Algebraic independence of certain series related to integral parts of integral multiples of a real number

慶應義塾大学大学院 理工学研究科 田沼優佑 (Yusuke Tanuma) Graduate School of Science and Technology, Keio University

1 Introduction

We denote by [x] the integral part of real x, namely, the largest integer not exceeding x. Let ω be a real number. The generating function of the sequence $\{[k\omega]\}_{k=1}^{\infty}$ is the Hecke-Mahler series

$$h_{\omega}(z) = \sum_{k=1}^{\infty} [k\omega] z^k,$$

where z is complex with |z| < 1. Hecke [3] proved that, if ω is irrational, then $h_{\omega}(z)$ has the unit circle |z| = 1 as its natural boundary, which implies that $h_{\omega}(z)$ is transcendental over $\mathbb{C}(z)$. Mahler [7] proved that, if ω is a quadratic irrational number, then the number $h_{\omega}(\alpha)$ is transcendental, where α is a nonzero algebraic number inside the unit circle. The Hecke-Mahler series can be modified into two variables as follows. For any positive number ω , we define

$$H_{\omega}(z_1, z_2) = \sum_{k_1=1}^{\infty} \sum_{k_2=1}^{[k_1 \omega]} z_1^{k_1} z_2^{k_2}. \tag{1}$$

In the case where ω is a real quadratic irrational number, known are the following theorems on the arithmetic properties of the values of the Hecke-Mahler series.

Theorem 1 (Nishioka [11], see also Nishioka [12]). Let ω be a positive quadratic irrational number. If α_1 , α_2 are algebraic numbers with $0 < |\alpha_1| < 1$ and $0 < |\alpha_1| |\alpha_2|^{\omega} < 1$, then the infinite set of the numbers

$$\left\{ \frac{\partial^{l+l'} H_{\omega}}{\partial z_1^l \partial z_2^{l'}} (\alpha_1, \alpha_2) \mid l, l' \ge 0 \right\}$$

is algebraically independent.

In what follows, we denote by $f^{(l)}(z)$ the derivative of f(z) of order l. Letting $\alpha_2 = 1$ and l' = 0 in Theorem 1, Nishioka obtained the algebraic independence of the derivatives of the Hecke-Mahler series at any fixed nonzero algebraic number inside the unit circle.

Theorem 2 (Nishioka [11]). Let ω be a real quadratic irrational number. If α is an algebraic number with $0 < |\alpha| < 1$, then the infinite set of the numbers $\{h_{\omega}^{(l)}(\alpha) \mid l \geq 0\}$ is algebraically independent.

On the other hand, Masser proved the algebraic independence of the values of $h_{\omega}(z)$ at any nonzero distinct algebraic numbers inside the unit circle.

Theorem 3 (Masser [8]). Let ω be a real quadratic irrational number. Then the infinite set of the numbers $\{h_{\omega}(\alpha) \mid \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1\}$ is algebraically independent.

We denote by ω' the conjugate of the real quadratic irrational number ω . Tanaka and the author proved the following

Theorem 4 (Tanaka and Tanuma [13]). Let ω be a real quadratic irrational number. Assume that ω satisfies $|\omega - \omega'| > 2$. Then the infinite set of the numbers $\{h_{\omega}^{(l)}(\alpha) \mid l \geq 0, \ \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1\}$ is algebraically independent.

In this paper we give a sketch of the proof of the following

Theorem 5 (Tanuma [14]). Let ω be a positive quadratic irrational number. Then the infinite set of the numbers

$$\left\{ \frac{\partial^{l+l'} H_{\omega}}{\partial z_1^{l} \partial z_2^{l'}} (\alpha, 1) \mid l, l' \ge 0, \ \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1 \right\}$$

is algebraically independent.

As a corollary, we can remove the assumption of Theorem 4 and obtain the algebraic independence of the "direct product" of the infinite sets treated in Theorems 2 and 3.

Corollary 1. Let ω be a real quadratic irrational number. Then the infinite set of the numbers $\{h_{\omega}^{(l)}(\alpha) \mid l \geq 0, \ \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1\}$ is algebraically independent.

For the arithmetic properties of the values of the Hecke-Mahler series for arbitrary irrational ω , the following three theorems are known.

Theorem 6 (Loxton and van der Poorten [5]). Let ω be a real irrational number. Then the number $h_{\omega}(\alpha)$ is transcendental for any algebraic number α with $0 < |\alpha| < 1$.

Theorem 7 (Flicker [2]). For any real irrational number ω , there exists a real number λ , depending on ω , for which the following property holds: If $\alpha_1, \ldots, \alpha_n$ are algebraic numbers with $0 < |\alpha_i| < 1$ ($1 \le i \le n$) such that $\log |\alpha_1|, \ldots, \log |\alpha_n|$ are linearly independent over $\mathbb{Q} + \lambda \mathbb{Q}$, then the numbers $h_{\omega}(\alpha_1), \ldots, h_{\omega}(\alpha_n)$ are algebraically independent.

Let ω be expanded in the continued fraction

$$\omega = [a_0; a_1, a_2, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}.$$

Theorem 8 (Nishioka [10]). Let ω be a real irrational number. Suppose that the sequence $\{a_k\}_{k\geq 0}$ of partial quotients in the continued fraction expansion $[a_0; a_1, a_2, \ldots]$ of ω is unbounded. Let $\alpha_1, \ldots, \alpha_n$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \leq i \leq n)$. If α_i/α_j is not a root of unity for any i, j $(1 \leq i < j \leq n)$, then the numbers $h_{\omega}(\alpha_1), \ldots, h_{\omega}(\alpha_n)$ are algebraically independent.

As mentioned in [2], although Loxton and van der Poorten [5] also stated that the number $\sum_{k=1}^{\infty} p([k\omega])\alpha^k$, where p(X) is a non-constant polynomial with algebraic coefficients, is transcendental for any real irrational number ω and for any nonzero algebraic number α inside the unit circle, the proof is not valid. On the other hand, Theorem 5 implies the following

Theorem 9. Let ω be a real quadratic irrational number and $S \subset \overline{\mathbb{Q}}[X]$ a set of non-constant polynomials with algebraic coefficients such that $S \cup \{1\}$ is linearly independent over $\overline{\mathbb{Q}}$. Put $f_p(z) = \sum_{k=1}^{\infty} p([k\omega])z^k$ $(p(X) \in S)$. Then the infinite set of the numbers $\{f_p^{(l)}(\alpha) \mid p(X) \in S, \ l \geq 0, \ \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1\}$ is algebraically independent.

For the case where the sequence of partial quotients is unbounded, Theorem 8 implies Theorem 7. The case of quadratic irrational is a special case of the bounded case. Thus we have Table 1.

(Partial quotients of)		unbounded	bounded	
Arithmetic properties ω			quadratic	not quadratic
transcendence		Loxton and van der Poorten		
Algebraic	values	Nishioka	Masser	Flicker
independence	derivatives	?	Theorem 5	<u> </u>

Table 1: Known results for arithmetic properties of the values of Hecke-Mahler series

Not only the Hecke-Mahler series but also the generating function of the difference sequence $\{[(k+1)\omega]-[k\omega]\}_{k=0}^{\infty}$ is also studied by many authors. If $b-2<\omega< b-1$ for some integer b greater than 1, then $[(k+1)\omega]-[k\omega]\in\{b-2,b-1\}$ for any $k\geq 0$. Hence $\sum_{k=0}^{\infty}([(k+1)\omega]-[k\omega])b^{-k}$ gives the b-ary expansion of a real number. We also consider exponential type Hecke-Mahler series

$$g_{\omega}(z) = \sum_{k=1}^{\infty} z^{[k\omega]}$$

for any positive number ω . If ω is a positive irrational number, then the generating function of $\{[(k+1)\omega] - [k\omega]\}_{k=0}^{\infty}$ coincides with the exponential type Hecke-Mahler series for $1/\omega$. Indeed, for any integers k and l, $[l/\omega] = k$ if and only if $k\omega \leq l < (k+1)\omega$. Hence $\#\{l \in \mathbb{Z}_{\geq 0} \mid l/\omega = k\} = [(k+1)\omega] - [k\omega]$ for any $k \geq 0$. Therefore $g_{1/\omega}(z) = \sum_{k=0}^{\infty} ([(k+1)\omega] - [k\omega])z^k$.

Borwein and Borwein [1] modified the exponential type Hecke-Mahler series into two variables:

$$G_{\omega}(z_1, z_2) = \sum_{k=1}^{\infty} z_1^{[k\omega]} z_2^k.$$

If ω is a positive irrational number, then the two-variable Hecke-Mahler series and the two-variable exponential type Hecke-Mahler series satisfy a duality relation:

$$(1 - z_1)H_{\omega}(z_1, z_2) = z_1 G_{1/\omega}(z_1, z_2). \tag{2}$$

This relation is deduced from the following observation. Let $\{s_k\}_{k\geq 1}$ be a nondecreasing sequence of nonnegative integers with $\lim_{k\to\infty} s_k = +\infty$. Let $\{c_k\}_{k\geq 1}$ be a sequence in $\mathbb C$ with $|c_k| = o(1/s_k)$. Suppose that the sum $\sum_{k=1}^\infty |c_k|$ converges. Let

$$\varphi(y) = \sum_{k=1}^{\infty} \sum_{l=1}^{s_k} y^l (c_k - c_{k+1}).$$

Then we see that $\varphi(y) = \sum_{l=1}^{\infty} \sum_{k=t_l}^{\infty} (c_k - c_{k+1}) y^l$, where $t_l = \min\{k \in \mathbb{Z}_{\geq 0} \mid s_k \geq l\}$ $(l \geq 1)$, and so

$$\varphi(y) = \sum_{l=1}^{\infty} c_{t_l} y^l.$$

If $s_k = [k\omega]$, then $t_l = [l/\omega] + 1$. Letting $c_k = z_1^k$ and $y = z_2$, we have (2). Using the relation (2), we obtain the following

Theorem 10 (Tanuma [14]). Let ω be a positive quadratic irrational number. Then the infinite set of the numbers

$$\left\{ \frac{\partial^{l+l'} G_{\omega}}{\partial z_1^l \partial z_2^{l'}} (\alpha, 1) \mid l, l' \ge 0, \ \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1 \right\}$$

is algebraically independent.

Corollary 2. Let ω be a positive quadratic irrational number. Then the infinite set of the numbers $\{g_{\omega}^{(l)}(\alpha) \mid l \geq 0, \ \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1\}$ is algebraically independent.

Remark 1. By (2), we have $zg_{\omega}(z) = (1-z)h_{1/\omega}(z)$ for any positive irrational number ω . Hence we see that $g_{\omega}(z)$ has the unit circle as its natural boundary if ω is positive irrational.

Some similar results to Corollary 2 are known for the power series $f(z) = \sum_{k=1}^{\infty} z^{e_k}$, where $\{e_k\}_{k=1}^{\infty}$ is an increasing sequence of nonnegative integers. For example, Nishioka proved the following

Theorem 11 (Nishioka [9]). Let $f(z) = \sum_{k=1}^{\infty} z^{k!+k}$. Then the infinite set of the numbers $\{f^{(l)}(\alpha) \mid l \geq 0, \ \alpha \in \overline{\mathbb{Q}}, \ 0 < |\alpha| < 1\}$ is algebraically independent.

On the other hand, in the case where $\lim_{k\to\infty} e_{k+1}/e_k = 1$, Kaneko [4] proved the following

Theorem 12 (Kaneko [4]). Let $f_{\varepsilon}(z) = \sum_{k=1}^{\infty} z^{[k^{(\log k)^{\varepsilon}}]}$ with ε positive. Let $\beta > 1$ be a Pisot or Salem number. Then the continuum set $\{f_{\varepsilon}(\beta^{-1}) \mid \varepsilon \in \mathbb{R}, \ \varepsilon \geq 1\}$ is algebraically independent.

However, in contrast with Corollary 2, it is difficult in general to treat the values at any algebraic number α with $0 < |\alpha| < 1$ in the case where $\lim_{k \to \infty} e_{k+1}/e_k = 1$. As far as the author knows, in the case where $\lim_{k \to \infty} e_{k+1}/e_k = 1$, Corollary 2 is the first result treating the algebraic independence of the values and the derivatives at any distinct algebraic numbers.

2 Lemmas

We denote by $R[z_1, \ldots, z_n]$ and by $R[z_1, \ldots, z_n]$ the ring of polynomials and that of formal power series in the variables z_1, \ldots, z_n with coefficients in a ring R, respectively. Let K be a field. We denote by $K(z_1, \ldots, z_n)$ the field of rational functions in the variables z_1, \ldots, z_n with coefficients in K.

Let $\Omega = (\omega_{ij})$ be an $n \times n$ matrix with nonnegative integer entries. For $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n$, we define a multiplicative transformation $\Omega : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\Omega \mathbf{z} = \left(\prod_{j=1}^{n} z_{j}^{\omega_{1j}}, \prod_{j=1}^{n} z_{j}^{\omega_{2j}}, \dots, \prod_{j=1}^{n} z_{j}^{\omega_{nj}} \right).$$
 (3)

In the proof of Theorem 5 we use the following lemmas.

Lemma 1 (Nishioka [12]). Let K be an algebraic number field. Suppose that $f_1(\mathbf{z}), \ldots, f_m(\mathbf{z}) \in K[[z_1, \ldots, z_n]]$ converge in an n-polydisc U around the origin of \mathbb{C}^n and satisfy the system of functional equations of the form

$$\begin{pmatrix} f_1(\boldsymbol{z}) \\ \vdots \\ f_m(\boldsymbol{z}) \end{pmatrix} = A \begin{pmatrix} f_1(\Omega \boldsymbol{z}) \\ \vdots \\ f_m(\Omega \boldsymbol{z}) \end{pmatrix} + \begin{pmatrix} b_1(\boldsymbol{z}) \\ \vdots \\ b_m(\boldsymbol{z}) \end{pmatrix},$$

where A is an $m \times m$ matrix with entries in K and $b_i(\mathbf{z}) \in K(z_1, \ldots, z_n)$ $(1 \leq i \leq m)$. Let α be a point in U whose components are nonzero algebraic numbers. Assume that Ω and α satisfy suitable conditions. Then, if $f_1(\mathbf{z}), \ldots, f_r(\mathbf{z})$ $(r \leq m)$ are linearly independent over K modulo $K(z_1, \ldots, z_n)$, then $f_1(\alpha), \ldots, f_r(\alpha)$ are algebraically independent.

Lemma 2 (Loxton and van der Poorten [6]). Let $\alpha_1, \ldots, \alpha_n$ be algebraic numbers with $0 < |\alpha_i| < 1$ ($1 \le i \le n$). Then there exist multiplicatively independent algebraic

numbers β_1, \ldots, β_m with $0 < |\beta_j| < 1 \ (1 \le j \le m)$ such that

$$\alpha_i = \zeta_i \prod_{j=1}^m \beta_j^{\ell_{ij}} \qquad (1 \le i \le n),$$

where ζ_i $(1 \le i \le n)$ are roots of unity and ℓ_{ij} $(1 \le i \le n, 1 \le j \le m)$ are nonnegative integers.

Remark 2. In Lemma 2, at least one of $\ell_{i1}, \ldots, \ell_{im}$ is positive for any i.

The following lemma is a key to the proof of Theorem 5. We denote by $\{x\}$ the fractional part of a real number x.

Lemma 3 (Tanuma [14]). Let $Q_1(X), \ldots, Q_r(X) \in \mathbb{C}[X]$ be not all constant and let $Q(X_1, \ldots, X_r) = Q_1(X_1) + \cdots + Q_r(X_r) \in \mathbb{C}[X_1, \ldots, X_r]$. Let a_1, \ldots, a_r be real numbers with $a_1 > a_2 > \cdots > a_r > 0$. Then the function

$$f(\tau) = Q(\{a_1\tau\}, \dots, \{a_r\tau\})$$

is not constant on \mathbb{R} .

Proof. Let i_0 be the smallest integer such that $Q_{i_0}(X)$ is not constant and set $I_0 = [0, 1/a_{i_0})$. Let

$$\widehat{f}(\tau) = Q(a_1\tau, \dots, a_r\tau) = Q_1(a_1\tau) + \dots + Q_{i_0}(a_{i_0}\tau) + \dots + Q_r(a_r\tau).$$

Then $\widehat{f}(\tau)$ is a polynomial in τ , and $f(\tau) = \widehat{f}(\tau)$ on the interval I_0 by the choice of i_0 and the fact that $\{a_i\tau\} = a_i\tau$ $(i_0 \le i \le r)$ for any $\tau \in I_0$. If $\widehat{f}(\tau)$ is not constant, then $f(\tau)$ takes a value different from c when τ varies on I_0 .

If $\widehat{f}(\tau)$ is constant, then $\widehat{f}(\tau) = f(\tau) = f(0)$ on the interval I_0 . Letting $I_1 = [1/a_{i_0}, 1/a_{i_0+1}) \cap [1/a_{i_0}, 2/a_{i_0})$, where $a_{r+1} = a_r/2$, we see that $\widehat{f}(\tau) = f(0)$ also on the interval I_1 since $\widehat{f}(\tau)$ is a polynomial in τ . For any $\tau \in I_1$, we have

$$(\{a_{i_0}\tau\},\{a_{i_0+1}\tau\},\ldots,\{a_r\tau\})=(a_{i_0}\tau-1,a_{i_0+1}\tau,\ldots,a_r\tau)$$

and hence, by the choice of i_0 , we have $f(\tau) - \widehat{f}(\tau) = Q_{i_0}(a_{i_0}\tau - 1) - Q_{i_0}(a_{i_0}\tau)$. Therefore

$$f(\tau) = Q_{i_0}(a_{i_0}\tau - 1) - Q_{i_0}(a_{i_0}\tau) + f(0)$$

on the interval I_1 . Since $Q_{i_0}(a_{i_0}\tau - 1)$ and $Q_{i_0}(a_{i_0}\tau)$ are distinct as polynomials in τ , $f(\tau)$ takes at least two values when τ varies on the interval $[0, 1/a_{r+1}) \supset I_0 \cup I_1$.

Lemma 4 (Tanaka and Tanuma [13]). Let ω be a positive irrational number and let s_1, \ldots, s_r be positive integers. Then, for any real number τ , there exists an increasing sequence $\{k_{\nu}\}_{\nu>0}$ of positive integers such that

$$\lim_{\nu \to \infty} \left(\left\{ s_1 k_{\nu} \omega \right\}, \dots, \left\{ s_r k_{\nu} \omega \right\} \right) = \left(\left\{ s_1 \tau \right\}, \dots, \left\{ s_r \tau \right\} \right),$$

where each component of the left-hand side approaches the corresponding component of the right-hand side from the right.

3 Sketch of the proof of Theorem 5

Let $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $C(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ for any positive integer a. Define $\begin{pmatrix} b & c \\ d & e \end{pmatrix} \eta = (b\eta + c)/(d\eta + e)$, where b, c, d, e are nonnegative integers. For any positive irrational number η , we have

$$H_{B\eta}(z_1, z_2) \equiv -H_{\eta}(B(z_1, z_2)) \pmod{\mathbb{Q}(z_1, z_2)}$$
 (4)

and

$$H_{C(a)\eta}(z_1, z_2) \equiv H_{\eta}(C(a)(z_1, z_2)) \pmod{\mathbb{Q}(z_1, z_2)},$$
 (5)

where $B(z_1, z_2)$ and $C(a)(z_1, z_2)$ are defined by (3) (cf. Masser [8]).

Suppose that the positive quadratic irrational ω is expanded in the continued fraction $\omega = [a_0; a_1, a_2, \ldots]$, where a_0 is a nonnegative integer and $\{a_k\}_{k\geq 1}$ is an eventually periodic sequence of positive integers. Then there exist even positive integers μ and ν such that $\{a_k\}_{k\geq \mu}$ is purely periodic with period ν . Let $\chi = [0; a_{\mu+1}, a_{\mu+2}, \ldots]$. Then we see that

$$\omega = [a_0; a_1, a_2, \dots, a_{\mu}, \chi] = C(a_0)BC(a_1)BC(a_2)\cdots BC(a_{\mu})\chi$$

and

$$\chi = [0; a_{\mu+1}, a_{\mu+2}, \dots, a_{\mu+\nu}, \chi] = BC(a_{\mu+1}) \cdots BC(a_{\mu+\nu})\chi.$$

Let

$$S = \begin{pmatrix} p & q \\ r & s \end{pmatrix} = C(a_{\mu})BC(a_{\mu-1})B\cdots C(a_1)BC(a_0)$$

and

$$T^{(1)} = C(a_{\mu+\nu})BC(a_{\mu+\nu-1})B\cdots C(a_{\mu+1})B.$$

Then, by (4) and (5), we see that

$$H_{\omega}(z_1, z_2) \equiv H_{\chi}(S(z_1, z_2)) \pmod{\mathbb{Q}(z_1, z_2)}$$

and

$$H_{\chi}(z_1, z_2) \equiv H_{\chi}(T^{(1)}(z_1, z_2)) \pmod{\mathbb{Q}(z_1, z_2)}.$$

For any positive integer m, we define

$$T^{(m)} = \operatorname{diag}\left(\underbrace{T^{(1)}, \dots, T^{(1)}}_{m}\right).$$

Let β_1, \ldots, β_m be multiplicatively independent algebraic numbers with $0 < |\beta_j| < 1$ $(1 \le j \le m)$ and let

$$\mathbf{z}_0 = (\beta_1^p, \beta_1^r, \beta_2^p, \beta_2^r, \dots, \beta_m^p, \beta_m^r).$$
 (6)

Let $\mathbf{x} = (x_1, \dots, x_m)$, $\mathbf{y} = (y_1, \dots, y_m)$ be variables. Let ζ_1, \dots, ζ_n be roots of unity and M_1, \dots, M_n non-constant monomials in m variables. Define

$$F_{i}(\boldsymbol{z}) = H_{\chi}(\zeta_{i}^{p} M_{i}(\boldsymbol{x}), \zeta_{i}^{r} M_{i}(\boldsymbol{y})) = \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{[k_{1}\chi]} (\zeta_{i}^{p} M_{i}(\boldsymbol{x}))^{k_{1}} (\zeta_{i}^{r} M_{i}(\boldsymbol{y}))^{k_{2}} \quad (1 \leq i \leq n), \quad (7)$$

where $\mathbf{z} = (x_1, y_1, x_2, y_2, \dots, x_m, y_m).$

Lemma 5 (Masser [8, Lemma 3.3]). There exists a positive power T of $T^{(m)}$ such that

$$F_i(z) \equiv F_i(Tz) \pmod{\overline{\mathbb{Q}}(z)}$$
 (8)

for any i $(1 \le i \le n)$.

The matrix T in Lemma 5 can be written as

$$T = \operatorname{diag}\left(\underbrace{\begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix}, \dots, \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix}}_{m}\right).$$

Let $D_j = x_j \partial/\partial x_j$ and $D'_j = y_j \partial/\partial y_j$ $(1 \leq j \leq m)$. Differentiating both sides of (8), we see that $D_1^{l_1} D_1'^{l'_1} \cdots D_m^{l_m} D_m'^{l'_m} F_i(\mathbf{z})$ $(0 \leq l_1 + l'_1 + \cdots + l_m + l'_m \leq L, 1 \leq i \leq n)$ satisfy a system of functional equations as in Lemma 1 for any $L \geq 0$. Moreover, We can show that the matrix T and the point \mathbf{z}_0 satisfy required conditions in Lemma 1 (cf. Masser [8]).

Sketch of the proof of Theorem 5. Let $\alpha_1, \ldots, \alpha_n$ be any nonzero distinct algebraic numbers with $|\alpha_i| < 1$ $(1 \le i \le n)$. Since the algebraic independency of $\{\partial^{l+l'} H_{\omega}/\partial z_1^{l'} \partial z_2^{l'}(\alpha_i, 1) \mid 1 \le i \le n, \ 0 \le l, l' \le L\}$ is equivalent to that of $\{D^l D'^{l'} H_{\chi}(S(\alpha_i, 1)) \mid 1 \le i \le n, \ 0 \le l, l' \le L\}$, it is sufficient to show that $\{D^l D'^{l'} H_{\chi}(S(\alpha_i, 1)) \mid 1 \le i \le n, \ 0 \le l, l' \le L\}$ is algebraically independent for any sufficiently large L. For the $\alpha_1, \ldots, \alpha_n$, let $\beta_1, \ldots, \beta_m, \zeta_1, \ldots, \zeta_n$, and ℓ_{ij} $(1 \le i \le n, \ 1 \le j \le m)$ be as in Lemma 2 and let z_0 be defined by (6). Let $M_i(x) = x_1^{\ell_{i1}} \cdots x_m^{\ell_{im}}$. By (7) and Remark 2 after Lemma 2 we have

$$D_{j_i}^l D_{j_i}^{\prime l'} F_i(\mathbf{z}_0) = \ell_{ij_i}^{l+l'} D^l D^{\prime l'} H_{\chi}(S(\alpha_i, 1)),$$

where $\ell_{ij_i} > 0$, $D = z_1 \partial/\partial z_1$, and $D' = z_2 \partial/\partial z_2$. Hence the algebraic independency of $\{D^l D'^{l'} H_{\chi}(S(\alpha_i, 1)) \mid 1 \leq i \leq n, \ 0 \leq l, l' \leq L\}$ is equivalent to that of $\{D^l_{j_i} D'_{j_i}{}^{l'} F_i(\boldsymbol{z}_0) \mid 1 \leq i \leq n, \ 0 \leq l, l' \leq L\}$. By Lemma 1, it is enough to show that $\{D^l_{j_i} D'_{j_i}{}^{l'} F_i(\boldsymbol{z}) \mid 1 \leq i \leq n, \ 0 \leq l, l' \leq L\}$ is linearly independent over $\overline{\mathbb{Q}}$ modulo $\overline{\mathbb{Q}}(\boldsymbol{z})$.

On the contrary, we assume that $\{D_{j_i}^l D_{j_i}^{\prime}{}^l F_i(\boldsymbol{z}) \mid 1 \leq i \leq n, \ 0 \leq l, l^{\prime} \leq L\}$ is linearly dependent over $\overline{\mathbb{Q}}$ modulo $\overline{\mathbb{Q}}(\boldsymbol{z})$. Then there exist algebraic numbers $\lambda_{ill^{\prime}}$ $(1 \leq i \leq n, \ 0 \leq l, l^{\prime} \leq L)$, not all zero, and a rational function $R(\boldsymbol{z}) \in \overline{\mathbb{Q}}(\boldsymbol{z})$ such that

$$\sum_{i=1}^{n} \sum_{l=0}^{L} \sum_{l'=0}^{L} \lambda_{ill'} D_{j_i}^{l} D_{j_i}^{'l'} F_i(\boldsymbol{z}) = R(\boldsymbol{z}).$$
(9)

We take a sufficiently large positive integer t and attempt a specialization of the form

$$\mathbf{x} = (z^{pt}, z^{pt^2}, \dots, z^{pt^m}), \quad \mathbf{y} = (z^{rt}, z^{rt^2}, \dots, z^{rt^m})$$

for a single variable z. Let $t_i = \sum_{j=1}^m \ell_{ij} t^j$ $(1 \le i \le n)$. Then $M_i(\boldsymbol{x}) = z^{pt_i}$ and $M_i(\boldsymbol{y}) = z^{rt_i}$. We take t so large that, if $M_i \ne M_j$, then $t_i \ne t_j$ $(1 \le i < j \le n)$. Then (9) is specialized to a relation

$$\sum_{i=1}^{n} \sum_{l=0}^{L} \sum_{l'=0}^{L} \lambda_{ill'} \ell_{ij_i}^{l+l'} D^l D'^{l'} H_{\chi}(S(\zeta_i z^{t_i}, 1)) = R'(z),$$

where $R'(z) = R(z^{pt}, z^{rt}, \dots, z^{pt^m}, z^{rt^m})$. Since $\lambda_{ill'}$ $(1 \leq i \leq n, 0 \leq l, l' \leq L)$ are not all zero, $\{D^l D'^{l'} H_{\chi}(S(\zeta_i z^{t_i}, 1)) \mid 1 \leq i \leq n, 0 \leq l, l' \leq L\}$ is linearly dependent over $\overline{\mathbb{Q}}$ modulo $\overline{\mathbb{Q}}(z)$. Hence we see that $\{D^l D'^{l'} H_{\omega}(\zeta_i z^{t_i}, 1) \mid 1 \leq i \leq n, 0 \leq l, l' \leq L\}$ is linearly dependent over $\overline{\mathbb{Q}}$ modulo $\overline{\mathbb{Q}}(z)$. Since the $\overline{\mathbb{Q}}$ -vector spaces generated respectively by $\{D^l D'^{l'} H_{\omega}(\zeta_i z^{t_i}, 1) \mid 1 \leq i \leq n, 0 \leq l, l' \leq L\}$ and by $\{\sum_{k=1}^{\infty} k^l [k\omega]^{l'} (\zeta_i z^{t_i})^k \mid 1 \leq i \leq n, 0 \leq l \leq L, 1 \leq l' \leq L+1\}$ are equal, there exist algebraic integers $\lambda'_{ill'}$ $(1 \leq i \leq n, 0 \leq l \leq L, 1 \leq l' \leq L+1)$, not all zero, and a rational function $R^*(z) \in \overline{\mathbb{Q}}(z)$ such that

$$\sum_{i=1}^{n} \sum_{l=0}^{L} \sum_{l'=1}^{L+1} \lambda'_{ill'} \sum_{k=1}^{\infty} k^{l} [k\omega]^{l'} (\zeta_{i} z^{t_{i}})^{k} = \sum_{k=1}^{\infty} a_{k} z^{k} = R^{*}(z),$$
(10)

where

$$a_k = \sum_{\substack{1 \le i \le n \\ t_i \mid \overline{k}}} \sum_{l=0}^{L} \sum_{l'=1}^{L+1} \lambda'_{ill'} \left(\frac{k}{t_i}\right)^l \left(\frac{k\omega}{t_i} - \left\{\frac{k\omega}{t_i}\right\}\right)^{l'} \zeta_i^{k/t_i}$$

and $\{x\}$ denotes the fractional part of real x. Let N be a positive integer such that $\zeta_1^N = \cdots = \zeta_n^N = 1$. Let $\{t'_1, \ldots, t'_r\}$ be the maximum subset of $\{t_1, \ldots, t_n\}$ such that $t'_1 < t'_2 < \cdots < t'_r$. Let $T_i = \{j \mid t_j = t'_i\}$ $(1 \le i \le r)$. Then ζ_j $(j \in T_i)$ are distinct for each i, since $\alpha_1, \ldots, \alpha_n$ are distinct. Put $s = t'_1 \cdots t'_r N$ and $s_i = s/t'_i$ $(1 \le i \le r)$. Then $s_1 > s_2 > \cdots > s_r$. Noting that $\{1, \ldots, n\}$ is a disjoint union of T_1, \ldots, T_r , for any $k \ge 0$ and for any fixed nonnegative integer h, we see that

$$a_{sk+h} = \sum_{i=1}^{r} \sum_{l=0}^{L} \sum_{l'=1}^{L+1} \lambda_{ill'}^{(h)} \left(\frac{sk+h}{t_i'} \right)^l \left(\frac{(sk+h)\omega}{t_i'} - \left\{ \frac{(sk+h)\omega}{t_i'} \right\} \right)^{l'}, \tag{11}$$

where

$$\lambda_{ill'}^{(h)} = \begin{cases} \sum_{j \in T_i} \lambda'_{jll'} \zeta_j^{h/t'_i}, & \text{if } t'_i | h, \\ 0, & \text{otherwise,} \end{cases}$$

for $1 \le i \le r$, $0 \le l \le L$, and $1 \le l' \le L + 1$.

We assert that $\lambda_{ill'}^{(h)} = 0$ $(1 \le i \le r, \ 0 \le l \le L, \ 1 \le l' \le L+1)$ for any $h \ge 0$. If this is the case, we can deduce a contradiction as follows. For each i with $1 \le i \le r$, let $h = t_i'k$ with $k \ge 0$. Then, for any $0 \le l \le L$, $1 \le l' \le L+1$, we have

$$\sum_{j \in T_i} \lambda'_{jll'} \zeta_j^{h/t'_i} = \sum_{j \in T_i} \lambda'_{jll'} \zeta_j^k = 0$$

for any $k \geq 0$. Since ζ_j $(j \in T_i)$ are distinct, by the non-vanishing of Vandermonde determinant, we see that $\lambda'_{ill'} = 0$ for any $1 \leq i \leq n$, $0 \leq l \leq L$, and $1 \leq l' \leq L+1$, which is a contradiction.

On the contrary, we assume that $\lambda_{ill'}^{(h_0)}$ $(1 \leq i \leq r, 0 \leq l \leq L, 1 \leq l' \leq L+1)$ are not all zero for some nonnegative integer h_0 . For each i with $1 \leq i \leq r$ we see that

$$\sum_{l=0}^{L} \sum_{l'=1}^{L+1} \lambda_{ill'}^{(h_0)} \left(\frac{sk+h_0}{t'_i} \right)^l \left(\frac{(sk+h_0)\omega}{t'_i} - \left\{ \frac{(sk+h_0)\omega}{t'_i} \right\} \right)^{l'}$$

$$= Q_{d,i} \left(\left\{ (sk+h_0)\omega/t'_i \right\} \right) k^{d_i} + \dots + Q_{0i} \left(\left\{ (sk+h_0)\omega/t'_i \right\} \right),$$

where $Q_{d_ii}(X), \ldots, Q_{0i}(X) \in \overline{\mathbb{Q}}[X]$ with $Q_{d_ii}(X) \neq 0$. In addition, at least one of $Q_{d_ii}(X), \ldots, Q_{0i}(X)$ is not constant for any i such that $\lambda_{ill'}^{(h_0)}$ $(0 \leq l \leq L, 1 \leq l' \leq L+1)$ are not all zero. Then by (11) we see that

$$a_{sk+h_0} = \sum_{i=1}^{r} \left(Q_{d_i i} (\{ (sk + h_0)\omega/t_i' \}) k^{d_i} + \dots + Q_{0 i} (\{ (sk + h_0)\omega/t_i' \}) \right)$$

$$= Q_d (\{ (sk + h_0)\omega/t_1' \}, \dots, \{ (sk + h_0)\omega/t_r' \}) k^d + \dots$$

$$+ Q_0 (\{ (sk + h_0)\omega/t_1' \}, \dots, \{ (sk + h_0)\omega/t_r' \}),$$
(12)

where $Q_d(X_1, \ldots, X_r), \ldots, Q_0(X_1, \ldots, X_r) \in \overline{\mathbb{Q}}[X_1, \ldots, X_r]$ are not all constant polynomials of the form

$$Q_j(X_1, \dots, X_r) = Q_{j1}(X_1) + \dots + Q_{jr}(X_r)$$

with $Q_d(X_1,\ldots,X_r)\neq 0$. On the other hand, by (10), we can write

$$a_{sk+h_0} = c_d k^d + \dots + c_0 \tag{13}$$

for all sufficiently large k, where c_d, \ldots, c_0 are algebraic numbers. Let j_0 be the largest integer such that $Q_{j_0}(X_1, \ldots, X_r)$ is not constant. From Lemma 3 there exists a real number τ_0 such that

$$Q_{j_0}(\{s_1\tau_0\},\dots,\{s_r\tau_0\}) \neq c_{j_0}.$$
 (14)

From Lemma 4 there exists an increasing sequence $\{k_{\nu}\}_{\nu\geq 0}$ of positive integers such that

$$\lim_{\nu \to \infty} (\{s_1 k_{\nu} \omega\}, \dots, \{s_r k_{\nu} \omega\}) = (\{s_1 \tau_0'\}, \dots, \{s_r \tau_0'\}), \tag{15}$$

where $\tau'_0 = \tau_0 - h_0 \omega / s$ and each component of the left-hand side approaches the corresponding component of the right-hand side from the right. By (15) we see that

$$\lim_{\nu \to \infty} \left(\left\{ (sk_{\nu} + h_0)\omega/t_1' \right\}, \dots, \left\{ (sk_{\nu} + h_0)\omega/t_r' \right\} \right) = \left(\left\{ s_1 \tau_0 \right\}, \dots, \left\{ s_r \tau_0 \right\} \right).$$

If $j_0 = d$, then $\lim_{\nu \to \infty} a_{sk_{\nu}+h_0}/k_{\nu}^d = Q_d(\{s_1\tau_0\}, \dots, \{s_r\tau_0\}) \neq c_d$ by (12) and (14). On the other hand $\lim_{k\to\infty} a_{sk+h_0}/k^d = c_d$ by (13), which is a contradiction. Hence we see that the polynomial $Q_d(X_1, \dots, X_r)$ is equal to the constant c_d identically. Then, since

$$\lim_{\nu \to \infty} \frac{a_{sk_{\nu}+h_0} - c_d k_{\nu}^d}{k_{\nu}^{d-1}} = Q_{d-1}(\{s_1 \tau_0\}, \dots, \{s_r \tau_0\})$$

by (12) and

$$\lim_{k \to \infty} \frac{a_{sk+h_0} - c_d k^d}{k^{d-1}} = c_{d-1}$$

by (13), we see that $j_0 < d - 1$. Continuing this process, we obtain a contradiction. This concludes the proof of Theorem 5.

References

- [1] J. M. BORWEIN AND P. B. BORWEIN, On the generating function of the integer part: $[n\alpha + \gamma]$, J. Number Theory, 43 (1993), pp. 293–318.
- [2] Y. Z. FLICKER, Algebraic independence by a method of Mahler, J. Austral. Math. Soc. Ser. A, 27 (1979), pp. 173–188.
- [3] E. HECKE, Über analytische Funktionen und die Verteilung von Zahlen mod Eines, Abh. Math. Sem. Hamburg, 1 (1921), pp. 54–76.
- [4] H. KANEKO, Arithmetical properties of real numbers related to beta-expansions, Funct. Approx. Comment. Math., 60 (2019), pp. 195–226.
- [5] J. H. LOXTON AND A. J. VAN DER POORTEN, Arithmetic properties of certain functions in several variables III, Bull. Austral. Math. Soc., 16 (1977), pp. 15–47.
- [6] —, Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc. Ser. A, 26 (1978), pp. 31–45.
- [7] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann., 101 (1929), pp. 342–366.
- [8] D. W. MASSER, Algebraic independence properties of the Hecke-Mahler series, Quart. J. Math., 50 (1999), pp. 207–230.
- [9] K. Nishioka, Conditions for algebraic independence of certain power series of algebraic numbers, Compositio Math., 62 (1987), pp. 53–61.
- [10] ——, Evertse theorem in algebraic independence, Arch. Math., 53 (1989), pp. 159–170.
- [11] —, Note on a paper by Mahler, Tsukuba J. Math., 17 (1993), pp. 455–459.
- [12] _____, Algebraic independence of Mahler functions and their values, Tohoku Math. J., 48 (1996), pp. 51–70.
- [13] T. TANAKA AND Y. TANUMA, Algebraic independence of the values of the Hecke-Mahler series and its derivatives at algebraic numbers, Int. J. Number Theory, 14 (2018), pp. 2369–2384.
- [14] Y. TANUMA, Algebraic independence of the values of certain series and their derivatives involving the Hecke-Mahler series, J. Number Theory, (to appear).