < |oy| < 1 (1 < i < n) such that log|oq]|,...,log|ay,| are linearly
independent over Q + A\Q, then the numbers hy(aq),. .., hy(ay) are algebraically inde-
pendent.

Let w be expanded in the continued fraction

w = lag; a1, a9, ... =ag+
ap +
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Theorem 8 (Nishioka [10]). Let w be a real irrational number. Suppose that the se-
quence {a}r>o0 of partial quotients in the continued fraction expansion [ag;ay,as, . . .]

of w is unbounded. Let oy, ..., a, be algebraic numbers with 0 < |oy| <1 (1 <@ < n).
If ai/ay is not a root of unity for any i,5 (1 < i < j < n), then the numbers
ho(ar),. .., hy(ay) are algebraically independent.

As mentioned in [2], although Loxton and van der Poorten [5] also stated that
the number >, p([kw])a*, where p(X) is a non-constant polynomial with algebraic
coefficients, is transcendental for any real irrational number w and for any nonzero
algebraic number « inside the unit circle, the proof is not valid. On the other hand,
Theorem 5 implies the following

Theorem 9. Let w be a real quadratic irrational number and S C Q[X] a set of non-
constant polynomials with algebraic coefficients such that S U{1} is linearly independent
over Q. Put f,(z) = > re, p([kw])2* (p(X) € S). Then the infinite set of the numbers

{fél)(@) |p(X) €S, 1>0, acQ, 0< |a] <1} is algebraically independent.

For the case where the sequence of partial quotients is unbounded, Theorem 8
implies Theorem 7. The case of quadratic irrational is a special case of the bounded
case. Thus we have Table 1.

Partial quotients of) bounded
. . - unbounded — _
Arithmetic properties w quadratic ~ not quadratic
transcendence Loxton and van der Poorten
Algebraic values Nishioka Masser Flicker
independence derivatives ? Theorem 5 ' ?

Table 1: Known results for arithmetic properties of the values of Hecke-Mahler series

Not only the Hecke-Mahler series but also the generating function of the difference
sequence {[(k + 1)w] — [kw]}?2, is also studied by many authors. If b —2 <w <b—1
for some integer b greater than 1, then [(k + 1)w] — [kw] € {b—2,b — 1} for any k > 0.
Hence Y 77 ([(k + 1)w] — [kw])b™" gives the b-ary expansion of a real number. We also
consider exponential type Hecke-Mahler series

go(2) = Zz[kw]
k=1

for any positive number w. If w is a positive irrational number, then the generating
function of {[(k + 1)w] — [kw]|}2, coincides with the exponential type Hecke-Mahler
series for 1/w. Indeed, for any integers k and [, [[/w] = k if and only if kw < [ <
(k+ 1)w. Hence #{l € Z>¢ | l|/w = k} = [(k + 1)w]| — [kw] for any k > 0. Therefore

G1/w(2) = D peo([(k + Dw] — [kw])2".



Borwein and Borwein [1] modified the exponential type Hecke-Mahler series into

two variables:
k
21,22 E Z[ w]Z;

If w is a positive irrational number, then the two-variable Hecke-Mahler series and the
two-variable exponential type Hecke-Mahler series satisfy a duality relation:

(1 = 2z1)Hy (21, 22) = 21G1 /(215 22). (2)

This relation is deduced from the following observation. Let {sj}r>; be a nondecreasing
sequence of nonnegative integers with limy_,o s, = +00. Let {cx}r>1 be a sequence in
C with |cx| = o(1/sk). Suppose that the sum >, |cx| converges. Let

= Z Zyl(ck — Cht1)-

k=1 I=1

Then we see that (y) = 372, >0, (ck — crr1)y', where t; = min{k € Zxg | s, > [}

(l>1), and so
=Dt
=1

If s = [kw], then t; = [l/w] + 1. Letting ¢t = 2§ and y = 29, we have (2).
Using the relation (2), we obtain the following

Theorem 10 (Tanuma [14]). Let w be a positive quadratic irrational number. Then
the infinite set of the numbers

{ o Gw

1 2

15 algebraically independent.

Corollary 2. Let w be a positive quadratic irrational number. Then the infinite set of
the numbers {gu(f) ()] 1>0, a€Q, 0< |al <1} is algebraically independent.

Remark 1. By (2), we have 2g.,(2) = (1 — 2)h,,(2) for any positive irrational number
w. Hence we see that g,(z) has the unit circle as its natural boundary if w is positive
irrational.

Some similar results to Corollary 2 are known for the power series f(z) = Y2 2%
where {e;}72, is an increasing sequence of nonnegative integers. For example, Nishioka
proved the following

Theorem 11 (Nishioka [9]). Let f(z) = Yoo, 2"**. Then the infinite set of the
numbers {fO(a) |1 >0, a € Q, 0< |a| < 1} is algebraically independent.
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On the other hand, in the case where limy ., ex1/€x = 1, Kaneko [4] proved the
following

Theorem 12 (Kaneko [4]). Let f.(z) = > oo, AEE) with e positive. Let B > 1
be a Pisot or Salem number. Then the continuum set {f-(37') | ¢ € R, € > 1} is
algebraically independent.

However, in contrast with Corollary 2, it is difficult in general to treat the values
at any algebraic number o with 0 < |a| < 1 in the case where limy_,o €r11/€ = 1.
As far as the author knows, in the case where limy ., ex41/ex = 1, Corollary 2 is the
first result treating the algebraic independence of the values and the derivatives at any
distinct algebraic numbers.

2 Lemmas

We denote by R|zi,...,z,] and by R[z1,...,z,] the ring of polynomials and that of
formal power series in the variables zq,. .., 2z, with coefficients in a ring R, respectively.
Let K be a field. We denote by K(zi,...,z,) the field of rational functions in the
variables z1, ..., z, with coefficients in K.

Let = (wj;j) be an n x n matrix with nonnegative integer entries. For z =
(21,...,2n) € C", we define a multiplicative transformation Q : C* — C" by

n n n
_ wi; wa; Wn;
Qz = IIZj ’IIZJ' ""’IIZj : (3)
j=1 j=1 j=1

In the proof of Theorem 5 we use the following lemmas.

Lemma 1 (Nishioka [12]). Let K be an algebraic number field. Suppose that fi(z),. ..,
fm(2z) € K[z1,. .., 2] converge in an n-polydisc U around the origin of C" and satisfy
the system of functional equations of the form

fi(z) f1(Qz) bi(z)
: =A : + : )
fm(z) fm(Qz) bm(z)

where A is an m x m matriz with entries in K and bj(z) € K(z1,...,2,) (1 <i<m).
Let a be a point in U whose components are nonzero algebraic numbers. Assume that
Q and «a satisfy suitable conditions. Then, if fi(2),..., f-(z) (r < m) are linearly
independent over K modulo K(z1,...,2,), then fi(a),..., f.(a) are algebraically in-
dependent.

Lemma 2 (Loxton and van der Poorten [6]). Let aq, ..., o, be algebraic numbers with
0 < |yl <1 (1 <i < mn). Then there exist multiplicatively independent algebraic



numbers By, ..., By with 0 < |B;| <1 (1 <j <m) such that
j=1

where (; (1 < i < n) are roots of unity and £;; (1 <i<n, 1 <j<m) are nonnegative
integers.

Remark 2. In Lemma 2, at least one of ¢;1,...,¥¢;, is positive for any 7.

The following lemma is a key to the proof of Theorem 5. We denote by {x} the
fractional part of a real number z.

Lemma 3 (Tanuma [14]). Let Q1(X),..., Q. (X) € C[X] be not all constant and let
Q(X1,.... X)) =Q1(Xy)+ - +Q.(X,) € C[Xy,...,X,]. Letay,...,a, bereal numbers
with a; > as > --- > a, > 0. Then the function

f(r) =Q{ar}, ... {a,7})

18 not constant on R.

Proof. Let ig be the smallest integer such that @Q;,(X) is not constant and set Iy =
[0,1/a;,). Let
F0) = Qar, ... a,) = Qu(arr) + - - + Qi (aiy7) + - - - + Qular7).

Then f(T) is a polynomial in 7, and f(7) = f(T) on the interval Iy by the choice of i
and the fact that {a;7} = a;,7 (ip < <r) for any 7 € I,. If f(7) is not constant, then
f(7) takes a value different from ¢ when 7 varies on Ij.

If f(7) is constant, then f(7) = f(7) = f(0) on the interval Iy. Letting [; =
[1/a;y,1/ai+1) N [1/ay,2/a;,), where a,1 = a,/2, we see that f(7) = f(0) also on the

interval I since f(7) is a polynomial in 7. For any 7 € I;, we have
({ai, 7}, {aig17}, - {arT}) = (@i, — 1, G4g417, - .., QT)
and hence, by the choice of io, we have f(7)— f(7) = Qi (as,7—1)— Qi (ai,7). Therefore
f(7) = Qiglai, ™ — 1) — Qi (aiy7) + f(0)
on the interval I;. Since Q;,(a;,m — 1) and @y, (a;,7) are distinct as polynomials in 7,
f(7) takes at least two values when 7 varies on the interval [0,1/a,,1) D Io U I;. O
Lemma 4 (Tanaka and Tanuma [13]). Let w be a positive irrational number and let

S1,...,8, be positive integers. Then, for any real number T, there exists an increasing
sequence {k,},>0 of positive integers such that

VILHOIO ({Slkuw} yee e {Srkvw}) = ({317} R {STT}) )

where each component of the left-hand side approaches the corresponding component of
the right-hand side from the right.



3 Sketch of the proof of Theorem 5

1 1 a e b c
0 ) and C'(a) = < 01 ) for any positive integer a. Define ( d e ) n=

(bn + ¢)/(dn + €), where b, ¢, d, e are nonnegative integers. For any positive irrational
number 77, we have

Let B = (1)

Hp,(21,22) = —H,(B(z1,22)) (mod Q(z1, 22)) (4)

and
Heay(21, 22) = Hy(C(a)(21,22))  (mod Q(z1, 22)), (5)

where B(z1, 22) and C(a)(z1, 22) are defined by (3) (cf. Masser [8]).

Suppose that the positive quadratic irrational w is expanded in the continued frac-
tion w = [ag; a1, as, .. .|, where ag is a nonnegative integer and {ay }x>1 is an eventually
periodic sequence of positive integers. Then there exist even positive integers p and v
such that {ax}r>, is purely periodic with period v. Let x = [0; ay41,au42,...]. Then
we see that

w = [ag; ar, az, . .., ay, x| = Clag) BC(a1) BC(az) - - - BC(ay)x

and
X = (05 aps1s apyas - -5 @y, ] = BC(ayi) - BC(ayy)X-
Let
S = (f ‘5’ ) = C(a,)BC(au_1)B - - C(a1)BC/ao)
and

T = C(apsr) BC(apsv—1) B - - - Clay+1) B.
Then, by (4) and (5), we see that

H,(z1,22) = Hy(S(z1, 22)) (mod Q(z1, 22))

and
H,(21,29) = HX(T(I)(21»Z2)) (mod Q(z1, 22)).
For any positive integer m, we define

T = diag (TW,..., TV ).
N e’

m

Let Bi,...,Bmn be multiplicatively independent algebraic numbers with 0 < |5;] < 1
(1 <j<m)and let
ZOZ( 1107/3{7/7’57/35 %7/3;) (6)



Let € = (x1,...,%m), ¥ = (y1,...,Ym) be variables. Let (3,...,(, be roots of unity

and My, ..., M, non-constant monomials in m variables. Define
oo [kix]
Fi(z) = Hy (¢! Mi(x) =D > (M) (G Mi(y)* (1 <i<n), (7)
ki=1ko=1
where z = (1,91, 2,92, - -, Ty Ym)-

Lemma 5 (Masser [8, Lemma 3.3]). There exists a positive power T of T such that
Fi(z) = F(Tz)  (mod Q(2)) (8)

forany i (1 <i<n).
The matrix 7" in Lemma 5 can be written as

: tn ti2 tin ti2

T = dia by .
g<<t21 t22> <t21 t22)>

Let Dj = 2;0/0x; and D; = y;0/dy; (1 < j < m). Differentiating both sides of (8),
we see that DD} ... Din D! i Ey(2) (0 < Iy 4+ 1 4+ Ly + 11, < L, 1 <i<n)
satisfy a system of functional equations as in Lemma 1 for any L > 0. Moreover, We

can show that the matrix T" and the point z, satisfy required conditions in Lemma 1
(cf. Masser [8]).

Sketch of the proof of Theorem 5. Let aq,...,a, be any nonzero distinct alge-
braic numbers with |o;] < 1 (1 < ¢ < n). Since the algebraic independency of
{0"VH,/02'0%" (a;,1) | 1 < i < n, 0 < [,/ < L} is equivalent to that of
{DZD’Z, H,(S(v,1)) | 1 <@ < n, 0 < LI < L}, it is sufficient to show that
{DZD’Z v(S(a;,1) | 1 <@ <n, 0 <[l < L} is algebraically independent for
any sufficiently large L. For the aq,..., ., let Bi,..., Bm, C1,y ..oy G, and £;; (1 <0 <
n, 1 <j <m) be as in Lemma 2 and let z, be defined by (6). Let M;(z) =z - - - alim.
By (7) and Remark 2 after Lemma 2 we have

DL D! Fy(z9) = € DD H (S(ai, 1)),
where ¢;;, > 0, D = 20/0z, and D' = 2,0/0z. Hence the algebraic independency of
{DZD’Z,H (S(a;,1)) [1<i<mn, 0<1,I'< L} is equivalent to that of { D’ D) l/F‘(Zg) |
1<i<n, 0<[,l' <L} ByLemmal, 1t1senoughtoshowthat{DlD’l Fi(z)|1<
i <n, 0 <10’ <L} is linearly independent over Q modulo Q(2).

On the contrary, we assume that {D! D/"Fi(z) | 1 <i < n, 0 < L,I' < L}

is linearly dependent over Q modulo Q( ). Then there exist algebraic numbers Ay
(1<i<n, 0<,I' <L), not all zero, and a rational function R(z) € Q(z) such that

YD hwDi Dy Fi(z) = R(=). ()

i=1 =0 I'=0



We take a sufficiently large positive integer ¢ and attempt a specialization of the form
= (P20, y= ("

for a single variable z. Let t; = Z;nzl L7 (1 <4 < n). Then M;(x) = 2P and
M;(y) = 2". We take ¢ so large that, if M; # M;, then t; #¢; (1 <i < j <n). Then
(9) is specialized to a relation

n L

L
Z Z Z )\izz'@i—;l/DlDll Hx(S(Cfiztiv 1)) = R'(2),
i=1 1=0

=0 I'=0

where R/(z) = R(2P%, 2", ... 2P"™ 2"™). Since \iyy (1 < i <mn, 0 <1[,I' <L) are not
all zero, {DlD’l,HX(S(Qz“, 1)]1<i<mn, 0<I[,I'! <L} is linearly dependent over
Q modulo Q(z). Hence we see that {D'D" H, (G2, 1) |1 <i<mn, 0 <Ll <L} is
linearly dependent over Q modulo @(z) Since the Q-vector spaces generated respec-
tively by {D'D" H,(G2",1) | 1 <i <mn, 0 <I,I' < L} and by {357, K [kw]” (¢;2)F |
1 <i<n 0<I<L, 1< <L+ 1} are equal, there exist algebraic integers

i (1<i<n 0<I[I<L 1< <L+1),not all zero, and a rational function
R*(2) € Q(2) such that

n L L+1 00 00
SN N Z Kkl (G2 =3 arz® = R (2), (10)
=1 =0 I'=1 =1 k=1

where

-e oy () (- {5

1<i<n =0 I'=1
tilk

ot

%

and {z} denotes the fractional part of real . Let N be a positive integer such that
(N=...=(V=1. Let {t/,...,t} be the maximum subset of {t;,...,t,} such that
th<th<---<t. Let T, ={j|t; =t} (1 <i<r). Then (; (j € T;) are distinct
for each i, since oy, ..., a, are distinct. Put s =¢|---t/N and s; = s/t; (1 <1 <r).
Then s; > s9 > -+ > s,.. Noting that {1,...,n} is a disjoint union of T3, ...,T,, for
any k > 0 and for any fixed nonnegative integer h, we see that

o ii%kiﬁ? <5k+h> <(5k2h)w - {(skzh)w}y/’ 1)

i=1 =0 lI'=1

where e
)\(Z) _ {Eje:n )‘;ll/g , if t;]h,

=
0, otherwise,

for1<i<r,0<I<L,and1<U<L-+1.



We assert that A7) =0 (1<i<r, 0<I<L, 1<I'<L+1)forany h>0. If
this is the case, we can deduce a contradiction as follows. For each ¢ with 1 < i < r,
let h = t}k with k > 0. Then, for any 0 <! < L, 1 <[l' < L+ 1, we have

> NG =3 Xt

JET; JET;

for any k > 0. Since ¢; (j € T;) are distinct, by the non-vanishing of Vandermonde
determinant, we see that A\, =0forany 1 <i<n, 0<I<L,and 1 <! <L+1,
which is a contradiction.

On the contrary, we assume that )\(ll, (1<i<r,0<I<L 1<U<L+1)are
not all zero for some nonnegative integer hy. For each ¢ with 1 < < r we see that

EL:LE—%)\(ZO) (Sk+h0) ((Sk—f—ho)w . {(Sk—f—ho)w})l,
" f f

=0 I'=1

=Qa.i({(sk + ho)w /G A" + - + Qui({(sk + ho)w/t;}),

where Qui(X), ..., Qui(X) € Q[X] with Qg;;(X) # 0. In addition, at least one of
Qa,i(X),. .., Qoi(X) is not constant for any ¢ such that /\(Zﬁ)) (0<I<L, 1<UI<L+1)
are not all zero. Then by (11) we see that

Asing = O (Qai({(sk + ho)w/ENE" + - + Qoi({(sk + ho)w/t}}))

:Q_d({(sk + ho)w/t)}, ... {(sk + ho)w/tL 1)k +
+ Qo({(sk + ho)w/th}, ..., {(sk + ho)w/t.}), (12)

where Qq(X1,...,X,),...,Qo(X1,...,X,) € Q[Xy,...,X,] are not all constant poly-
nomials of the form

Q;(X1,..., X)) =Qu(Xy) + -+ Qjn(X;)

with Q4(X1,...,X,) # 0. On the other hand, by (10), we can write

Agsk+hy = Cd/{?d + -+ Co (13)
for all sufficiently large k, where cg, ..., ¢y are algebraic numbers. Let jo be the largest
integer such that Q;,(X7,...,X,) is not constant. From Lemma 3 there exists a real
number 7, such that

Qj()({slTO}a SU) {S’I‘TO}) 7£ Cjo - (14)

From Lemma 4 there exists an increasing sequence {k,},>o of positive integers such

that
Vli_}rglo({slkl,w}, o Askwl) = {simg)s - s ), (15)
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where 7, = 70 — how/s and each component of the left-hand side approaches the corre-
sponding component of the right-hand side from the right. By (15) we see that

thélo ({(sky + ho)w/t }, ..., {(sk, + ho)w/t.}) = ({s170}, - -+, {8+70}).

If jo = d, then lim, o G, 11y /K% = Qa({5170}, - -+, {8,T0}) # cq by (12) and (14). On
the other hand limy o aspyn,/k% = cq by (13), which is a contradiction. Hence we see
that the polynomial Q4(X7, ..., X,) is equal to the constant ¢, identically. Then, since

gy — Cakl
lim SR 2 9y ({sim) - {sim})

by (12) and

iy Zsktho — cak®

Jom =
by (13), we see that jo < d — 1. Continuing this process, we obtain a contradiction.
This concludes the proof of Theorem 5. O
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