A Remark on the Solvability of Plane Steady-State Exterior
Navier-Stokes Problem
for Arbitrarily Large Data

Giovanni P. Galdi

1 Introduction

In his celebrated paper of 1933, J.Leray studied the existence of solutions to the boundary-value problem
of Navier-Stokes equations in the complement, Q@ C R?, of a smooth two-dimensional compact set (the
“obstacle”). In a suitable dimensionless form, the problem is formulated as follows: Given a vector
Voo € R?, find a pair (v, p) —representing velocity and pressure fields, respectively— satisfying the following
set of equations

Av=v-Vv+Vp
in Q
V-v=0

(1.1)
v=20 at 99
along with the condition at infinity
‘ llim V(T) = Voo (1.2)

The most significant contribution of Leray to the resolution of problem (1.1), (1.2) consisted in
proving that, for any prescribed nonzero v, there is at least one solution to (1.1), which is also as
smooth as allowed by the smoothness of Q. However, by his arguments, he was not able to infer that
these solutions verify also the fundamental condition (1.2). Actually, the only “asymptotic property” he
was able to show was that the velocity field v of his solution possesses a finite Dirichlet integral, namely,

Vv e L*(Q). (1.3)

The question of whether solutions constructed by Leray or, more generally, solutions in the class
(1.3), satisfy (1.2) has become the focus of deep researches by outstanding mathematicians. In particular,
D.Gilbarg and H.Weinberger [10], [11] were the first to show that the solution constructed by Leray is
bounded and that it converges at large distances, in the mean square over the angle, to a certain vector
vo. More detailed information about convergence was provided later on by C.Amick [1], if the solution
is symmetric. Specifically, a pair (w(z) = (w1 (), wa(z)), p(x)), © = (21, z2), is said symmetric if

wi (21, T2) = wi (21, —x2), wa(z1,22) = —wa(x1, —x2); p(z1,22) = p(x1, —T2). (1.4)

If Q is symmetric around the z1-axis, namely, (21, z2) € 09 implies (21, —22) € 99, and vo = Ae, with
e unit vector along x1, Leray’s construction leads to a symmetric solution. In such a case, in [1] it is
shown that v tends to vg uniformly pointwise. This result has been recently improved by M.Korobkov,
K.Pileckas and R.Russo [12], who relaxed the symmetry assumption. However, it is not known whether
Voo = v (Vo may even be zero!) and, consequently, the question of whether Leray’s solution satisfies
(1.2) remains open.



It must be observed, however, that existence of solutions to (1.1), (1.2), for small vs and by methods
completely different than Leray’s, was shown by R.Finn and D.R.Smith [4], [5], [15], and, successively, by
me [6], [?]. Moreover, these solutions are physically reasonable in the sense of Finn [15], and are locally
unique.

In view of all the above considerations, the fundamental question that remains still open is whether
(1.1), (1.2) is solvable for arbitrary large voo.

Denote by C the class of pairs constituted by a vector field w = (w1, ws) and scalar field p satisfying
(1.4) and having a finite Dirichlet integral. More than 20 years ago, in [7] (see also [8, §4.3]), I proved
the following result.

Theorem 1.1 Let Q be symmetric around the x1-axis. Assume that the following problem

Au=u-Vu+ V¢
in 2

V-u=0
u=0 at o (15)
lxl‘linoou(x) =0, uniformly
has only the zero solution in the class C. Then, there is a set M with the following properties:
(i) M C[0,00);

(i) M > [0,¢) for some ¢ = ¢(Q) > 0;
(iii) M is unbounded;
(iv) For any p € M, the problem

Av=v-Vv+Vp }

in
Vou=0 (1.6)

v=0 atoQ, lim v(z) = e

|z|—o0

has at least one solution in the class C.

The importance of this result resides in the fact that it assures existence of solutions to (1.1)—(1.2) for
all Voo in an unbounded set of R?. The difficult part, however, is to show that its assumption is indeed
satisfied, namely, that the homogeneous problem (1.5) has only the zero solution in the class C. Even
though plausible, to date, to prove (or disprove!) such a property has remained an open question.

Objective of the present note is to give a contribution toward answering this question. Precisely, we
shall show that if, in addition to u satisfying (1.3), we assume

/ T(u,¢) - n=0 (1.7)
a0

with T(u, ¢) := Vu + (Vu) " — ¢ Cauchy stress tensor and n unit normal at 99, then u = V¢ = 0.
From the physical viewpoint, the left-hand side of (1.7) represents the total net force exerted by the
liquid on the obstacle. Therefore, our result can be equivalently reformulated as follows: if in the class
C there is a nontrivial solution to (1.5), then such a solution must produce a non-zero net force on the
obstacle. A conclusion, the latter, that appears to be quite paradoxical, given the absence of any driving
mechanism.

The above statement is proved in the following section by means of a simple argument used also by
H.Kozono and H.Sohr [13] in a different context.



2 On the Existence of Solutions for Arbitrarily Large v

The general idea behind our argument is rather basic. It consists in finding a suitable extension of the
solution u to a field u that, on one hand, possesses a finite Dirichlet integral over R? and, on the other
hand, satisfies equations (1.5)1 2 in the whole of R?, in a distributional sense. In fact, whenever such
an extension is found, then one may apply a well-known Liouville-type theorem ensuring that @ must
vanish identically in R? and, as a consequence, thus vanishes the original solution u in 2. One way of
constructing the desired extension is to assume the validity of (1.7) (see also Remark 2.1). Precisely, we
can show the following result.

Theorem 2.1 Let (u, ¢) be a distributional solution to (1.5) with Vu € L?(Q2). Then, if (1.7) holds (in
a trace sense), necessarily u = V¢ = 0. As a result, problem (1.6) has at least one solution for all y in
the unbounded set M specified in Theorem 1.1.

Proof. First of all, we observe that, under the stated assumption, well-known results on the regularity of
distributional solutions ensure (at least) that, in fact, (u, ¢) € [C°°(Q) x C*°(Q)] N [W2IQ) x WL1(Q)],

loc loc
all ¢ € [1,00); see [9, Section X.1].() This implies, in particular, T(u, ¢) € W'~ 79(d9), so that (1.7)
is meaningful in the classical trace sense. Next, we perform a suitable extension of problem (1.5) to the
whole plane R? as follows. Let €2 denote the complement of  in R?, and extend (u, ¢) to the whole of

R? by setting
_ u(z) ifzef ~ p(x) ifze
u =
0 if x € Qq 0 if z € Qp

We shall now show that w, ¢7 is a solution to the following problem

(2.1)

AU —-Vi—Vé=0
¢ in R2.
diva =0

in the distributional sense. In fact, observing that (1.5); is equivalent to
div (T(u,¢) +u®u) =0 in Q,

for all ¢ € C§°(R?), we infer, by integration by parts, (1.5)3, and assumption (1.7),

/ [T(ﬁ,$)+’a®m-Vzp‘:/['Jr(u,quu@u]-W}
]RZ

Q

=—/wdiv(ﬂr<u,¢)+u®u)+/ T(u,¢) — u®u - np
Q oN
=/ T(u, ) np = 0,

o0

which shows the desired property for (@,¢). Now, by hypothesis, Vi € L2(R2). As a consequence,
thanks to a classical regularity result [9, Theorem IX.5.1], we obtain (u, 5) € C*°(R?). Thus, @ is a
smooth vector function satisfying (2.1) and having finite Dirichlet integral. By a well-known Liouville-
type result [11] (see also [9, Theorem XII.3.1]), it then follows that % must be necessarily constant in the
whole of R%. This, in turn, implies u = V¢ = 0, which completes the proof of the theorem. ]

Remark 2.1 It is worth noticing that a sufficient condition to satisfy (1.7), is to require that (u, )
possesses suitable symmetry properties. For example, suppose that Q is symmetric also around the

(1) Actually, the interior regularity property can be proved under the weaker assumption that u only belongs to Ly (),
for some r > 2; see [9, Theorem IX.5.1].



xo-axis, that is, (x1,22) € Q implies (—x1,22) € Q, and, besides being in the class defined by (1.4), the
solution (u = (u1,u2), @) to (1.5) meets the further symmetry conditions around zs:

ur(z1,w2) = —ur(—x1,2), u2(r1,72) = uz(—71,72); (71, 72) = O(—71,72). (2:2)
Then, it is easily checked that (1.7) holds.

Remark 2.2 Employing (1.5); and the assumption that « possesses a finite Dirichlet integral, it is easy
to show that a necessary and sufficient condition for the validity of (1.7) is that

1
lim —/ (px+uu-z)=0.
R—oo R [z =R
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