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1 Introduction

Relative t-designs were defined in Q-polynomial and P-polynomial association schemes re-
spectively by Delsarte [(] in 1977 and Bannai-Bannai-Suda—Tanaka [1] in 2015. Actually, rel-
ative t-designs in P-polynomial association schemes were first introduced by Delsarte-Seidel
[7] in 1998 for binary Hamming association scheme H(n,2). They called such designs regular
t-wise balanced designs which are equivalent to relative ¢-designs in H(n, 2) for P-polynomial
structure with respect to the fixed point (0,0,...,0). In 2015, Bannai-Bannai-Suda-Tanaka
[1] proposed the definition for general P-polynomial association schemes and proved that
the concepts of relative t-designs in Hamming association schemes H(n,q) (¢ > 2) for P-
polynomial structure and Q-polynomial structure are equivalent. Using this good property,
Bannai-Bannai-Zhu [2] proved a necessary and sufficient condition for relative ¢-designs on
two shells of H(n,2). In addition, they proved that if (Y, w) is a relative ¢t-design in H(n, 2)
on p shells then the subset of (Y, w) on each shell must be a usual (weighted) combinatorial
(t+1—p)-design. It is an interesting question to ask how the situation is in the case of Johnson
association scheme J(v, k). Each nontrivial shell X, of J(v, k) is known to be a commutative
association scheme which is the product of two smaller Johnson association schemes. Bannai—
Zhu [1] studied relative t-designs on one shell X, in J(v, k) for Q-polynomial structure and
proved that they are T-designs in X, for T = {(t1,t2) | 0 < ¢; +t2 < t}. In particular, if
the weight is constant, then relative ¢-designs on one shell in J(v, k) are mixed ¢-designs in
J(k,k1)®J(v—Fk, ke) which were introduced and studied by Martin [3]. It is well known that
Johnson association schemes are both P- and Q-polynomial association schemes. Therefore
it would be interesting to ask the similar question for P-polynomial structure whether we
can expect to regard relative t-designs on one shell of J(v, k) as weighted T-designs in X,
for some set 7.

In this report, we investigate relative t-designs in J(v, k) for P-polynomial structure and
give the answer to this question. The main result is that if (Y, w) is a relative t-design
supported by one shell X, in J(v, k) for P-polynomial structure, then (Y, w) is a weighted
T-design in X, with T = {(t1,%3) | 0 < t1,t5 < t}. We also discuss the existence problem of
tight relative t-designs. We make an algorithm to construct tight relative 2-designs in one
shell and obtain many examples. In addition, we can construct some tight relative 3-designs
on one shell Xy, in J(8u,4u) for integer u > 1.



2 Preliminaries

In this section, we will give the definition of ¢-designs in Q-polynomial association schemes
introduced by Delsarte [5], designs in product of Q-polynomial association schemes by Martin
[9] and relative ¢-designs in P-polynomial association schemes by Bannai-Bannai-Suda-
Tanaka [1]. (Please refer to [3] for more information on P-polynomial or Q-polynomial
association schemes.)

Throughout this report (Y, w) is assumed to be a weighted subset of X, namely, Y is a
non-empty finite subset of X and w: Y — R.,.

2.1 Definition of t-designs

Definition 2.1 ([5, Theorem 3.10]). Let X = (X, {R,}}_,) be a Q-polynomial association
scheme with respect to the ordering Fy, F1, ..., Ex. A weighted subset (Y, w) of X is called
a weighted t-design in X if EjX(vw)= 0 for all 1 < j < ¢, where X(vw) is the weighted
characteristic vector of (Y, w) defined by

Ny = 40w, iy e,
0, ifygy.

Definition 2.2. Let X = (Z) be the set of all k-subsets of V' with |V| = v. A weighted
subset (Y, w) of X is called a weighted ¢-(v, k, A;) design if for any 2z € (V) the following

t
value
Z w(y) = A

yeY,zCy

is a constant depending only on ¢ but not on the choice of z.

Remark 1. Delsarte [5, Theorem 4.7] proved that a t-design in Johnson association scheme
J (v, k) for Q-polynomial structure, which is a weighted t-design with constant weight w = 1,
is equivalent to a combinatorial ¢-(v, k, A;) design. We should remark that this result is also
true for (non-constant) weighted ¢-designs in J(v, k) and weighted t-(v, k, \;) designs.

2.2 Designs in product of Q-polynomial association schemes

In this sunsection, we recall the concept of designs in product of Q-polynomial association
schemes introduced by Martin [9]. For any positive integer k;, let C; be the totally ordered
chain on {0,1,...,k} and set C = C; x Cy. Consider the poset (C, <) defined by

C:{£:<€1762)’OSEszuZ:lJQ}

with partial order ¢/ < if ¢] < ¢, and ¢, < {5. A subset T of C is called a downset in (C, <)
if £ €T and ¢/ < ¢ imply ¢’ € T. For any set £ C C, denote

E+E={(Li+0,,b+0)]| (t,b), (L), 0,) € EY.



Let X® = (X® {RP}¥ ) be a Q-polynomial association scheme and E.’, B, ... E,(j) its
Q-polynomial ordering of primitive idempotents for : = 1,2. For two points = (xy, z2) and
y = (y1,12) from X® x X@ define a relation R, p,) on X x X @ by

(L?J) € R(hl,hg) if (1’1791) € R}(lll)a ($2,y2) € REZ)

Define X = XM @ X® = (XM x X@ R) as the product of these two association schemes,
where the relations set R is

R = {R(hl,’w) ’ 0<h < /{?1,0 < hy < kf2}~

In particular, if X = J(vy, k1) ® J(ve, ko), then, for z = (x1,22), y = (y1,92) € (}2) X (Zg),
(,y) € Rnypny) means |x1 Ny1| = ki — hy and |xo N ya| = ko — he. Moreover, for a set

Y C ()ﬁ) X (}2), we define the distance set of Y by

A(Y) = {(h1, h2) | (2,y) € Ruy o), v,y €Y7 £y}
Note that (0,0) ¢ A(Y).
Definition 2.3 ([9, Theorem 2.3]). Let 7 be a downset of C. The weighted subset (Y, w) of
X =X x X s called a weighted T-design in X = X1 ® x@ if

(EY @ EP)X vy = 0, for all (t,t,) € T\{(0,0)}.

In particular, if X = J(vy, k1) ® J(ve, ko) with points set X = (Xi) X (Zg), then we have
another equivalent definition of 7-designs given by Martin [9, Lemma 2.2]. Define a partial
order < on the set X = (Vl) X (2/132) by z <y if 21 C y; and 25 C y, for z = (21, 22) and

_ <k
y = (y1,90) in X.

Definition 2.4 ([8]). Let (Y, w) be a weighted subset of (}ﬁ) X (Zg) The pair (Y, w) is called
a weighted (Zy,t2)-(v1, k1, va, k2, Aty 1,)) design if for any (21, 23) € (Vl) X (1/22), the following

t1
value
Z WY1, Y2) = At o)

(y1,y2)€Y
(21,22)X(y1,y2)

is a constant depending only on the pair (1, t2) but not on the choice of (21, 22).
By Definition 2.4, we obtain the following lemma (see also [3]).

Lemma 2.5. Let (Y, w) be a weighted (t1,t2)-(v1, k1, v, k2, ¢, 1,)) design. Then it is also a
weighted (51, 52)-(v1, k1,2, k2, A(s,.s0)) design satisfying

vy — 51\ (V2 — So ki —s1\ (ko — 52
A = As1,52) 2.1
(m - 51) (tg - 52> (f1,82) (t1 - 51) (t2 - 52) (s1,82) (2.1)
whenever 0 < s; <ty and 0 < sy < to. In particular, Ao = Y.

Lemma 2.5 implies that a weighted (¢, t)-(v1, k1, v2, k2, Ar)) design is exactly a weighted
T—dQSigH in J(’Ul, k’l) X J(’UQ, ]{72) with T = {(tl,tg) | 0 S tl,tg S t}
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2.3 Relative t-designs in P-polynomial association schemes

Now let us give the definition of relative t-designs in P-polynomial association schemes
introduced by Bannai-Bannai-Suda-Tanaka [1]. Let X = (X, {R,}F_,) be a P-polynomial
association scheme and wg a fixed point in X. For 0 < r < k, we call the subset X, := {z €
X | (z,u9) € R,} the r-th shell of X. Let R be the space consisting of column vectors
indexed by the points in X. Given a point z € Xj, define a vector f, € RX! whose z-th
entry is

f(2) = 1 ifz e X, (z,2) € Rij,i > J,
? 0 otherwise.
Let Hom;(X) :=span{f, | z € X,} for 0 < j <k, then

R = Homg(X) + Homy (X) + - - - + Homy (X).

We say Y is a subset of X on pshells X, U---UX, if {r | Y NX, #0} ={r,re,....,7}.
Denote V,, =Y NX, for1 <v <p.

Definition 2.6 ([I, Definition 1.1]). Let X = (X,{R,}*_;) be a P-polynomial association
scheme and u a fixed point in X. A weighted subset (Y, w) is called a relative t-design on
p shells X, U---UX, in X with respect to uq if the following

Z | T” Y @)=Y wy)fy) (2.2)

v=1 ol z€Xy, yeEY

holds for any f € Homg(X) + Homy (X) + -+ 4+ Homy (X)), where W(Y,, ) = >_ . w(y).

3 Relative t-designs in one shell of J(v, k)

In this section, we discuss relative t-designs on one shell of Johnson association scheme
J(v, k) for P-polynomial structure. We first describe the structure of each nontrivial shell
of J(v,k). Let X = (Z) be the set of all k-subsets of V' = {1,...,v} with v > 2k and
J(v,k) = (X,{R,}F_,) Johnson association scheme. For any fixed point uy € X, denote
X, ={x € X | |[zrNu| = k—r} Without loss of generality, we may assume ug =
{1,2,...,k}. Let Vi = up, Vo = V\ug and denote v; = |V;| for i = 1, 2.

Proposition 3.1. Each nontrivial shell X, of J(v,k) is identified with the product of two
smaller Johnson association schemes J(k, k1) ® J(v — k, ko). More explicitly,

(1) (Xo AR} ) = J(k,r) @ J(v—k,r) if 1 <r <k
(2) (X {RiYi_o) 2 J(kk —71) @ J(v—k,7) if & < p < 05E
(3) (X AR o) = Tk k—r) & J(v—kv—k—71)if 5 <r <k
Proof. For cases (1), (2) and (3), define the bijection ¢ : X, — (}!) x (}?) respectively by
o) = (V\z,Vanz), (VinzVonz), (Vi\z,Va\z).

We can check that, for z,y € X,, (z,y) € Ry, 4n, if and only if (¢(x),d(y)) € Rn, hy)-
Therefore (Xr,{Rh}h o) = J(k k) ® J( — k, ko). O
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Remark 2. Without confusion, we identify X, with the product association scheme J(k, k1)
J(v — k, ky) whenever we mention designs in X,. In addition, if (Y, w) is a weighted sub-
set of one shell X, of J(v,k), then the above map ¢ preserves the weight as well, namely,
w(y) = w(¢(y)) for any y € Y.

Now we are ready to give our main theorem. By definition 2.6, if p = 1, ie., Y C X,
then we have the specific condition for relative ¢-designs supported by one shell X, as follows.

(2) =Y wy)foly), Vz€XoUX U - UX,. (3.1)

zeX, yey

Theorem 3.2. If (Y,w) is a relative t-design in J(v, k) supported by one shell X,, then
(Y,w) is a weighted T -design in X, with T = {(t1,t2) | 0 < t1,t5 < t}.

Using Lemma 2.5, it is enough to prove that (Y, w) is a (t,t)-(v1, k1, va, ka, A@)) design
for some constant Ay if (X, {Rr}f_o) = J(v1, k1) ® J(v2, ko). More precisely, we need to

prove that Y. w(y) is constant for any (z1,22) € () x (*2).
yea(Y)
(21,22) 2y

Remark 3. In Theorem 3.2, (Y,w) is a weighted T-design in X, means (¢(Y),w) is a
weighted T-design in J(k, k1) ® J(v — k, ko), where ¢ is the bijection defined in the proof of
Proposition 3.1.

4 Lower bound for relative {-designs on one shell

In this section, we give the lower bound for relative ¢-designs on one shell X, of J(v, k). By
Theorem 3.2, it is equivalent to obtain the lower bound for weighted 7 -designs in product
association scheme J(k, k1) ® J(v — k, ko) with T = {(¢1,2) | 0 < t1,t5 < t}. The following
lower bound of designs in product association schemes was proved by Martin [3].

Lemma 4.1 ([8, Theorem 3.2]). Let T be a downset in (C,<) and £ a set satisfying (€ +
EYNCCT. IfY is a T-design in J(vi, k1) @ J(va, ka), then

e S (OG- ()

(J1,J2)€€

Moreover, if equality holds, then for any (hyi,hs) € A(Y) we have

> QY (m)QR (hs) =0,

(J1,J2)€€

where ng)(:c) is the following Hahn polynomial corresponding to J(v;, k;)

o= (1) (") sl T )



From the proof of Theorem 3.2 in [%], one can check that inequality (4.1) also holds for
weighted T-designs in J(vq, k1) ® J(ve, ko).

Corollary 4.2. If (Y, w) is a relative 2e-design in J(v, k) on one shell X, with P-polynomial

structure, then
kN (v—k
Y| > ) 4.2

It follows from Theorem 3.2 that (Y,w) is a weighted T-design for T = {(t1,t2) | 0 <
t1,te < 2e}. Take € = {(j1,72) | 0 < 71, j2 < e}. Using Lemma 4.1, we obtain

=22 [G) -G -GEI-0)0)

Jj1=072=0

Proposition 4.3. If (Y,w) is a relative (2¢ + 1)-design in J(v, k) on one shell X, with

P-polynomial structure, then
kE—1 —k—1
| > 4( ) (” ) (4.3)
e e

A relative t-design on one shell of J(v, k) is called tight if equality holds in (4.2) or (4.3).

At the end of this subsection, we introduce the concept of projections for designs which
will be used later. Given a (t1,t2)-(v1, k1,2, k2, A, 1)) design Y, define the left and right
projection of Y as follows.

Y = {yB) | (y ) Py e v}
Y = {0 |y, ) e Y}

Then Y& are t1-(v1, k1, Ag,,0)) designs and Y& are to-(v2, k2, A(0,t,)) designs.

5 Tight relative 2-designs

In this section, we give an algorithm to construct tight relative 2-designs (with constant
weight) on one shell of J(v, k). We also provide two explicit examples.

Assume the weight function is constant, i.e., w = 1. Let (Y, 1) be a tight relative 2-design
on one shell X, of J(v, k). Using Lemma 4.1, we obtain the distance set A(Y") from the zeros
of following equation.

jeE

Fhy,ha) = > Q;(h) = 14 QP (hy) + QP (ha) + QY () Q1 (o),

where £ = {(0,0), (0,1),(1,0), (1,1)}. More explicitly, we have

V1V2 (’Ulhl — hl — Ulk’l + k%)) (hgvg — hg — kQUQ + k’%)

F ho) =
(h1, 2) k1 ko (1)1 — /{31) (UQ - k’2)

. (5.1)
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Then we know that

A(Y) C {(M,@) , (hl, M) |0 < hy <k, 0 < hy < ky, (ha, hy) # (0,0)}

Ul—l ’Ug—l

The construction of explicit tight relative 2-designs on one shell X, in J(v, k) (i.e. tight
(2,2)-(v1, k1, v2, ka2, A(2,9)) designs) Y is equivalent to the following problem.

Problem. For a point set X = X&) x X(7) = ()ﬁ) X (}2), find a pair of 2-(vy, k1, A2,0)) design

Y = {yEL), ey yE\(LO)m} C XB and 2-(va, k2, A\p,2)) design YR = {ng), . ,yf\i%o)} c X&)
with the same cardinality, so that Y = {(yi(L), yER)) |1 << Aoy} CYE YR satisfies the
condition that, for each {p1, ¢} C Vi and {p2, g2} C V5, there exists exactly A2y element(s)
y € Y such that ({p1,q1}, {p2,@2}) =< y. The partial order < means {p;,q:} € ¥y and
{pa2, 12} C y®) . Moreover, the parameters A0,0)s A2,0), A0,2) and 29y satisfy the relation
given by Eq. (2.1).

5.1 Basic idea for the construction

Now we explain the basic idea of an algorithm to construct (2,2)-(vy, ki, va, ka2, A(2,2)) de-

signs for a given 2-(vi, ki, A2,0)) design as the left projection Y, The algorithm is ap-

plicable for cases when the size of 2-(vy, k2, A22)) design is equal to A(20). Define Yy =
L) (L L o R) (R R : .

(yg ), yé ), . ,y/(\(o)yo)) and Y () = (y% ), yé ), . ,yg\(o)yo)). We introduce the notation of p (p, q; 2)

for a given 2z = (21, 22,..., 23 ,,) and p, ¢ € V1 (p # ), defined as
o\ — (s _ for {iv i ~ iy (L) ¢ (D)
p(p;q,z) - (21172127"'721)\(270)) or {117227"'72)\(270)} - {Z ’ {pJq} Cyz e }

We observe that p (p, q; ?(R)) is a 2-(vq, ko, A(2,2)) design. This will be the key fact in the

algorithm. We use this fact as a condition to fix the right (ordered) projection Yy (),

The essential idea of the algorithm is the following. We choose one 2-(vy, ky, A(2,0)) design
as the left (ordered) projection Y ). The right (ordered) projection Y ¥ is unknown. Denote

c=(0,...,0) of length (o). Since p (p, q; ?(R)) for {p,q} C Vi is a 2-(va, ko, A(2,2)) design,
we assign one 2-(vs, k2, A(2,2)) design to p(p,q;c). We do this for all choices of {p,q} C V1.
If we find a c¢ that is consistent with all conditions from p (p, ¢; ¢), then we take it as Y (%),

5.2 Examples for tight relative 2-designs

Example 1. One trivial example for tight relative 2-design (i.e., (2,2)-(v1, k1, v2, k2, A(2,2)) de-
sign) Y is the product of a symmetric 2-(vy, k1, A1) design Y ) and a symmetric 2-(vy, k2, Ao)
design Y®) with the same cardinality and A\; - Ay = A(2,2). Namely,

Y ={(ysy) |y € YP y; e Y 1 <i <y, 1 <5 <ol

Example 2. Tight relative 2-designs on X3 in J(14,7), i.e., tight (2,2)-(7, 3,7, 3, 1) designs.



Using the algorithm, we obtain many tight (2,2)-(7,3,7,3,1) designs. Since both the left
and right projections of a (2,2)-(7,3,7,3,1) design are 2-(7,3,7) designs, take the second
2-(7,3,7) design on Spence’s homepage [10] as the left projection. We give two examples
which is constructed from that 2-(7,3,7) design. Let

Y1 = {(%i, Ui )s Wins Yin), W10, Y1) | e € Loy jo € Jo, € = 1,2},
Y2 = {(yilvyjl)u (yi27yj2)7 (y107yj3)> ’ ié S Iéujm € Jmug = 1727m = 17 173}

where Iy = {1,2,3,4,7,9}, I, = {5,6,8,11}, J; = {1,2,3,4,7,9}, Jo = {10}, J3 =
{1,12,13,14,15,9}. Here y; denotes the i-th block of the list given below.

{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,4,7},{2,5,6},{2,5,7},{3,4,6},{3,4,7},{3, 5,6},
{3,5,7},{1,4,6},{1,5,7},{2,4,5},{2,6,7}.

Then both Y; and Y5 are tight (2,2)-(7,3,7,3,1) designs with the following distance sets.

A<Yl) = {(07 2)7 (27 0)7 (27 2)7 (17 2)7 (37 2)}7
A(Yz2) ={(0,2),(2,0),(2,2),(2,1),(2,3),(1,2),(3,2)}.

Example 3. A tight relative 2-design on X, in J(26,13), i.e., tight (2,2)-(13,4,13,4,1)
design.

Both the left and right projections of a (2,2)-(13,4,13,4,1) design are 2-(13,4,13) de-
signs. It is known that there is a unique symmetric 2-(13,4, 1)-design D;3 up to automor-
phism. Take twelve copies of D;3 and one more design by permuting the points of Di3

labelled by 12 and 13, then we have a 2-(13,4,13) design as the left projection Y, Using
the algorithm, we construct a tight (2,2)-(13,4,13,4,1) design Y in the following.

Y = {(yi17yj1)7 (yizvyj2)7 (yi37y18) | Z.Z S [évjm S vag = 172737m = 172}7

where I = {1,4,7,8,10,22,30}, I, = {13,16,20,23,26,29}, I3 = {14,15,19,24,27, 28},
J1 = {1,4,7,8,10, 13, 16, 20, 22, 23, 26,29, 30}, Jo, = {2,3,5,6,9,11,12,17,21, 25,31, 32}.
Here y; denotes the i-th block of the list given below

{1,2,3,4},{1,2,3,13},{1,4,7,12},{1,5,6,7},{1,5,9,11},{1,6,8,10},{1, 8,9, 10},
{1,11,12,13},{2,4,9,10},{2,5,8,11},{2,5,8,12}, {2,6,7,11},{2,6,9,12}, {2, 6,9, 13},
{2,7,10,12},{2,7,10,13},{3,4,8,11},{3,5,7,10}, {3,5,9,12},{3,5,9,13},{3,6,9, 12},
{3,6,10,11},{3,7,8,12},{3,7,8,13},{4,5,6,13}, {4, 5,10, 12}, {4, 5,10, 13}, {4, 6, 8, 12},
{4,6,8,13},{4,7,9,11},{7,8,9, 13}, {10, 11,12, 13}.

The distance set of Y equals

AY) ={(0,3),(1,3),(2,3),(3,0),(3,1),(3,2),(3,3),(3,4), (4,3)}.



5.3 Tight relative 3-designs on one shell of J(v, k)

In this subsection, we will discuss the existence problem of tight relative 3-designs (Y, w) in
J(v, k) on one shell with constant weight, i.e., w = 1.
Let Vi = ug, Vo = V\uy. We introduce the notation

Yirind) = {(n — Wi, po — W) | (y1,12) € 6(Y), Wi Cy; C Vi — Ui},

where W; and U; are subsets of V; such that W; N U; = @) for ¢ = 1,2. Using the proof of

Proposition 4.3, if there exists a tight relative 3-design Y on one shell X, of J(v, k), then
we have four tight {(2,2)}-designs Y((O?g)) , 1/((637@’6;), né)aﬁ%) and Y((Q)aw’f ) vespectively in product
association schemes J (v, k1 —1)®J(vh, ka—1), J(v}, k1 —1)QJ (v}, k), J(v], k1) RJ (v, ko—1)
and J (v, k1) ® J(v, ko), where v] =k — 1, vy =v —k — 1 and
(r,7), if 1§T§§,
(k1, ko) =< (k—r,7), if §<r§ ”;k,
(k—rv—Fk—r), if S <r<k-1.

According to the computer search, there is only one family of possible parameters, i.e.,
(v, k,r) = (8u,4u, 2u) when v < 3000.

We can construct a tight relative 3-design on one shell Xy, in J(8u,4u). Choose any
tight relative 2-design on one shell Xy, 1 in J(8u — 2,4u — 1) as )/(g’@). Replacing the left

(resp. right) projection of Y(gg)) by its complementary design, then this new design is Y((C?Q')S))

(resp. Y(Eaaﬁq;)) Replace both the left and right projection of Y((C?g)) by their complementary

designs and denote this new design as Y((@a@é& ). Define the sets Y1, Y5, Y3, Y, as follows.

vi= {0 ufah Y uish |y e v,
@7

o= {(r'ufah Y | (VY e YE)
a,l

vi= {0y uisn | vy e v}

Then Y =Y, UY,UY3UY] is a tight relative 3-design on the shell X5, in J(8u,4u).

5.4 Further problem

According to the computer search, if r < %, then we get the following table for the possible
parameters of tight relative 2-designs on one shell X, in J(v, k), (i.e., tight (2,2)-(k,r, v —
k.7, A2,2)) designs).

v o ||14 22 26 29 30 32 32 37 37 38
ko[ 7 11 13 13 15 11 16 15 16 19
r |3 5 4 6 7 5 6 7 6 9
o)L 4 1 5 9 2 4 6 3 16
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There are two interesting two families in the table above, namely, (k,7, A29)) = (u* +u +
Lu+1,1) and (k,r, A\22)) = (4u —1,2u — 1, (u — 1)?) for integer u > 2. We obtained some
non-trivial examples for the first family when v = 2,3,4,5. Problem one is the general
construction for tight relative 2-designs with the possible parameters from the above two
families.

According to the computer search for v < 3000, there is only one family of parameters

(v,k,7) = (8u,4u,2u) for tight relative 3-designs and we can construct such designs if the
tight relative 2-designs involved exist. Problem two is whether all the tight relative 3-
designs on one shell of J(v, k) have the parameter (v, k,r) = (8u, 4u, 2u).
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