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1 Introduction

Consider the generalized Stokes resolvent problem and the nonstationary Stokes problem
with Neumann boundary conditions

Au—DivS(u,0) =f, divu=g in{, (1.1)
S(u,f)v =h on 012, '
8U —DivS(U,0)=F, divU=G inQx (0,00),
S(U,0)r=H on 900 x (0,00), (1.2)
Uli=0 =0 in Q

in an infinite layer
Q={r=(2",oy) eRY |2/ = (z1, - ,an1) €ERY 0<ay <6} (>0, N>2).

Here, the unknowns u = (uy(z), -+ ,un(x))" and 6§ = §(x) are N-component velocity vector
and scalar pressure, respectively, while known functions are scalar function g = g(x) and
N-vector functions f = (fi(z), -+, fxv(z))" and h = (hy(2), - ,hn(2))T. By U = U(a, ),
© = O(z,t), F = F(x,t), G = G(z,t) and H = H(x,t), we denote the counterparts of
them for (1.2). The symbol S(u,#) is the stress tensor given by puD(u) — 0I, where p is
a positive constant which denotes the viscosity coefficient, and I is the N x N identity
matrix. Also, D(u) stands for the doubled deformation tensor whose (j, k) component is
Dj;(u) = Opu; +0juy, with 9; = 9/0z;. We denote by v = (v1(x), -+ ,vn(2))T the unit outer
normal vector to 0. For an N x N matrix-valued function M = (M,;);;, the i-th component
of Div M is defined by Z;Vﬂ O M;;.

Several mathematicians have been studied these problems for the Neumann-Dirichlet
boundary condition, namely, the boundary condition on the lower boundary is replaced by
Dirichlet one:

u=0onTy={r=(2,25) € RY | zy = 0}.
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Abe [1] proved the resolvent estimates with A € X, for 0 < e < 7/2 and 7 > 0 where
Yero ={A € C\ {0} | |argA| <71 —¢, |A] > Y} (1.3)

Abels obtained them for vy = 0 in [5] and, then, he extended the result to those estimates
for asymptotically flat layers in [3]. He also showed that the Stokes operator admits a
bounded H..-calculus in [4] and, as a consequence, the maximal L, regularity for (1.2) with
3/2 < q < oo. Finally, Saito [10] established the Z-boundedness of the solution operator
families with resolvent parameter A € 3. ., for any 0 < € < m/2 and vy > 0 and, as a corollary,
he obtained the maximal L,-L, regularity for 1 < p,q < oo. Moreover, Shibata [12, 13]
developed a theory for general domains, with Dirichlet boundary condition on I', C 02 and
Neumann boundary condition on I' = 9Q \ I'y, under the assumption: the unique existence
of solution § € W;(Q) to the weak Dirichlet-Neumann problem

(V0.Vp)a = (f, Vi) for any ¢ € W, (Q) (1.4)

for any £ € Ly(Q)". Here, W,;(Q2) is any closed subspace of W;F(Q) containing W, (),
where W;F(Q) = {0 € Ly10e(Q) | VO € L,(Q)N, 0r =0} and W(},F(Q) ={0 € qu(Q) | Olr =
0}. To be precise, he showed the resolvent estimate with A € ¥, ., for some 79 > 0 in [12]. In
[13], he extended this estimate to the Z-boundedness for (1.1) and developed the maximal
L,-L, regularity for (1.2) with the help of it. As for the case of the Neumann boundary
conditions on both sides of the boundary, however, our knowledge of the Z-boundedness
as well as the maximal regularity is much less, and even the unique solvability of (1.4)
has not been proved as far as we know. We note that the unique solvability of (1.4) with
Wi(Q) = W(},O(Q) follows from the Z-boundedness thanks to observation by [12, Remark
1.7].

In this paper, we establish the Z-boundedness of solution operator families of (1.1) with
the resolvent parameter \ in a sector X. ,, for arbitrary 0 < e < m/2 and 7y > 0, and it implies
the resolvent estimates with A in the same sector. And then we prove the maximal L,-L,
regularity for (1.2) with 1 < p, ¢ < oo from the Z-boundedness combined with the operator-
valued Fourier multiplier theorem due to Weis [22, Theorem 3.4]. It is worth pointing out
that we gain an exact solution formula to (1.1) by applying the partial Fourier transform
with respect to tangential variable 2/ € RV~!. And also, the formula enables us to take any
70 > 0 in (1.3) although it was taken large enough in the study of general domain, see [13].
We wish to obtain the resolvent estimates with A € X, , that would be the first step toward
decay properties of solutions to (1.2). However, the assumption vy > 0 seemed to be needed
essentially for the estimate of the determinant det L in the solution formula. In fact, | det L| ™
is too singular at the origin in Fourier side when A = 0 although the solution formula is also
available for A = 0. Our approach follows [18] and [10]; we regard the solution formula as
a singular integral and, then, estimate it by the fact that the kernel is estimated by |z|~",
see the proof of Lemma 3.1. However, the formula involves a symbol which possesses higher
singularity at the origin than that for Neumann-Dirichlet boundary condition. The reason
is that the determinant degenerates for & — 0 since it has two similar rows caused by the



same boundary conditions on both sides of 0€), see Remark 3.2. We get around this difficulty
by using the idea of Saito [10, Lemma 5.5]. The point is to estimate the solution formula
in the tangential direction uniformly with respect to the normal variable by regarding the
formula as the singular integral on R¥~! with a kernel decaying like |2/|~™=1. We then
find the desired Z-boundedness since the layer is bounded in the normal direction, see the
proof of Lemma 3.2. As another difficulty, the estimate of | det L| ™! is inhomogeneous in the
sense that it is bounded for [£'| — oo but it diverges for [¢'| — 0. We resolve it by a cut-oft
procedure.

Problems (1.1) and (1.2) arise from a free boundary problem of Navier-Stokes equations
describing the motion of incompressible and viscous fluid flow without surface tension. The
problem is to find a time-dependent domain Q(¢), a velocity field v = (vy(x,t),- -+ ,on(z,t))T
and a pressure m = 7(x,t) satisfying the following equation for given initial velocity vy =
(vor(2), -+, von(2)) "

v+ (v-V)v—DivS(v,m) =0, divv=0 inQ(), 0<t<T,
S(v,mry =0, v-y =V, on 0Nt), 0 <t <T, (1.5)
Vli=0 = Vo in €.

Here, V,, and 14 in the boundary condition stand for the velocity of the evolution of 0€Q(t)
and the unit outer normal to 0€Q(t), respectively. The novelty of the problem (1.5) is that
we consider free boundary conditions to be determined on both upper and lower ones.

Problem (1.5) has been studied for the case that the lower boundary is fixed while the
upper surface is still free in an asymptotic layer

Qt) = {z = (o', 2y) e RN | —b(z') < 2y < n(t,2")}.

In the Ly-framework, Beale [8] established the existence of solutions locally in time without
surface tension. Allain [6, 7] and Tani [19] proved it with surface tension, that is, for the
following boundary condition:

S(v,mvyy =0cHvy, v-u=V,, 0<t<T,

where H and ¢ > 0 stand for doubled mean curvature of 9§2(¢) and the coefficient of surface
tension. Beale [9] obtained the global well-posedness with surface tension, and Tani and
Tanaka [20] proved it with and without surface tension. Furthermore, Abels [2] obtained
the local well-posedness in L,-framework, and Saito [11] developed the global well-posedness
in the L,-L, setting, without surface tension. In general domains, Shibata proved the local
well-posedness theorem without and with surface tension in [14] and [16, 15], respectively.
For our boundary conditions, however, results seem to be less developed. In this paper, we
establish the local well-posedness in L,-in-time and L, -in-space setting for 2 < p < oo and
N < g < oo by means of the fix-point arguments with the help of maximal L,-L, regularity
obtained above, in the similar way to [11].

As mentioned above, the uniqueness of the weak Dirichlet problem (1.4) with W (Q) =

qu,o(Q) follows from the #Z-boundedness. Then the theory for general domains due to Shibata
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[13, 14] leads to the local well-posedness of (1.5), in addition to the maximal regularity (but
only for 79 > 1). Nevertheless, we develop the theory in the layer (for arbitrary ~, > 0)
since it would be better not to rely on the general theory in [13, 14].

The next section is devoted to stating the main theorem and corollaries. In Section 3, we
present the sketch of the proof of the Z-boundedness for (1.1).

2 Main Results

In this section, we provide our main theorem and corollaries. First, we introduce some
notation and, then, review the definition of the Z-boundedness. we often write v = Re A
and 7 =Im A for A € C. Let D = RY, RY or the layer Q. We set

W‘l(D) = the dual space of /I/IZ},’O(D), (2.1)

q

where W} (D) = {p € WL(D) | glop = 0}.
for 1 < ¢ < oo, where ¢’ denotes the dual exponent given by 1/g+ 1/¢' = 1. We define
(N2 F(t) = [ 2211 () (2.2)

with .Z and .,?7_1 being the Laplace transform and its inverse transform, respectively, which
are given by

LU= [ e 20 = 5o [ et

o 2T .
for functions f vanishing on (—o0,0) and g. We note that we have, as in [13, Appendix],

le™ " AY2G |z, @ Ly < Cllle UG, iy + le " VGl,@emn)  (2:3)

for any function G with e "0,G € L,(R, Wq’l(Q)), e "VG € L,(R,L,(Q)) and G(t) = 0
(t < 0). The definition of the Z-boundedness is given by the following.

Definition 2.1. Let X and Y be Banach spaces. An operator family T C L(X,Y) is said
to be Z-bounded if there exist 1 < p < oo and C' > 0 such that for m € N, {T;}7L, C T,
{z;}72, C X, and sequences {r;}72, of independent, symmetric and {+1}-valued random
variables on (0, 1), the following estimate holds:

1 m p 1 m
LI nwna] aze [ 3w,

The infimum of such C is called Z-bound and denoted by Zrxyy(T), or Zex)(T) if X =Y.

P
du.
X

The main result on the Z-boundedness for (1.1) is stated as follows.



Theorem 2.1. Set
Xq(Q) = {<F17F27F37F47F57F6) |
Fi, Fy, Fs € Ly Q)N B € W, Q) Fy € Ly(Q), Fs € L)™'}
For all A € C\ (=00, 0], there exist operators U(X) = (UL(A),- -+ ,Un(N)) and P(X) satisfying
UN) € L(X,(Q),W2HQN) and P(N) € L(X,(Q), W (Q)) forl < q < oo such that the

following assertions hold:

a) Foralll < q< oo, A€ C\ (—o00,0] and the data
(F.9.1) € Ly(Q)" x (W () N WG (@) x Wy ()Y,

q
the couple (u,0) € W2(Q) x W;(Q) given by
(u,8) = UN), PN)(E, Ag, A%, Vg, A/*h, Vh)
is a unique solution of (1.1).

b) Foranyl <qg<oo,0<e<m/2,v%>0,0=0,1and1<m,n,J <N, there hold
R (x4, L) {(TO)NUN) | X € T 3,1 O g o s
gﬁ(xq(ﬂ)qu(Q))({(Td ) A/Z/{J()‘) ‘ A€ EE,'yo})< CNqs'yo 0,0

gﬁ(xq(ﬁl),Lq(Sl))({(Td ) X2 s (N) | A € Zeryo})— N,q,£,70,14,6

*@ﬁ(xq(ﬂ) Lq(ﬂ))({( ) OmO Z/{J()‘) ‘ AE Es,'yo})S N,q,&,70,11,6

R (x4(9),L,0) {(T0) 0PN [ A € Beyg DS oo sy

where A =y +itand . ,, is given by (1.3).

We obtain the maximal L,-L, regularity as a corollary of Theorem 2.1 combined with the
operator-valued Fourier multiplier theorem due to Weis [22, Theorem 3.4]. We may skip the
proof since it is similar to the proof in [10, Theorem 2.1].

Theorem 2.2. Recall that Wq_l(Q) and AY* are given by (2.1) and (2.2). Let 1 < p,q < oo,
Y% > 0. Then, for any data F, G, H such that

e OF € L(R, L(Q)N), e G e WER, W, 1 (Q)) N Ly(R, WA(Q)),
e "APH € Ly(R, Ly()N) (v > ), e ™H e LR, W, ("),
with (F(t),G(t), H(t)) = (0,0,0) (t < 0), problem (1.2) admits a unique solution (U, O) with
e MU € WH0, 00, Ly(2)N) N Ly(0,00, W2(Q)), e ™6 € L, (0,00, WH(Q)).
Moreover, it satisfies the estimate (note that the right-hand side is finite by (2.3)):
e (0,U,yU, A)*VU, V2U,VO)||L,(0.00,L,(@)
< O {lle " (F, AY2G, VG, AV2H, VH) |1, .oy + e " 0Gl, si1a)

for any v > 7o with some constant C.,, independent of .
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Finally, we develop the local well-posedness of the nonlinear free boundary problem (1.5).
To this end, we first formulate this problem in Lagrange coordinates by using the relation
between Euler coordinates « € Q(t) and Lagrange ones y € :

t
rT=y+ / u(y, s)ds = Xy(y, t), (2.4)
0
u= (u1<y7t)7 e 7uN<y7t)) = V<Xu(y7 t)v t): 9(% t) = 7T()(u<y7t)7 t)
And then we get the following quasilinear problem (cf. [17, Appendix A]):

Omu — Div S(u,0) = f(u), divu=g(u) =divg(u) in Q x (0,7,
S(u,0)v = h(u) on 092 x (0,7), (2.5)

uli—o = vo in ,

where nonlinear terms f(u), g(u), g(u) and h(u) are given by

t t t t
f(u) =V, (/ Vu ds) o+ 'V, (/ Vu ds) Viu+V; (/ Vu ds) / V2uds - Vu,
0 0 0 0
¢ ¢ ¢
g(u) =V, < / Vu ds) Vu, g(u)=V; < / Vu ds) u, h(u) =V, ( / Vu ds) Vu
0 0 0

with some polynomials satisfying V;(0) =0 for i = 1,--- ,6. As the linearlized problem, we
consider the nonstationary Stokes equation (1.2) with the initial velocity vy:

Ju—DivS(u,0) =f, divu=g in Q x (0,00),
S(u,0)v =h on 9 x (0, 00), (2.6)
uli—o = vo in Q.

By setting u = e vy + U and 0§ = K(e 4tvy) + O, we get (1.2). Here, e 4elvy is the
Stokes analytic semigroup, whose generator A, is defined by

D(Ag) ={u e J()nW ()Y | S(u,K(u)) =0 on 90}, Agu = DivS(u, K(u)),
where
Jo(Q) = {u € L, ()" | divu = 0},

and K is the solution operator which gives 6 from u in the equation (2.6) with (f,¢g,h) =
(0,0,0) or in the equation

AO =0 in €,
0 = 2udnuy on Of.

We are on the point of stating the local well-posedness of (2.5) instead of (1.5). We obtain
the solution of (1.5) by applying the Lagrange transformation (2.4) again. The proof may be
omitted since it is the same way as in [11, Theorem 2.2]
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Theorem 2.3. Let 2 < p < oo and N < q < oco. For all R > 0, there exists T = T(R) > 0
satisfying the following: for any initial data vo € (J4(2), D(Ag))1-1/pp C B(i(pl_l/p) with
Vol y2a-1/m < R, the system (2.5) admits a unique solution

uc I/Vp1 (07 T> LQ(Q)N) N Lp(ov T> W(IQ(Q)N)
with some pressure term 0 € L,(0,T, W;(Q)), satisfying the following estimate:

10nallz,0.7.L,0) + [allL, 07 wz@) < MoR

with some constant My independent of T and R. Here, (-,-)i1-1/pp is the real interpolation
functor.

3 Sketch of proof of Theorem 2.1

In this section, we present the sketch of the proof of our main theorem. First, by solving the
divergence equation and the generalized Stokes resolvent problem (1.1) on whole space, we
can reduce the problem (1.1) to the case where the data are only on boundary:

{ Au—DivS(u,0) =0, u=0 in,

S(u,0)v = h on 99 (3.1)

and, then, we show the Z-boundedness for the preceding problem. Theorem 2.1, the full data
case, is deduced by combining the Z-boundedness for the divergence equation, the problem
(1.1) on RY and the problem (3.1). The %-boundedness for the problem (3.1) is stated as
follows.

Theorem 3.1. For all A € C\ (—00,0], there exist the operators S(\) = (S1(A), - ,Sn(N))
and T (N) satisfying S(\) € E(Lq(SZ)N+N2,Wq2(SZ) ) and T(N\) € L(Ly(QN+N*, WI(Q)) for
1 < g < oo such that the following assertions hold:

a) For all1 < q < oo, A € C\ (—00,0] and h = (W,hy) = (hy,--- ,hy) € W()V,
(u,0) € W2(Q)N x WH(Q) given by below solves (3.1):

u=S\)\*W hy,Vh), 0=TN\ AW hy,Vh). (3.2)

b) Foranyl <qg<oo,0<e<m/2,v%>0,0=0,1and1<m,n,J <N, there hold

R, {TO)ASIN) | X € B30} Onge o s
Rr(1,){(70) 98,0 | X € By S Cgie ot
L1, {(T0)AN20,,8,(N) | A € B2 1)< Ongeo s
‘%ﬁ(Lq(Q))({(Ta )Ea ISs(N) | X € EEWO})S N,q:€,70,14,0
R (142 {(70) 0T (A) | A € X2y S COngepoguss

where A =y +iTand X, ,, is given by (1.3).
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Remark 3.1. [t is reasonable (and possible by vy > 0) to show the Z-boundedness for
u=3S\)(A\?h,Vh), 6=T(\)(\/?*h,Vh)

instead of (3.2), but if we do so, we have difficulty estimating pressure term when we prove
Theorem 2.1 from Theorem 3.1. This is the reason why we consider the solution (3.2).

In the sketch of the proof, we focus on the assertions for Sy(\) and T () since those
for U;(N) (j = 1,---,N — 1) are obtained as follows. The solution u; obeys the following
system, which consists of the j-th component of the first equation and j-th component of the
boundary condition in (3.1):

{ Auj — ppAu; = —0;0 in €,

BNuj = [L_IVNhj — BjuN on 0f). <33)

Once we get the Z-boundedness for Sy () and 7 (), combining that with the Z-boundedness
for (3.3) leads to the Z-boundedness for S;(\).

First, we derive solution formula. We multiply the partial Fourier transform to (1.1) and
find the fundamental solution to the resultant ordinary differential equation with respect to
On. Then the partial Fourier transform of uy and 6 are given by

-~ - x B + A - x
un(€,zn) = Z N M(dy(z ) + Beve Be@) - f(€ xy) Z il [toyeAde@n)
£=1,2 =12

with some constants p,y and By depending on A, £’ and data h, where

=&, B=+p A+ A% (ReB >0), (3.4)
. 0—xN 521, . e~Ban _ e~AzN
) = { 7 Ty M) = =g
The constants satisfy the following equation:
ILx=r
where x = (2!, -+ ;%) and r = (ry,- -+ ,74) are given by

z! = H1N, z? = Bin, z? = H2N, at = Ban,
r = M_lhd(éla 6)7 Ty = _M_lhd(§/7 0)7 rs = M_lAhN(£/7 6)7 T4y = _:u’_lAhN(€/7 0)7
and L = (Lij)lgi,j§4 is defined by

Ly =—-(B+A), Ly = —(B* + A%),

Lis=—(B+ A)e ™ — (B? + A2)M(0), Liy= —(B?+ A%)e Y — (B> 4 A*)(B — A)M(9),
Ly = —(B+ A)e ™ — (B? + A2 )M(0), Lgy = —(B? + A%)e Y — (B> 4+ A*)(B — A)M(6),
Loz = —(B + A), Ly = —(B* + A?),

Ly = —(B— A), Ly, = 2AB,

Lss = (B — A)e ™ —2ABM(6), Ly = —2ABe™ " — 2AB(B — A)M(9),

Ly = —(B — A)e ™ +2ABM(5), Lyg = 2ABe™ + 2AB(B — A)M(9),

L43:—<B—A), L44:2AB
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By solving this, we obtain the solution formula of (1.1):
LS L L
. -1 k,20—1 k20 —Bd (zN) /
un(z) = ZZ@Q [{—detL M(do(zn)) + ot LE ‘ }rk} (2,

4 2
LB+ A) Liser g
k=1 (=1

where L; ; is (i, ) cofactor of L, and the determinant of L is

det L = ﬁ I[{(B2 + AN 1+ e )1 F e P) —4A3B(1 Fe )1+ 7P} (3.5)

Remark 3.2. The determinant causes higher singularity at & = 0 in the symbol of the
solution formula than that for Neumann-Dirichlet boundary condition. Indeed, the third and
fourth rows are similar each other for small £ in the sense that they coincide when & =
and so det L — 0 as & — 0. On the other hand, det L 4 0 as & — 0 for Neumann-Dirichlet
boundary condition.

In what follows, we focus on one term in the solution formula of Auy. The other terms
can be estimated in the same way. Let 5 and ¢ be cut-off functions such that

oo e CER0.1), olan) = { o (V552 watow) =1 = olax) (o € R). (30

We use a trick in Volevich [21] (see (5.24)); by the fundamental theorem of calculus,

AL
__0“—1 44 B.’EN ! / .
uy = —F, L detLA h (5,0)} (') + (3.7)
’ ALya | Bun A )
/ ©o(yn) e tLA N AN B (€ yn) | (@) dyw + -

AL ,
:/ 2 [%( N) di4LA “Ben e Aun (¢, ?JN)} (a') dyn

5

. AL .

_/ 3 [SDO(QN) di4LA2 R AN (S yN)] (2') dyn
0

d AL .
+/ T [soo(yzv) d4t4LA Ben AN By (€, yw)] (') dyn + - --
0

Then we introduce technical lemmas playing a crucial role in this paper. Since the symbol
possesses higher singularity at ¢ = 0 as compared to that for Neumann-Dirichlet boundary
condition, we employ different lemma depending on the part: the part with same singularity



or higher singularity. As a notation, remember that A, B, M, d,, ps and g are defined in
(3.4) and (3.6), and set

e_B:EN 1= 17 905(3/]\/) 1= 17
ki(zy) = e Aww i=2, Di(yn) =1 wolyn) i =2,
BM(zy) =3, eoyn) = —@5(yn) 1= 3.

The following lemma, which is obtained in the same way as in [10, Lemma 5.3], is concerned
with the Z-boundedness for the part with same singularity as that for Neumann-Dirichlet
boundary condition.

Lemma 3.1. Let 0 < £ < 7/2 and v > 0 and let m()\, &) € C®(Z.,, x (RV"1\ {0}))
satisfies

0% (70-)'m(\, &) < MAT

with some constant M = M(g,7p, ) > 0, for (A\,&) € ., x (R¥"1\ {0}), £ = 0,1 and
multi-index of. Here, \ = v+ iTand X. ., is given by (1.3). We define the operator

6 -~
K e) = [ [ mOn€) A (e om) s (sl D) ()l (39

forall N € 3., i,11,72 = 1,2,3 and {1,0y = 1,2. Then, for 1 < q < oo and { = 0,1, there
holds

‘%ﬁ(Lq(ﬂ))({(TaT)éKl (A) ’ AE Es,vo})g CN,q,s-ﬁo,M~

The Z-boundedness for the part with higher singularity is guaranteed by the following
lemma, which is proved by means of the same method as in [10, Lemma 5.5].

Lemma 3.2. Lemma 3.1 holds even if Ky(\) is replaced by the operator Ks(X\) defined by

Ko ) = [ 7 [ mOn € k(s o) (s )F(E )] ) .

The sketches of the proofs of these lemmas are given at the end of this section. From
now on, we first prove the Z-boundedness for the one term in (3.7) of Auy from the lemmas
above and the following lemma, which is concerned with the estimates of the determinant
and the cofactors of L.

Lemma 3.3. Let 0 < e < 7/2 and v > 0.
a) For any (\, &) € .., x (RN "1\ {0}), £=0,1 and multi-indez o/, the estimate

/ 1 1
o ¢ < , 1/2 —6 - .
o2 (r0,) —detL‘ < Ceppar (N2 + A) (1 + A) (3.9)

holds with some constants Cy ., o . Here, T = ImA, and also, X, ,, detL and A are
gwen in (1.3), (3.5) and (3.4).
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b) Fork=1,---,4 and { = 1,2, we have

Lyoe1 €Mso. ., Lioe € My

Sketch of the proof of the assertions for Sy(A) and T (X) in Theorem 2.1. We give rather de-
tails of the proof of the Z-boundedness for a typical term in (3.7) of Auy. In view of (3.9),
we divide each term of (3.7) into two parts: one possesses the same singularity as in the case
of the Neumann-Dirichlet boundary condition, the other does higher singularity. Let ¢y, and
(1 be cut-off functions satisfying

Ge e, o) ={ o B1ZT ) =06

so that 1 = (o(¢') + (1(¢)/A. Then, by using the formula

A2 N ey
AZIZZ( jfj)zfj/a

5/

Jj'=1

we rewrite (3.7) as follows:

ALy 4

> —~
Auy :/ Tt [sDo/(yN)Co(ﬁl) Ae_BxNe_AyNhN(flvyN)} () dyn

0 pdet L
65‘—1 / / )‘L474 —Bxn —Ayni (¢l /
+ | Fa |vo (yN)Cl(ﬁ)me e “Nhn( yn) | (27) dyn
0
N—-1 .5 .
N ALaa & e ApeE T
+ / T [mymco@)wﬁ%fle Fove AyNaj/hN@',yN)] (+') dyw
i'=1"9
N—-1 s .
, AL 1Sj' _Ban  — a1 /el /
+ / T [mymcl@)u i B o AyNaj/hN@,yN)} (+') dyw
j,:].. 0

’ / AL — — T 1 el /
+ / Fe! [so()(yN)co(f)M Lo Ae e AyNaNhN@,yN)} (a') dyn

AL
udet L

5 _—
—i—/o T [‘Po(yN)Cl(fl) e_BINe_AyNaNhN(ﬁlayN)] () dyn +--- .

From Lemma 3.3, we can get

ALyy
wdet L’

MLy i€y
/ s Ny M .
go(g ),U/det L A S 0,2,,70

G(&)

for j=0,1and 5/ =1,--- ,N — 1, and so, the Z-boundedness for each term is proved by
Lemma 3.1 for odd-numbered one and by Lemma 3.2 for even-numbered one. O

Now, we give the sketches of the proofs of Lemma 3.1 and Lemma 3.2.
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Sketch of the proof of Lemma 3.1. The proof is done exactly by the same method in [10,
Lemma 5.3]. See also [18], which studies half space. Here, we consider only uniform bound-
edness, since the Z-boundedness also can be obtained similarly. For the simplicity, let
®; = g in (3.8), that is, i = 2. We rewrite K;(\) in the form of convolution with kernel and
extend the domain of integral to Rf :

Ki(Mh = / k(@' — o an,yn)h(Y, yn) dy =/ k(2 =y oy, yn)R(Y, yn) dy
Q

RY
where the integrand is extended to Rf by setting 0, and k; is given by
k(2 on,yn) = T lpo(yn)m(N, €) Ak, (dey (23) iy (dey (yn)] ().
Then the kernel satisfies the estimate
k(' zn,yn)| < CI(Z aw +yw) |7, (3.10)
and thus, we can estimate the integral as follows.
K (M)A o) = NI MR 23) |z, @)l Ly 00)

< ‘ / Hk}\(’wa7yN) * h(',yN)HLq(RN_l) dyn
0

Lq(0,0)

< |7 i Tl e
0 JrN-1

Lq(0,6)

> 1
=C / / d2'||h(-, yn) || o, wy-1) dyn
o Jryv-r [(# N +yn) Y a ) Ly(0.6)
e C - d / h . _ d
/0 TN N /RN_I i PGyl dyw

= C d / h ., B d
/0 L+ yw /Rwl o @ IhC eyl dyw

<1
o A [T PRt B

L4(0,0)

L4(0,0)

& 1
= C/ IR 2n) || L, v o dyn
0 yzlv/q(l +yn) H a( )HLq(o.o)

= C|h|L, -

Here, we used the Holder’s inequality in the third line, (3.10) in fourth line, change of variables
in fifth, sixth and eighth lines, and the Minkowski’s inequality for integrals in seventh line.
And then the proof is complete. O

As for the operator K3(\), unfortunately we only have the following decay of the kernel:

’ki(zlvavyN” < C’(Zlv N, yN)’_N+1
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(if we define k3 (2', 2, yn) similarly). However, we can estimate the integral by fixing =y and
applying the singular integral theory only to the tangential direction. Thanks to uniformity
of the estimate with respect to xn and boundedness of domain in the normal direction, we
can also deal with the integral in the normal direction. Namely, we can prove Lemma 3.2 as
follows.

Sketch of the proof of Lemma 3.2. This proof is done exactly by the same method in [10,
Lemma 5.5]. We only consider uniform boundedness for the same reason in the preceding
proof. Since we can get

(700 ) 0 (@s(yn)ma(\, € Vs, (duy (23)) i (diy ()] < Civge A,

by the Fourier multiplier theorem on R¥~! and the Holder’s inequality, we have

2 (M)A 28 )| g -1

<cC / 5 | e [ m 0, €k (e, Gy (e o DRE ww @),
<c| )l
< Cotta HHh('a?JN)HLq(RN—l)”Lq(o,s) = C8 9|10
for 0 < zy < d. Since this estimate is uniform for xy, we finally obtain
[EK3(MAll, @) = KNG, 2n) |z, @y |z, 06 < COllRl|L, @),
which shows the lemma. O
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