The symplectic derivation Lie algebra of the free commutative algebra

Shuichi Harako

Graduate School of Mathematical Sciences, the University of Tokyo

1 Introduction

There are three Lie algebras \mathfrak{l}_g , \mathfrak{a}_g , \mathfrak{c}_g defined by Kontsevich [7]. They are related to various geometric objects, e.g. moduli spaces of graphs and Riemann surfaces. In particular, \mathfrak{c}_g , the main topic in this paper, is used in perturbative Chern-Simons theory, which provides the extension of Vassiliev invariants [1, 6].

Each of three Lie algebras, denoted by \mathfrak{h}_g here, has a certain ideal \mathfrak{h}_g^+ . By an argument of a spectral sequence,

$$H_{\bullet}(\mathfrak{h}_g) \cong H_{\bullet}(\mathfrak{sp}(2g;\mathbb{Q})) \otimes H_{\bullet}(\mathfrak{h}_g^+)^{\operatorname{Sp}}$$

holds in the stable range. Here $H_{\bullet}(\mathfrak{h}_g^+)^{\operatorname{Sp}}$ is the symplectic invariant part of $H_{\bullet}(\mathfrak{h}_g^+)$. \mathfrak{h}_g^+ is relatively easy to compute, and enable us to construct cohomology classes of higher degree by taking duals or cup products. This method is applied to \mathfrak{l}_g and \mathfrak{a}_g to study them by Morita [8].

Kontsevich's theorem shows each of three corresponds to a kind of graph complex. In the case of \mathfrak{c}_g ,

$$PH_{\bullet}(\mathfrak{c}_{\infty}) \cong PH_{\bullet}(\mathfrak{sp}(2\infty; \mathbb{Q})) \oplus (\text{commutative graph homology}).$$

In fact, both homology groups of $\mathfrak{c}_{\infty} := \lim_{g \to \infty} \mathfrak{c}_g$ and $\mathfrak{sp}(2\infty; \mathbb{Q}) := \lim_{g \to \infty} \mathfrak{sp}(2g; \mathbb{Q})$ have natural Hopf algebra structures. We denote by $PH_{\bullet}(\mathfrak{c}_{\infty})$ and $PH_{\bullet}(\mathfrak{sp}(2\infty; \mathbb{Q}))$ the primitive parts of $H_{\bullet}(\mathfrak{c}_{\infty})$ and $H_{\bullet}(\mathfrak{sp}(2\infty; \mathbb{Q}))$ respectively. There are some computational results from the viewpoint of graph homology theory (e.g. [2]). Conant-Gerlits-Vogtmann [3] computed the part up to degree 12. Willwacher-Živković [9] determined the generating function of Euler characteristic and displayed it up to weight 60.

The homology group $H_{\bullet}(\mathfrak{c}_g^+)$ has a $\mathbb{Z}_{\geq 0}$ -grading called weight. It decomposes $H_{\bullet}(\mathfrak{c}_g^+)$ into direct summands $H_{\bullet}(\mathfrak{c}_g^+)_w$, which is generated by homogeneous elements of weight w. It is easy to see that $H_1(\mathfrak{c}_q^+) = S^3\mathbb{Q}^{2g}$, however, the higher degree of $H_{\bullet}(\mathfrak{c}_q^+)$ is still

unknown. We proved $H_2(\mathfrak{c}_g^+)_w = 0$ for $g, w \geq 4$. Moreover, we determined $H_2(\mathfrak{c}_g^+)$ in terms of Sp-modules as a corollary.

This paper is a summary of [5], in which more details of the proof are.

2 The Lie algebra \mathfrak{c}_q

Let $g \geq 4$ be an integer. We write $H := \mathbb{Q}^{2g}$ and consider the canonical $\operatorname{Sp}(2g; \mathbb{Q})$ action. Let $\mu \colon H \otimes H \to \mathbb{Q}$ be the canonical symplectic form, and $a_1, \ldots, a_g, b_1, \ldots, b_g$ be
a symplectic basis with respect to μ .

Definition 2.1. For $w \geq 0$, let $\mathfrak{c}_g(w) := S^{w+2}H$, which is the (w+2)-nd symmetric power, and set

$$\mathfrak{c}_g := \bigoplus_{w \ge 0} \mathfrak{c}_g(w) \supset \bigoplus_{w \ge 1} \mathfrak{c}_g(w) =: \mathfrak{c}_g^+.$$

We regard \mathfrak{c}_g or \mathfrak{c}_g^+ as sets of polynomial functions on H of degree higher than 2 or 3 respectively. Let [,] be the classical Poisson bracket on H, i.e.

$$[f,h] = \sum_{i=1}^{g} \left(\frac{\partial f}{\partial a_i} \frac{\partial h}{\partial b_i} - \frac{\partial f}{\partial b_i} \frac{\partial h}{\partial a_i} \right) \quad (f,h \in \mathfrak{c}_g).$$

Then $\mathfrak{c}_g^+ \subset \mathfrak{c}_g$ becomes a Lie subalgebra. We consider the Chevalley-Eilenberg chain complex $(\wedge^{\bullet}\mathfrak{c}_g, \partial)$. Then $\wedge^{\bullet}\mathfrak{c}_g^+ \subset \wedge^{\bullet}\mathfrak{c}_g$ becomes a chain subcomplex.

We introduce a $\mathbb{Z}_{>0}$ -grading on $\wedge^{\bullet} \mathfrak{c}_q$.

Definition 2.2. • For $f_1 \in \mathfrak{c}_g(w_1), \ldots, f_k \in \mathfrak{c}_g(w_k)$, we say that $f_1 \wedge \cdots \wedge f_k \in \wedge^k \mathfrak{c}_g$ is of weight $w_1 + \cdots + w_k$.

• $(\wedge^k \mathfrak{c}_g^+)_w := \operatorname{Span} \{ \omega \in \wedge^k \mathfrak{c}_g^+ \mid \omega \text{ is of weight } w \}$

If $f_1 \in \mathfrak{c}_q(w_1) = S^{w_1+2}H$ and $f_2 \in \mathfrak{c}_q(w_2) = S^{w_2+2}H$, then

$$[f_1, f_2] \in S^{(w_1+2)-1+(w_2+2)-1}H = \mathfrak{c}_g(w_1 + w_2).$$

In other words, the bracket [,] preserves weights. We see that the symplectic action on $\wedge^{\bullet} \mathfrak{c}_g^+$ preserves weights and that so does the differential ∂ , hence we have a decomposition $\bigoplus_{w>1} (\wedge^{\bullet} \mathfrak{c}_g^+)_w = \wedge^{\bullet} \mathfrak{c}_g^+$ as a chain complex.

Definition 2.3. $H_{\bullet}(\mathfrak{c}_q^+)_w := H_{\bullet}(((\wedge^{\bullet}\mathfrak{c}_q^+)_w, \partial))$

Hence $H_n(\mathfrak{c}_g^+) = \bigoplus_{w \geq 1} H_n(\mathfrak{c}_g^+)_w$. Now we state the main theorem.

Theorem 2.1 (H., 2020). $H_2(\mathfrak{c}_g^+)_w = 0 \text{ if } g, w \geq 4.$

The proof is done by showing all the cycles are boundaries.

If $g, w \geq 2$ then $H_1(\mathfrak{c}_q^+) = S^3 H = \mathfrak{c}_g(1)$ because the differential map

$$\partial = [,] \colon \wedge^2 \mathfrak{c}_g^+ \to \bigoplus_{w \ge 2} \mathfrak{c}_g(w).$$

is surjective. This follows from the equation

$$\partial_2(a_1^w a_g \wedge a_1^2 b_g) = [a_1^w a_g, a_1^2 b_g] = a_1^{w+2} \in \mathfrak{c}_g(w)$$

and the fact that each $\mathfrak{c}_g(w) = S^{w+2}H$ is Sp-irreducible. We want to adopt the similar method, however, the chain space $(\wedge^2\mathfrak{c}_g^+)_w$ is not Sp-irreducible for general w. Therefore, we must find its Sp-irreducible decomposition and their generators.

3 Representation theory of $Sp(2g; \mathbb{Q})$

Let us review the classical representation theory (see e.g. [4]).

The following is an important fact for the proof of the main theorem.

Theorem 3.1.

Here V_{λ} is the submodule of $(\wedge^{\lambda'_1} H) \otimes \cdots \otimes (\wedge^{\lambda'_d} H)$ generated by

$$a_{\lambda} := (a_1 \wedge \cdots \wedge a_{\lambda'_1}) \otimes \cdots \otimes (a_1 \wedge \cdots \wedge a_{\lambda'_d}) \in (\wedge^{\lambda'_1} H) \otimes \cdots \otimes (\wedge^{\lambda'_d} H)$$

as an $\operatorname{Sp}(2g;\mathbb{Q})$ -module and ${}^t\lambda=[\lambda_1'\cdots\lambda_d'] \quad (g\geq \lambda_1'\geq \cdots \geq \lambda_d'\geq 1)$ is the transpose of λ

Example 3.1. • If $\lambda = [4] \cong S^4H$, then $a_{\lambda} = a_1^{\otimes 4}$.

- If $\lambda = [1111]$, then $a_{\lambda} = a_1 \wedge a_2 \wedge a_3 \wedge a_4$.
- Let $\lambda = [31]$, then ${}^t\lambda = [211]$. Thus $a_{\lambda} = (a_1 \wedge a_2) \otimes a_1 \otimes a_1$.

We easily see that the chain space $\wedge^2 \mathfrak{c}_g^+$ decomposes into

$$\wedge^2\mathfrak{c}_g^+ \cong \bigoplus_{w \geq 2} \left(\bigoplus_{\substack{k > l \geq 1 \\ k+l = w}} \mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l) \oplus \bigoplus_{\substack{k \geq 1 \\ 2k = w}} \mathfrak{c}_g(k) \wedge \mathfrak{c}_g(k) \right).$$

It is enough to discuss for each of the components $\mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l)$ and $\mathfrak{c}_g(k) \wedge \mathfrak{c}_g(k)$ because it is finite dimensional so that its Sp-irreducible decomposition always exists. We identify each of its irreducible components with a corresponding Young diagram through Theorem 3.1 for fixed k and l.

Lemma 3.1.

(i) For
$$k > l \ge 1$$
, $\mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l) \cong \bigoplus_{\substack{0 \le \lambda_2 \le l+2 \\ \rho + \lambda_2 \text{ is odd}}} [(k+l+4-\lambda_2-2\rho) \quad \lambda_2]$
(ii) For $k \ge 1$, $\mathfrak{c}_g(k) \wedge \mathfrak{c}_g(k) \cong \bigoplus_{\substack{0 \le \lambda_2 \le k+2 \\ \rho + \lambda_2 \text{ is odd}}} [(2k+4-\lambda_2-2\rho) \quad \lambda_2]$

This lemma follows from the Littlewood-Richardson rule and branching rules. In particular, the multiplicity of Sp-irreducible components of $\mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l)$ or $\mathfrak{c}_g(k) \wedge \mathfrak{c}_g(k)$ is always 1. We regard each irreducible component of $\mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l)$ or $\mathfrak{c}_g(k) \wedge \mathfrak{c}_g(k)$ as a Young diagram

satisfying the same conditions as ones in the lemma. The part described by dashed lines means the part "chopped off" by the branching rules.

4 Sketch of the proof

Note that the differential ∂ is Sp-equivariant so that it maps an Sp-irreducible component to another Sp-irreducible component isomorphically, otherwise to 0.

We show the main theorem by the following steps:

- 1. Fix $w \ge 4$ and $k \ge l \ge 1$ such that k + l = w.
- <u>2-1.</u> Take an irreducible component $\lambda = [\lambda_1 \lambda_2] \neq [w+2]$ of $\mathfrak{c}_q(k) \otimes \mathfrak{c}_q(l)$ or $\mathfrak{c}_q(k) \wedge \mathfrak{c}_q(k)$.
- <u>2-2.</u> Find $\omega_3 \in (\wedge^3 \mathfrak{c}_g^+)_w$ such that $(\partial \omega_3)|_{\lambda}$ generates λ as an $\operatorname{Sp}(2g; \mathbb{Q})$ -module.
 - <u>2'.</u> Find the kernel of $\partial: (\wedge^2 \mathfrak{c}_g^+)_w \to (\wedge^1 \mathfrak{c}_g^+)_w = \mathfrak{c}_g(w)$ restricted to the isotypical component corresponding to $\lambda = [w+2]$.

The way to find ω_3 varies depending on the conditions which $k, l, \rho, \lambda_1, \lambda_2$ satisfies. We do not discuss here the details of the construction of ω_3 but how to determine if $\partial(\omega_3)$ generates λ as an Sp-module.

We define two homomorphisms.

$$\mu_{\text{end}} \colon H^{\otimes (w+2)} \longrightarrow H^{\otimes w},$$

$$x_1 \otimes \cdots \otimes x_{w+2} \longmapsto \mu(x_1, x_{w+2}) x_2 \otimes \cdots \otimes x_{w+1}$$

$$\Lambda_{\text{end}} \colon H^{\otimes (w+2)} \longrightarrow (\wedge^2 H) \otimes H^{\otimes w}.$$

$$x_1 \otimes \cdots \otimes x_{w+2} \longmapsto (x_1 \wedge x_{w+2}) \otimes x_2 \otimes \cdots \otimes x_{w+1}$$

We consider $\mathfrak{c}_g(k) = S^{k+2}H \subset H^{\otimes (k+2)}$ and $\mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l) \subset H^{\otimes (k+l+4)}$. Similarly we consider $\mathfrak{c}_g(k) \wedge \mathfrak{c}_g(k) \subset H^{\otimes (2k+4)}$, like $a_1^3 \wedge a_2^4 = a_1^3 \otimes a_2^4 - a_2^4 \otimes a_1^3 \in H^{\otimes 7}$ for example. Hence μ_{end} and Λ_{end} can be applied to an element of $\Lambda^2 \mathfrak{c}_q^+$.

Let $\eta \in \mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l)$ and let $\lambda \subset \mathfrak{c}_g(k) \otimes \mathfrak{c}_g(l)$ be an Sp-irreducible component. Let us consider the situation that η is mapped to a_{λ} (in Theorem 3.1) by some compositions of μ_{end} s and Λ_{end} s. Then the isotypical component of η corresponding to λ , which is denoted by $\eta|_{\lambda}$, generates λ because both μ_{end} and Λ_{end} are Sp-equivariant. We use this technique for the proof.

Example 4.1. Consider the case w = 7, k = 4, l = 3, and $\lambda = [2\ 1]$.

$$\lambda = \overbrace{\begin{array}{c} \rho = 4 \\ \lambda_1 = 2 \\ \lambda_2 = 1 \end{array}}$$

Since $\lambda \neq [9]$, we have to find $\omega_3 \in (\wedge^3 \mathfrak{c}_g^+)_7$ with $(\partial \omega_3)|_{\lambda}$ generating λ . In fact, it is enough to define $\omega_3 := a_1^2 a_4 \wedge a_3^4 b_4 \wedge a_2 b_3^4$. Then $\partial \omega_3 = a_1^2 a_3^4 \wedge a_2 b_3^4 - 16 a_1^2 a_4 \wedge a_2 a_3^3 b_3^3 b_4$. Let us check $(\partial \omega_3)|_{\lambda}$ generates λ . For the first term of $\partial \omega_3$, we have

$$a_1^2 a_3^4 \overset{(\mu_{\mathrm{end}})^{\circ 4}}{\longmapsto} 24^2 a_1^2 \otimes a_2 \overset{\Lambda_{\mathrm{end}}}{\longmapsto} 2 \cdot 24^2 (a_1 \wedge a_2) \otimes a_1 = 24^2 a_{[2\ 1]} \in (\wedge^2 H) \otimes H.$$

Here $(\mu_{\rm end})^{\circ 4}$ is the 4-time compositions of $\mu_{\rm end}$. Hence $(a_1^2a_3^4)|_{[2\ 1]}$ generates [2 1] as an Sp-module. For the second term, we have $(a_1^2a_4 \wedge a_2a_3^3b_3^3b_4)|_{[2\ 1]} = 0$ because $\mathfrak{c}_g(1) \otimes \mathfrak{c}_g(6)$ does not contain Sp-irreducible components isomorphic to [2 1] by Lemma 3.1.

Therefore, $(\partial \omega_3)|_{\lambda}$ generates $[2\ 1] \subset \mathfrak{c}_g(4) \otimes \mathfrak{c}_g(3)$. This shows that $[2\ 1] \subset (\mathfrak{c}_g(4) \otimes \mathfrak{c}_g(3)) \cap \operatorname{Im}(\partial \colon \wedge^3 \mathfrak{c}_g^+ \to \wedge^2 \mathfrak{c}_g^+)$.

5 Lower weight cases

By Theorem 2.1, we have

$$H_2(\mathfrak{c}_g^+) = \bigoplus_{w>1} H_2(\mathfrak{c}_g^+)_w = \bigoplus_{w=1}^3 H_2(\mathfrak{c}_g^+)_w$$

In order to determine $H_2(\mathfrak{c}_q^+)$, it is enough to discuss the case w=1,2,3.

Lemma 5.1. If $g \ge 4$, then $H_2(\mathfrak{c}_g^+)_1 = 0$, $H_2(\mathfrak{c}_g^+)_2 = [51] + [33] + [22] + [11] + [0]$, and $H_2(\mathfrak{c}_g^+)_3 = [1]$.

Proof. $H_2(\mathfrak{c}_q^+)_1 = 0$ is obvious because no $k \geq l \geq 1$ satisfy k + l = 1.

Since the weight 2 part of $\wedge^3 \mathfrak{c}_g^+$ is zero and since $\partial_2 = [,]: \wedge^2 \mathfrak{c}_g(1) \to \mathfrak{c}_g(2) = S^4 H = [4]$ is surjective, we have $H_2(\mathfrak{c}_g^+)_2 = \wedge^2 \mathfrak{c}_g(1)/\mathfrak{c}_g(2)$. The Sp-irreducible decomposition of $\wedge^2 \mathfrak{c}_g(1)$ is [51] + [33] + [4] + [22] + [11] + [0], therefore the statement follows.

The Sp-irreducible decomposition of $\mathfrak{c}_q(2) \otimes \mathfrak{c}_q(1)$ is

$$\mathfrak{c}_q(2) \otimes \mathfrak{c}_q(1) = [7] + [61] + [52] + [43] + [5] + [41] + [32] + [3] + [21] + [1].$$

The space $\wedge^3 \mathfrak{c}_g(1)$ does not have [5] and [1] as its Sp-irreducible components. We can use the same method as in the case $w \geq 4$ for all the other Sp-irreducible components and obtain appropriate ω_3 s for each of them. Again, since $\partial_2 = [,]: \mathfrak{c}_g(2) \wedge \mathfrak{c}_g(1) \to \mathfrak{c}_g(3) = S^5H = [5]$ is surjective, we have $H_2(\mathfrak{c}_g^+)_3 = (\mathfrak{c}_g(2) \otimes \mathfrak{c}_g(1))/(\mathfrak{c}_g(3) \oplus \operatorname{Im}(\partial_3: \wedge^3 \mathfrak{c}_g(1) \to \mathfrak{c}_g(2) \wedge \mathfrak{c}_g(1))) = [1].$

Corollary 5.1. If $g \ge 4$, then $H_2(\mathfrak{c}_g^+) = [51] + [33] + [22] + [11] + [1] + [0]$ as an Sp-module.

From the proof of Lemma 5.1, we also have the following.

Corollary 5.2. If $g \ge 4$, then $H_3(\mathfrak{c}_g^+)_3 = [711] + [63] + [531] + [333] + [52] + [421] + [322] + [41] + 2[311] + 2[3]$ as an Sp-module.

References

- [1] D. Bar-Natan. "On the Vassiliev knot invariants". In: Topology 34.2 (1995), pp. 423–472.
- [2] D. Bar-Natan and B. D. Mckay. *Graph cohomology an overview and some computations*. available at https://www.math.toronto.edu/drorbn/.
- [3] J. Conant, F. Gerlits, and K. Vogtmann. "Cut vertices in commutative graphs". In: *The Quarterly Journal of Mathematics* 56.3 (Sept. 2005), pp. 321–336.

- [4] W. Fulton and J. Harris. Representation Theory: A First Course. Graduate texts in mathematics. Springer, 1991.
- [5] S. Harako. The second homology group of the commutative case of Kontsevich's symplectic derivation Lie algebra. in preparation.
- [6] M. Kontsevich. "Vassiliev's knot invariants". In: I. M. Gel'fand Seminar. Vol. 16. Advances in Soviet Mathematics. American Mathematical Society, Providence, RI, 1993, pp. 137–150.
- [7] M. Kontsevich. "Feynman Diagrams and Low-Dimensional Topology". In: First European Congress of Mathematics Paris, July 6–10, 1992: Vol. II: Invited Lectures (Part 2). Basel: Birkhäuser Basel, 1994, pp. 97–121.
- [8] S. Morita. "Lie algebras of symplectic derivations and cycles on the moduli spaces". In: *Groups, homotopy and configuration spaces (Tokyo 2005)* (Feb. 2008).
- [9] T. Willwacher and M. Živković. "Multiple edges in M. Kontsevich's graph complexes and computations of the dimensions and Euler characteristics". In: Advances in Mathematics 272 (2015), pp. 553–578.

Graduate School of Mathematical Sciences The University of Tokyo Tokyo 153-8914 JAPAN

E-mail address: harako@ms.u-tokyo.ac.jp

東京大学大学院数理科学研究科 原子 秀一