SOP₂ AND ANTICHAINS

JINHOO AHN

ABSTRACT. In this paper, we pay our attention into 2-strong order property, namely SOP_2 , and its relatives. We first observe strongly indiscernible trees and its modeling property, then find the equivalent conditions for each SOP_2 and weak-TP₁. As a main theorem, we prove that the definitions of SOP_2 and TP_1 can be more generalized, by using the notion of strong similarity and antichains.

1. Introduction

A formula $\phi(x,y)$ has 2-strong order property(SOP₂) if there is a tree of parameters $(a_{\eta}: \eta \in {}^{\omega}>2)$ such that the types in which parameters consists of a path in tree is consistent, but any two formulas having parameters of incomparable pairs are contradictory.

 SOP_2 has similar definition of the tree property of the first kind(TP₁), except TP₁ uses parameters indexed on $\omega > \omega$. It is easily proved that SOP_2 is equivalent to the tree property of the first kind(TP₁), but as it is still too strong to deal with, there have been many attempts to weakening the conditions.

In [3], suggesting the notions k-TP₁ and weak k-TP₁, Kim and Kim proved that k-TP₁ is equivalent to TP₁ using the tree indiscernibility called 1-fully-tree-indiscernible. The equivalence of TP₁ and weak k-TP₁ was later proved in [1] by using strongly indiscernible trees. We aim to generalize the notions of tree properties by introducing $\bar{\nu}^{str}$ -SOP₂(Definition 3.6), and then prove that SOP₂ is equivalent to $\bar{\nu}^{str}$ -SOP₂ for any antichain tuple $\bar{\nu}$.

2. Preliminaries on Strongly Indiscernible Trees and SOP₂

Consider a tree $^{\lambda>}\kappa$ of height λ which has κ many branches. Each element in tree can be considered as a string. We denote $\langle \rangle$ as an empty string, 0^{α} as a string of α many zeros, and α as a string $\langle \alpha \rangle$ of length one.

Definition 2.1. Let $\eta, \nu, \xi \in {}^{\lambda >} \kappa$.

- (1) (Ordering) $\eta \triangleleft \nu$ if $\nu \lceil \alpha = \eta$ for some ordinal $\alpha \in \text{dom}(\nu)$.
- (2) (Meet) $\xi = \eta \wedge \nu$ if ξ is the meet of η and ν , i.e., $\xi = \eta \lceil \beta$, when $\beta = \bigcup \{\alpha \leq \operatorname{dom}(\eta) \cap \operatorname{dom}(\nu) \mid \eta \lceil \alpha = \nu \lceil \alpha \}$. For $\bar{\eta} \in {}^{\lambda >} \kappa$, $\bar{\nu}$ is the meet closure of $\bar{\eta}$ if $\bar{\nu} = \{\eta_1 \wedge \eta_2 | \eta_1, \eta_2 \in \bar{\eta}\}$
- (3) (Incomparability) $\eta \perp \nu$ if they are \leq -incomparable, i.e., $\neg(\eta \leq \nu)$ and $\neg(\nu \leq \eta)$.
- (4) (Lexicographic order) $\eta <_{lex} \nu$ if
 - (a) $\eta \triangleleft \nu$, or
 - (b) $\eta \perp \nu$ and for ordinal $\alpha = \text{dom}(\eta \wedge \nu), \, \eta(\alpha) < \nu(\alpha)$

Definition 2.2. A strong language L_0 is defined by the collection $\{ \triangleleft, \land, <_{lex} \}$

We may view the tree $^{\lambda}$ κ as an L_0 -structure.

The author was supported by Samsung Science Technology Foundation under Project Number SSTF-BA1301-03, and has been supported by an NRF of Korea grant 2018R1D1A1A02085584.

Fix a complete first order theory T (with language L). Let $\mathfrak{C} \models T$ be a monster model. From now on, we will work in this C. Note that we distinguish an index structure from \mathfrak{C} . We visit [4] to introduce generalized indiscernibility and modeling property.

Definition 2.3. Let L_0 -structure $^{\lambda} > \kappa$ be an index structure. For a tree $(b_{\eta} | \eta \in$ $^{\lambda>}\kappa$) in \mathfrak{C} , we say it is strongly indiscernible if for any finite tuple $\bar{\eta}$ and $\bar{\nu}$ in $^{\lambda>}\kappa$, $\operatorname{qftp}_{L_0}(\bar{\eta}) = \operatorname{qftp}_{L_0}(\bar{\nu}) \Rightarrow (b_n)_{n \in \bar{\eta}} \equiv (b_{\nu})_{\nu \in \bar{\nu}}.$

We say $\bar{\eta}$ and $\bar{\nu}$ are strongly similar, $\bar{\eta} \sim_{str} \bar{\nu}$, to denote $qftp_{L_0}(\bar{\eta}) = qftp_{L_0}(\bar{\nu})$.

Definition 2.4. Let \mathcal{I} be an index structure. A set $B = \{b_{\eta} \mid \eta \in \mathcal{I}\}$ is based on a set $A = \{a_{\nu} \mid \nu \in \mathcal{I}\}$ if for all $\varphi(x_{i_1}, \dots, x_{i_n})$ in L and for all $\eta_1, \dots, \eta_n \in \mathcal{I}$, there exists some $\nu_1, \dots, \nu_n \in \mathcal{I}$ such that

- (a) $\nu_1 \dots \nu_n \equiv_{\mathcal{I}}^{qf} \eta_1 \dots \eta_n$, and (b) $b_{\eta_1} \dots b_{\eta_n} \equiv_{\varphi} a_{\nu_1} \dots a_{\nu_n}$

In particular, when \mathcal{I} is L_0 -structure $^{<\lambda}\kappa$, we say B is strongly based on A whenever B is based on A.

Definition 2.5. For an index structure \mathcal{I} , we say \mathcal{I} -indexed indiscernibles have the modeling property if given any $A = \{a_{\nu} | \nu \in \mathcal{I}\}$, there is and \mathcal{I} -indexed indiscernible $B = \{b_{\eta} | \eta \in \mathcal{I}\}$ such that B is based on A.

Fact 2.6. [5] Let $^{<\omega}\omega$ be the universe of the index structure. The strong indiscernibles have the modeling property.

Note that we cannot use the above fact when the index structure is a binary tree.

Now we introduce SOP₂ and its relatives.

Definition 2.7. [2, 4, 5] Fix $k \ge 2$.

- (1) $\varphi(x;y)$ has SOP₂ is there is a $(a_{\eta} \mid \eta \in {}^{\omega} > 2)$ such that
 - (a) For all $\eta \in {}^{\omega}2$, $\{\varphi(x; a_{\eta \lceil \alpha}) \mid \alpha < \omega\}$ is consistent,
 - (b) For all $\xi, \nu \in {}^{\omega} > 2$, if $\xi \perp \nu$, then $\{\varphi(x; a_{\xi}), \varphi(x; a_{\nu})\}$ is inconsistent.
- (2) $\varphi(x;y)$ has the tree property of the first kind (TP₁) if there is $(a_{\eta} \mid \eta \in {}^{\omega})$ such that
 - (a) For all $\eta \in {}^{\omega}\omega$, $\{\varphi(x; a_{\nu \lceil \alpha}) | \alpha < \omega\}$ is consistent,
 - (b) For all $\eta \perp \nu \in {}^{\omega} > \omega$, $\{\varphi(x; a_{\eta}), \varphi(x; a_{\nu})\}$ is inconsistent.
- (3) $\varphi(x;y)$ has weak k-TP $_1$ if there is $(a_{\eta} \mid \eta \in {}^{\omega >}\omega)$ such that
 - (a) For all $\eta \in {}^{\omega}\omega$, $\{\varphi(x; a_{\nu \lceil \alpha}) | \alpha < \omega\}$ is consistent,
 - (b) For any $\eta, \eta_0, \dots, \eta_{k-1} \in {}^{\omega} > \omega$ and $i_0 < \dots < i_{k-1} < \omega$, if $\eta \cap \langle i_l \rangle \leq \eta_i$ for each l < k, then $\{\varphi(x; a_{\eta_i}) | i < k\}$ is inconsistent.
- (4) We say T has SOP_2 (resp. TP_1) if there is a formula having SOP_2 (resp. TP_1). If not, we say T is NSOP₂ (resp. NTP₁). We say T has weak-TP₁ if there is a formula having k-TP₁ for some k. If not, we say T is weak-NTP₁.

In [1], we see that all the notions in Definition 2.7 for theories are equivalent.

By modeling property, any formula having TP_1 or weak k- TP_1 , we have a strongly indiscernible tree $(a_n)_{n\in <\omega_2}$ that has the same conditions. On the other hand, we cannot use the modeling property on SOP₂, though there is some trick to obtain strongly indiscernible binary tree. See [1, lemma 4.3 (3)] for more details.

3. Main result

We first modify [2, lemma 2.20] to an argument about ω -branched trees.

Lemma 3.1. Suppose κ is a regular cardinal and we color $\kappa > \omega$ by $\theta < \kappa$ colors. Let c be the given coloring.

- (1) There is ν^* in $\kappa > \omega$ and $j < \theta$ such that for any $\nu \geq \nu^*$ we can find $\rho \geq \nu$ the color of which is j.
 - (2) There is an embedding $h: {}^{\omega>}\omega \to {}^{\kappa>}\omega$ such that
 - $h(\eta)^{\frown}\langle i\rangle \leq h(\eta^{\frown}\langle i\rangle)$ for each $i < \omega$
 - Ran(h) is monochromatic.

Proof. (1) Suppose not. Then for $i < \theta$, we inductively choose $\eta_i \in {}^{\kappa >} \omega$ such that

- if i < j, then $\eta_i \leq \eta_j$, and
- for $\rho \in {}^{\kappa >} \omega$, if $\eta_{i+1} \leq \rho$, then $c(\rho) \neq i$.

Let $\nu = \bigcup_{i < \theta} \eta_i$. Since $\theta < \text{cf}(\kappa)$, $\nu \in {}^{\kappa >} \omega$. But this contradicts that $c(\nu)$ has no color.

(2) Use (1).
$$\Box$$

Before the propositions, we give a useful notation.

For each $\eta \in {}^{\omega_1} > 2$, $m < \omega$, $\alpha \le \omega_1$, we say $K_{\eta,m,\alpha}$ to denote the set $\{\eta ^\frown \nu ^\frown 0^\beta : \nu \in {}^m 2, \beta < \alpha\}$, and O_η to denote the set $\{\eta ^\frown 0^\beta : \beta < \omega_1\}$.

Proposition 3.2. The following are equivalent.

- (1) T is $NSOP_2$.
- (2) For all $\phi(x,y)$ and strongly indiscernible tree $(a_{\eta}: \eta \in {}^{\omega_1} > 2)$, if $\{\phi(x,a_{\nu}): \nu \in O_{\langle \rangle}\}$ is consistent, then for each $\eta \in {}^{\omega_1} > 2$ and $m < \omega$, $\{\phi(x,a_{\nu}): \nu \in K_{\eta,m,\omega_1}\}$ is consistent.

Proof. (Sketch)

- $(1 \Leftarrow 2)$ Suppose ϕ has SOP₂. By [1, lemma 4.3 (3)], we may assume there is a strongly indiscernible tree $(a_{\eta} : \eta \in {}^{\omega >} 2)$ witnessing SOP₂. Use compactness to obtain a tree where (2) does not hold.
- $(1 \Rightarrow 2)$ Suppose not. Fix ϕ and $(a_{\eta} : \eta \in {}^{\omega_1} > 2)$. We inductively choose a finite subset $w_{\eta} \subseteq {}^{\omega_1} > 2$ and $\nu_{\eta} \in {}^{\omega_1} > 2$ for each $\eta \in {}^{\omega_1} > 2$ so that the following conditions holds after the construction;
- (a) for each i=0,1, the union of $\{\phi(x,a_{\nu}): \nu \in \bigcup \{w_{\eta \lceil \alpha}: \alpha \leq \operatorname{len}(\eta)\}\}$ and $\{\phi(x,a_{\nu}): \nu \in O_{\nu_{\eta}}\}$ is consistent,
- (b) the union of $\{\phi(x, a_{\nu}) : \nu \in \bigcup \{w_{\eta \lceil \alpha} : \alpha \leq \operatorname{len}(\eta)\}\}$ and $\{\phi(x, a_{\nu}) : \nu \in w_{\eta \frown 0} \cup w_{\eta \frown 1}\}$ is inconsistent.

Set $w_{\langle\rangle}=\varnothing$ and $\nu_{\langle\rangle}=\langle\rangle$. At limit case, $w_{\eta}=\varnothing$ and $\nu_{\eta}=\bigcup_{\xi\triangleleft\eta}\nu_{\xi}$.

Assume $w_{\eta\lceil\alpha}$, $\nu_{\eta\lceil\alpha}$ is chosen for all $\alpha \leq \text{len}(\eta)$. Let $p_{\eta} = \{\phi(x, a_{\nu}) : \nu \in \bigcup \{w_{\eta\lceil\alpha} : \alpha \leq \text{len}(\eta)\}\}$. We take the least $m_{\eta} < \omega$ where $p_{\eta} \cup \{\phi(x, a_{\nu}) : \nu \in K_{\nu_{\eta}, m_{\eta}, \omega_{1}}\}$ is inconsistent.

By minimiality of m_{η} and strong indiscernibility, $p_{\eta} \cup \{\phi(x, a_{\nu}) : \nu \in K_{\nu_{\eta} i, m_{\eta} - 1, \omega_{1}}\}$ is consistent for i = 0, 1.

By compactness and strong indiscernibility, we have $l_{\eta} < \omega$ such that $p_{\eta} \cup \{\phi(x, a_{\nu}) : \nu \in K_{\nu_{\eta}, m_{\eta}, l_{\eta}}\}$ is inconsistent.

Take $w_{\eta \frown i} = K_{\nu_{\eta} \frown i, m_{\eta} - 1, l_{\eta}}$ and $\nu_{\eta \frown i} = \nu_{\eta} \frown i \frown 0^{m_{\eta} - 1} \frown 0^{l_{\eta} + 1}$ for i = 0, 1.

Having done the construction, we choose a finite subset $q_{\eta} \subseteq p_{\eta}$ for each η such that $q_{\eta} \cup \{\phi(x, a_{\nu}) : \nu \in w_{\eta \frown 0} \cup w_{\eta \frown 1}\}$ is inconsistent.

Let $\tau_{\eta} = \{a_{\nu} : \phi(x, a_{\nu}) \in q_{\eta}\}$. We may assume τ_{η} is a finite collection of $K_{\nu, m, \alpha}$ s. Considering τ_{η} as a tuple, the number of \sim_{str} -equivalent classes in $\{\bar{\tau}_{\eta} : \eta \in {}^{\kappa >} 2\}$ and $\{\bar{w}_{\eta} \sim_i : \eta \in {}^{\kappa >} 2, i = 0, 1\}$ are both countable.

By [2, lemma 2.20], we have an embedding $h: {}^{\omega>}2 \to {}^{\kappa>}2$ whose range is monochromatic.

Define a formula $\psi(x,y)$ and a tree $(b_{\eta}: \eta \in {}^{\omega}>2)$ such that $\psi(x,b_{\eta}) = \bigwedge q_{h(\langle \rangle)} \land \bigwedge \{\phi(x,a_{\nu}): \nu \in w_{h(0} \cap {}_{\eta})\}$. Then $\psi(x,y)$ and $(b_{\eta}: \eta \in {}^{\omega}>2)$ witness SOP₂.

We analogously give another proposition about weak- TP_1 .

For each $\eta \in {}^{\omega_1}{}^{>}\omega$, $k \leq \omega$, $m < \omega$, $\alpha \leq \omega_1$, we say $K_{\eta,k,m,\alpha}$ to denote the set $\{\eta {}^{\frown}\nu {}^{\frown}0^{\beta} : \nu \in {}^{m}k, \beta < \alpha\}$, and O_{η} to denote the set $\{\eta {}^{\frown}0^{\beta} : \beta < \omega_1\}$.

Proposition 3.3. The following are equivalent.

- (1) T does not have weak- TP_1 .
- (2) For all $\phi(x,y)$ and strongly indiscernible tree $(a_{\eta}: \eta \in {}^{\omega_1}{}^{>}\omega)$, if $\{\phi(x,a_{\nu}): \nu \in O_{\langle \rangle}\}$ is consistent, then for each $\eta \in {}^{\omega_1}{}^{>}\omega$ and $m < \omega$, $\{\phi(x,a_{\nu}): \nu \in K_{\eta,m,\omega_1}\}$ is consistent.

Proof. (Sketch)

- $(1 \Leftarrow 2)$ Use modeling property and compactness.
- $(1 \Rightarrow 2)$ Suppose not. Fix $\phi(x,y)$ and $(a_{\eta} : \eta \in {}^{\omega_1}{}^{>}\omega)$. We inductively choose a finite subset $w_{\eta} \subseteq {}^{\omega_1}{}^{>}\omega$ and $\nu_{\eta} \in {}^{\omega_1}{}^{>}\omega$ for each $\eta \in {}^{\omega_1}{}^{>}\omega$ so that the following conditions holds after the construction;
- (a) the union of $\{\phi(x, a_{\nu}) : \nu \in \bigcup \{w_{\eta \lceil \alpha} : \alpha \leq \text{len}(\eta)\}\}\$ and $\{\phi(x, a_{\nu}) : \nu \in O_{\nu_{\eta}}\}\$ is consistent,
- (b) the union of $\{\phi(x, a_{\nu}) : \nu \in \bigcup \{w_{\eta \lceil \alpha} : \alpha \leq \operatorname{len}(\eta)\}\}$ and $\{\phi(x, a_{\nu}) : \nu \in \bigcup_{i < k} w_{\eta \cap i}\}$ is inconsistent.

Set $w_{\langle\rangle} = \emptyset$ and $\nu_{\langle\rangle} = \langle\rangle$. At limit case, $w_{\eta} = \emptyset$ and $\nu_{\eta} = \bigcup_{\xi \leq \eta} \nu_{\xi}$.

Assume $w_{\eta\lceil\alpha}$, $\nu_{\eta\lceil\alpha}$ is chosen for all $\alpha \leq \text{len}(\eta)$. Let $p_{\eta} = \{\phi(x, a_{\nu}) : \nu \in \bigcup \{w_{\eta\lceil\alpha} : \alpha \leq \text{len}(\eta)\}\}$. We take the least $m_{\eta} < \omega$ where $p_{\eta} \cup \{\phi(x, a_{\nu}) : \nu \in K_{\nu_{\eta}, \omega, m_{\eta}, \omega_{1}}\}$ is inconsistent.

By minimiality of m_{η} and strong indiscernibility, $p_{\eta} \cup \{\phi(x, a_{\nu}) : \nu \in K_{\nu_{\eta} i, \omega, m_{\eta} - 1, \omega_{1}}\}$ is consistent for any $i < \omega$.

To argue inconsistency, we need an observation on strongly indiscernible trees.

Observation 3.4. Let $(a_{\eta}: \eta \in {}^{\omega_1}{}^{>}\omega)$ be strongly indiscernible. If $\{\phi(x, a_{\nu}): \nu \in K_{\eta, \omega, m, \omega_1}\}$ is inconsistent for some $m < \omega$ and $\eta \in {}^{\omega_1}{}^{>}\omega$, then there is some $k, l < \omega$ such that $\{\phi(x, a_{\nu}): \nu \in K_{\eta, k, m, l}\}$ is inconsistent.

By the above observation, we have $k_{\eta}, l_{\eta} < \omega$ such that $p_{\eta} \cup \{\phi(x, a_{\nu}) : \nu \in K_{\eta, k_{\eta}, m_{\eta}, l_{\eta}}\}$ is inconsistent. Take $w_{\eta \cap i} = K_{\eta \cap i, k_{\eta}, m_{\eta} - 1, l_{\eta}}$ and $\nu_{\eta \cap i} = \nu_{\eta} \cap i \cap 0^{m_{\eta} - 1} \cap 0^{l_{\eta} + 1}$ for $i < \omega$. Note that for any $i_{0} < \cdots < i_{k_{\eta} - 1} < \omega, p_{\eta} \cup \bigcup_{j < k_{\eta}} \{\phi(x, a_{\nu}) : \nu \in w_{\eta \cap i_{j}}\}$ is inconsistent by strong indiscernibility.

Having done the construction, we choose a finite subset $q_{\eta} \subseteq p_{\eta}$ for each η such that $q_{\eta} \cup \bigcup_{j < k_{\eta}} \{\phi(x, a_{\nu}) : \nu \in w_{\eta \frown j}\}$ is inconsistent.

Let $\tau_{\eta} = \{a_{\nu} : \phi(x, a_{\nu}) \in q_{\eta}\}$. By observation again, we may assume τ_{η} is a finite collection of $K_{\nu,k,m,l}$ s. Considering τ_{η} as a tuple, the number of \sim_{str} -equivalent classes of $\{\bar{\tau}_{\eta} : \eta \in {}^{\kappa>}\omega\}$ and $\{\bar{w}_{\eta} \sim_i : \eta \in {}^{\kappa>}\omega, i < \omega\}$ are both countable. By lemma 3.1, we have an embedding $h : {}^{\omega>}\omega \to {}^{\omega_1>}\omega$ whose range is monochromatic.

Define a formula $\psi(x,y)$ and a tree $(b_{\eta}: \eta \in {}^{\omega}{}^{\omega})$ such that $\psi(x,b_{\eta}) = \bigwedge q_{h(\langle \rangle)} \land \bigwedge \{\phi(x,a_{\nu}): \nu \in w_{h(0} \cap \eta)\}$. Then $\psi(x,y)$ and $(b_{\eta}: \eta \in {}^{\omega}{}^{\omega})$ witness weak-TP₁. \square

Now we turn our intention to antichains.

Definition 3.5. A subset $A \subseteq {}^{\kappa >} \lambda$ is called an antichain if for all $\eta, \nu \in A, \eta \perp \nu$.

Definition 3.6. (1) Let A be a set of tuples in ${}^{\omega}>2$. We say ϕ has A^{str} -SOP₂ if there is $(a_{\eta}: \eta \in {}^{\omega}>2)$ such that

- (a) for all $\eta \in {}^{\omega}2$, $\{\phi(x, a_{\eta \lceil m}) : m < \omega\}$ is consistent, and
- (b) for all $\bar{\nu} \in {}^{\omega>}2$, if $\bar{\nu} \sim_{str} \bar{\xi}$ for some $\bar{\xi} \in A$, then $\{\phi(x, a_{\nu}) : \nu \in \bar{\nu}\}$ is inconsistent.
- (2) Let A be a set of tuples in ${}^{\omega}>\omega$. We say ϕ has A^{str} -TP₁ if there is $(a_{\eta}: \eta \in {}^{\omega}>\omega)$ such that

- (a) for all $\eta \in {}^{\omega}\omega$, $\{\phi(x, a_{\eta \lceil m}) : m < \omega\}$ is consistent, and
- (b) for all $\bar{\nu} \in {}^{\omega}{}^{>}\omega$, if $\bar{\nu} \sim_{str} \bar{\xi}$ for some $\bar{\xi} \in A$, then $\{\phi(x, a_{\nu}) : \nu \in \bar{\nu}\}$ is inconsistent.
- (3) We say T has A^{str} -SOP₂ (resp. A^{str} -TP₁) if it has a A^{str} -SOP₂ (resp. A^{str} -TP₁) formula. If $A = \{\bar{\nu}\}$, then we say ϕ (or T) has $\bar{\nu}^{str}$ -SOP₂ (resp. $\bar{\nu}^{str}$ -TP₁).

Remark 3.7. (1) ϕ has SOP₂ if and only if ϕ has $\langle \langle 0 \rangle, \langle 1 \rangle \rangle^{str}$ -SOP₂.

- (2) ϕ has TP₁ if and only if ϕ has $\langle \langle 0 \rangle, \langle 1 \rangle \rangle^{str}$ -TP₁.
- (3) ϕ has weak k-TP₁ if and only if ϕ has $\langle \langle 0 \rangle, \dots, \langle k-1 \rangle \rangle^{str}$ -TP₁.

Theorem 3.8. Let $1 < k < \omega$ be given.

- (1) Let $\bar{\nu} \in {}^{\omega}{}^{>}\omega$ be any antichain of size k. Then T has TP_1 if and only if T has $\bar{\nu}^{str}$ - TP_1 .
- (2) Let $\bar{\nu} \in {}^{\omega}>2$ be any antichain of size k. Then T has SOP_2 if and only if T has $\bar{\nu}^{str}$ - SOP_2 .

Proof. (1) Suppose ϕ has TP₁. Since any antichain tuple contains \leq -incomparable pairs, ϕ has $\bar{\nu}^{str}$ -TP₁ for any antichain $\bar{\nu}$.

The converse is clear by proposition 3.3, and that T has TP_1 if and only if T has weak- TP_1 .

(2) Note that T has SOP_2 if and only if T has TP_1 . Then by (1), T has $\bar{\nu}^{str}$ - TP_1 . Let $(a_{\eta}: \eta \in {}^{\omega}{}^{>}\omega)$ be the witness of $\bar{\nu}^{str}$ - TP_1 -ness. Then ϕ with the subtree $(a_{\eta}: \eta \in {}^{\omega}{}^{>}2)$ satisfies $\bar{\nu}^{str}$ - SOP_2 .

The converse is clear by proposition 3.2.

References

- [1] Artem Chenikov, Nicholas Ramsey, On model-theoretic tree properties, Journal of Mathematical Logic, 16 (2), (2016).
- [2] Mirna Dzamonja, Saharon Shelah, On ⊲*-maximality Annals of Pure and Applied Logic 125 (2004), 119-158.
- [3] Byunghan Kim and Hyeung-Joon Kim, *Notions around tree property 1*, Annals of Pure and Applied Logic **162** (9), 698-709, (2011).
- [4] Byunghan Kim, Hyeung-Joon Kim, Lynn Scow, Tree indiscernibilities, revisited, Archive for Math. Logic, 53 (2014), 211-232
- [5] Kota Takeuchi, Akito Tsuboi, On the Existence of Indiscernible Trees, Annals of Pure and Applied Logic 163 (12), 1891-1902, (2012).

DEPARTMENT OF MATHEMATICS YONSEI UNIVERSITY 50 YONSEI-RO SEODAEMUN-GU, SEOUL 03722, SOUTH KOREA

 $Email\ address: {\tt jinu1229@yonsei.ac.kr}$