Proof of the Mordell-Lang Conjecture for function fields: 20 years later

Masanori Itai
Department of Mathematical Sciences, Tokai University

Abstract

Hrushovski's celebrated Theorem 1.1 in [H96] proved the function field Mordell-Lang conjecture. In his proof highly sophisticated model theoretic arguments of Zariski geometry played crucial roles. As a continuous effort of removing Zariski geometry arguments, the authors of [BBPa], [BBPb], [BBPc] succeeded recently to prove Hrushovski's theorem by reducing to the function field Manin-Mumford conjecture without the dichotomy theorem of Zariski geometry. I report here outline of their arguments.

1 Hrushovski's Theorem

We start with a few definitions.

Definition 1. (1) A group Γ is p'-finitely generated

- if ch = 0 and $\mathbb{Q} \otimes \Gamma$ is finitely generated as a \mathbb{Q} -module,
- if ch > 0 and $Q_p \otimes \Gamma$ is finitely generated as a Q_p -module where $Q_p = \{m/n \in \mathbb{Q} : n \text{ prime to } p\}$. (This condition is valid for finitely generated Abelian groups, and for prime-to-p-torsion groups.)
- (2) A semi-Abelian variety is an extension of an Abelian variety by an algebraic torus.

Hrushovski's Theorem 1.1 in [H96] is the following statement. Suppose K/k is a field extension and k is an algebraically closed field. Assume:

- S is a semi-Abelian variety defined over K,
- X is a subvariety of S.
- Γ is a p'-finitely generated subgroup of S.

Assume further $X \cap \Gamma$ is Zariski dense in X.

Then there exists

- S_0 a semi-Abelian variety defined over k,
- X_0 a subvariety of S_0 defined over k, and
- a rational homomorphism h from a group subvariety of S into S_0 , such that X is a translate of $h^{-1}(X_0)$.

2 Proof without Zariski geometries

In the introduction of [BBPb], the authors explain the motivation of proving Model-Lang conjecture for function fields without appealing Zariski geometries;

 \cdots . But in the positive characteristic case, type-definable Zariski geometries are the relevant objects. The needed dichotomy in this case is a combination of a complicated axiomatic account of a field construction in [17] 1 , together with arguments in [15] 2 showing that the axioms are satisfied for the particular minimal types in separably closed fields that we are interested in.

. . .

In both cases, the dichotomy theorem is difficult and its proof impenetrable for non model theory experts (as well as for many model-theorists). ...

2.1 fML and fMM

Here we state four conjectures; function field Mordel-Lang conjectures in characteristic zero and positive characteristic, and similarly function field Manin-Mamford conjecture.

2.1.1 Function field Mordell-Lang in ch = 0

Let $K = \mathbb{C}(t)^{\text{alg}}$. Let A be an abelian variety over K with \mathbb{C} -trace 0, i.e, with no nonzero homomorphic images defined over \mathbb{C} .

Assume:

- X: an irreducible subvariety of A (defined over K),
- Γ : a "finite-rank" subgroup of A(K), i.e., Γ is contained in the division points of a finitely generated subgroup of A(K).
- Suppose $X \cap \Gamma$ is Zariski-dense in X.

 $^{^{1}\}mathrm{E.}$ Hrushovski, B. Zilber, Zariski Geometries, J. AMS, 1996 $^{2}[\mathrm{Hr}96]$

Then X is a translate of an abelian subvariety of A.

2.1.2 Function field Manin-Mumford in ch = 0

Let $K = \mathbb{C}(t)^{\text{alg}}$. Let A be an abelian variety over K with \mathbb{C} -trace 0, i.e, with no nonzero homomorphic images defined over \mathbb{C} .

Assume:

- X: an irreducible subvariety of A (defined over K),
- $\Gamma \subseteq \operatorname{Tor}(A)$
- Suppose $X \cap \Gamma$ is Zariski-dense in X.

Then X is a translate of an abelian subvariety of A.

2.1.3 Function field Mordell-Lang in ch p > 0.

Let $K=(\mathbb{F}_p^{\mathrm{alg}}(t))^{\mathrm{sep}}$, the separable closure of $\mathbb{F}_p^{\mathrm{alg}}(t)$. Let A be an abelian variety over K with $\mathbb{F}_p^{\mathrm{alg}}$ -trace 0.

Assume:

- X: an irreducible subvariety of A, defined over K,
- Γ : a subgroup of A(K) contained in the prime-to-p-division points of a finitely generated subgroup.
- Suppose that $X \cap \Gamma$ is Zariski-dense in X.

Then X is a translate of an abelian subvariety of A.

2.1.4 Function field Manin-Mumford in ch p > 0.

Let $K=(\mathbb{F}_p^{\mathrm{alg}}(t))^{\mathrm{sep}}$, the separable closure of $\mathbb{F}_p^{\mathrm{alg}}(t)$. Let A be an abelian variety over K with $\mathbb{F}_p^{\mathrm{alg}}$ -trace 0.

Assume:

- X: an irreducible subvariety of A, defined over K,
- $\Gamma \subseteq \operatorname{Tor}(A)$
- Suppose that $X \cap \Gamma$ is Zariski-dense in X.

Then X is a translate of an abelian subvariety of A.

2.2 Strategy

In [BBPa], [BBPb], the authors reduce first the proof of Theorem 1.1 [H96] to fML then secondly the proof of fML to the proof of fMM by model theoretic aruguments without the dichotomy theorem of Zariski geometry.

Hrushovski's Theorem 1.1 in [H96] \uparrow_2 function field Mordell-Lang conjecture (fML)

 \uparrow_1

function field Manin-Mumford conjecture (fMM)

Finaly note that fMM has been proved without model theory, by Pink, Corpit, Rössler [PR], [R1, R2].

2.3 Embed the algebraic-geometric set-up in a differential algebraic one.

The function field Mordell-Lang conjecture is an algebraic-geometric statement. Inspired by Buium's approach [Bu] to the conjecture in charachteristic zero, Hrushovski used model theory of differentially closed fields and separably closed fields together with the dichotomy theorem of Zariski geometry to prove function field Mordell-Lang conjecture.

In [BBPb] to prove function field Mordell-Lang conjecture from function field Manin-Mumford conjecture, the authors use in addition to the basic properties of model theory of differentially closed fields and separably closed fields, and both in ch = 0 and ch > 0, they need

- the Theorem of the Kernel
- g-minimal groups of finite Morley rank.

Moreover, in ch = 0,

• Weak socle theorem.

In ch > 0,

• Quantifier elimination for $A^{\sharp} = p^{\infty}(A(\mathcal{U}))$.

2.4 Definitions

Let G be a commutative connected group of finite Morley rank, definable in some ambient stable structure M.

We say that G is generated (abstractly) by some sets X_1, \dots, X_n if $G \subset \operatorname{acl}(F \cup X_1 \cup \dots \cup X_n)$, where F is a finite set.

G is said to be almost strongly minimal, if $G \subset \operatorname{acl}(F \cup X)$, where X is a strongly minimal set and F is a finite set.

Definition 2 (SocleS(G)). The socle S(G) of G, is the greatest connected definable subgroup of G which is generated by strongly minimal definable subsets of G, i.e, contained in $\operatorname{acl}(F \cup X_1, \cup \cdots \cup X_n)$ where each X_i is a strongly minimal definable subset and F is a finite set.

Definition 3 (Stabilizer). For X a definable subset of G with Morley degree 1, define the model theoretic stabilizer of X in G,

$$Stab_G(X) := \{ g \in G : MR(X \cap (X+g)) = MR(X) \}$$

(so the stabilizer of the generic type of X over M).

Definition 4 (Rigid). H is a definable subgroup of G, defined over some B. H is rigid if, passing to a saturated model, all connected definable subgroups of H are defined over $\operatorname{acl}(B)$.

2.5 The group A^{\sharp} , Def 2.1 in [BBPb]

Let \mathcal{U} be a monster model.

(i) In ch = 0,

 A^{\sharp} denotes the "Kolchin closure of the torsion", i.e., the smallest definable (in the sense of differentially closed fields) subgroup of $A(\mathcal{U})$ which contains the torsion subgroup (A^{\sharp} is definable over K.)

$$\operatorname{Tor}(A) \subseteq A^{\sharp} \subseteq A(\mathcal{U})$$

(ii) In ch > 0, A^{\sharp} denotes $p^{\infty}(A(\mathcal{U})) = \bigcap_{n} p^{n}(A(\mathcal{U}))$ (an infinitely definable subgroup over K).

2.6 Properties of A^{\sharp} , [H96]

Here is a list of properties of A^{\sharp} , [H96].

- (i) A^{\sharp} is the smallest Zariski dense (infinitely) definable subgroup of $A(\mathcal{U})$.
- (ii) A^{\sharp} is connected (no relatively definable subgroup of finite index), and of finite *U*-rank in ch > p, and finite Morley rank in ch = 0.
- (iii) If A is a simple abelian variety, A^{\sharp} has no proper infinite type-definable subgroup.
- (iv) If A is the sum of simple A_i then A^{\sharp} is the sum of the A_i^{\sharp} .

2.7 Theorem of the Kernel

In all characteristics: K/k: both algebraically closed fields.

Theorem 5. Let A be an abelian variety over K with k-trace 0, then

$$A^{\sharp}(K) \subseteq \operatorname{Tor}(A)$$

where Tor(A) is the group of torsion points of A.

2.8 g-minimal groups

Let G be a group (with additional structure). Assume $\mathrm{RM}(G) < \infty$. commutative and connected

Definition 6. G is g-minimal if it has no proper nontrivial connected definable subgroup (equivalently, no proper infinite definable subgroup).

Theorem 7 (Wagner). Suppose that G is g-minimal. Then any infinite algebraically closed subset of G is an elementary substructure of G.

3 From fMM to fML in ch = 0

Here I explain how to prove fML from fMM in case of ch = 0.

Lemma 8 (Lemma 4.6 in [H96]). The socle S(G) is an almost direct sum of pairwise orthogonal definable groups G_i , where each G_i is almost strongly minimal.

Theorem 9 (Prop. 4.3 in Hr96, Weak socle theorem). Let G be a commutative connected group of finite Morley rank. Suppose that the socle S(G) of G is rigid. Suppose further that X is a definable subset of G of Morley degree 1 with finite $Stab_G(X)$.

Then, some translate of X is contained in S(G). ³

Fact 10. If H is a connected finite Morley rank definable subgroup of $A = A(\mathcal{U})$ containing A^{\sharp} , then the socle $S(H) = A^{\sharp}$.

We now prove fML from fMM. Assume:

- $K = \mathbb{C}(t)^{\text{alg}}$, and A is an abelian variety over K with \mathbb{C} -trace 0.
- X: an irreducible subvariety of A (defined over K),
- Γ : a "finite-rank" subgroup of A(K).
- Suppose $X \cap \Gamma$ is Zariski-dense in X.

We want to show that X is a translate of an abelian subvariety of A. Recall properties of A^{\sharp} :

- $A^{\sharp} := A^{\sharp}(\mathcal{U})$, the smallest definable subgroup of $A(\mathcal{U}) \supseteq \operatorname{Tor}(A)$.
- A^{\sharp} is definable over K, connected with finite Morley rank.
- if A is simple, A^{\sharp} is a g-minimal group.
- A/A^{\sharp} definably embeds via some μ in a vector group.
- $\mu(\Gamma)$ is contained in a finite-dimensional vector space over \mathcal{C} , the preimage of which we call H.

³up to subtracting a definable subset X' of X with RM(X') < RM(X).

• H is a definable subgroup of A, connected, $RM(H) < \infty$, containing both A^{\sharp} and Γ , and defined over K.

Claim: $A^{\sharp}(K) = A^{\sharp}(K^{\text{diff}})$

Proof: $A^{\sharp}(K) \subseteq A^{\sharp}(K^{\text{diff}})$ is clear. If $b \in A^{\sharp}(K^{\text{diff}})$ then tp(b/K) is an isolated type with respect to DCF₀. But then $tp(b/\mathcal{A}(K))$ is isolated in the structure \mathcal{A} . As

$$\mathcal{A}(K) \leq \mathcal{A},$$

we have $b \in A^{\sharp}(K)$. Hence $A^{\sharp}(K^{\text{diff}}) \subseteq A^{\sharp}(K)$.

Note that X is now defined over K^{diff} , and $X \cap A^{\sharp}(K^{\text{diff}})$ is Zariskidense in X. By the Claim, we have

$$A^{\sharp}(K^{\mathrm{diff}}) = A^{\sharp}(K)$$

(so in fact X is defined over K) so, by the Theorem of the Kernel, we have

$$A^{\sharp}(K^{\mathrm{diff}}) = \mathrm{Tor}(A),$$

hence by function field Manin-Mumford, X is a translate of an abelian subvariety of A.

4 From fMM to fML in ch > 0

In this section we prove fML from fMM in case of ch > 0.

4.1 Quntifier elimination

Key theorem is the following:

Theorem 11 (Thm 3.1 [BBPb]). Let K be a separably closed field of imperfection 1. and ch(K) > 0. Assume A is an abelin variety over K, and \mathcal{U} is a saturated elementary extension of K.

Let $A^{\sharp} = p^{\infty} A(\mathcal{U})$ and set

 $\mathcal{A}^{\sharp} := (A^{\sharp}, \text{with all relatively definable sets (parameters from } K))$

Then $\operatorname{Th}(\mathcal{A}^{\sharp})$ eliminates quantifiers as $L_{\lambda,t}$ -theory.

The proof is very long and technical. As a corollary we have;

Theorem 12 (Lemma 4.6 [BBPb]). \mathcal{A}^{\sharp} and \mathcal{A}_{i}^{\sharp} are both connected and of finite Morley rank. Each \mathcal{A}_{i}^{\sharp} is g-minimal. Moreover we have $\mathcal{A}(K) \preceq \mathcal{A}$.

4.2 From fMM to fML

Now we show that fML holds from fMM.

Let $K = (\mathbb{F}_p^{\text{alg}}(t))^{\text{sep}}$ be the separable closure of $\mathbb{F}_p^{\text{alg}}(t)$. Let A be a $\mathbb{F}_p^{\text{alg}}$ -trace zero abelian variety over K. Assume;

- X is an irreducible subvariety of A and defined over K,
- There exists a finitely generated subgroup H of A(K) such that $\Gamma \subseteq \operatorname{Tor}_{p'}(H) \subseteq A(K)$.
- $X \cap \Gamma$ is Zariski dense in X.

We want to prove that X is a translate of a commutative subvariety of A.

- Key point: -

Construct an appropriate \mathcal{E}_0 . Then replace $X \cap \Gamma$ with $X \cap \mathcal{E}_0$ which is Zariski dense in X. Then apply fMM.

Proof: Note that for each n > 0 we have $[p^n\Gamma : p^{n+1}\Gamma] < \infty$. Since $X \cap \Gamma$ is Zariski dense in X, there exists a coset D_i of $p^i\Gamma$ in Γ such that

- $i < j \Longrightarrow D_i \supseteq D_i$,
- each $X \cap D_i$ is Zarsiki dense in X.

Hence there is a descending sequence of cosets E_i of $p^iA(K)$ in A(K) with each $X \cap E_i$ is Zariski dense in X. We now work over \mathcal{U} , and set

$$E:=\bigcap_{i}E_{i}.$$

then E is a translate of A^{\sharp} , and $X \cap E$ is Zariski dense in X.

In order to apply fMM and the Theorem of the Kernel (Theorem 5), we need that $X \cap E(K)$ is Zariski dense in X inside the field K. Since the field K is not saturated we do not know whether $E(K) \neq \emptyset$.

Thus we need to consider a translate of A^{\sharp} rather than a translate of E(K). Put

$$M:=(\mathcal{A},\mathcal{E})=\quad (A^\sharp(\mathcal{U}),E(\mathcal{U}))$$
 the structure adding relations and functions definable over K

Then by Theorem 12 which is a corollary to the quantifier elimination of $\operatorname{Th}(A^{\sharp})$ we have that Morley rank of $\operatorname{Th}(M)$ is finite.

Let $M_0 \prec M$ be a prime model (atomic model) over $\mathcal{A}(K)$. Then there exists \mathcal{E}_0 such that $\mathcal{E}_0 \preceq \mathcal{E}$ and $M_0 = (\mathcal{A}(K), \mathcal{E}_0)$.

Lemma 13. $X \cap \mathcal{E}_0$ is Zariski dense in X.

Proof: By contradiction. So suppose $X \cap \mathcal{E}_0$ is not Zariski dense in X. There is a proper subvariety Z of X such that $X \cap \mathcal{E}_0 \subseteq Z \subsetneq X$. By replacing Z with the Zariski closure of $X \cap \mathcal{E}_0$, we view Z as defined over \mathcal{E}_0 . Note we have $X \cap \mathcal{E}_0 = Z \cap \mathcal{E}_0$.

Consider $Z \cap \mathcal{E}$ as a definable subset in \mathcal{E} . Then $Z \cap \mathcal{E}$ is definable over \mathcal{E}_0 .

Since $\mathcal{E}_0 \prec \mathcal{E}$, we have $X \cap \mathcal{E} = Z \cap \mathcal{E}$. This contradicts with the fact that $X \cap \mathcal{E}$ is Zariski dense in X. Therefore $X \cap \mathcal{E}_0$ must be Zariski dense in X.

Now we complete the proof as follows, Let $a \in X \cap \mathcal{E}_0$ and set $X_1 = X - \{a\}$. Then $X_1 \cap A^{\sharp}(K)$ is Zariski dense in X_1 , and X_1 is definable over K. From Theorem of the Kernel we have $A^{\sharp}(K) = \text{Tor}(A)$, and we also have that $X_1 \cap \text{Tor}(A)$ is Zariski dense in X_1 . Hence by applying fMM to $A^{\sharp}(K)$, we see that X_1 is a translate of commutative subvariety of A. It follows that X is a translate of commutative subvariety of A as well. Now we are done.

5 Final remarks

In this note I only explain briefly how to prove fML from fMM, i.e., \uparrow_1 [BBPb] in the following diagram:

Hrushovski's Theorem 1.1 in [H96]

 \Uparrow_2

function field Mordell-Lang conjecture (fML)

 \uparrow_1

function field Manin-Mumford conjecture (fMM)

Compare the assumptions on Γ in fML and fMM:

- (1) in fML (i) in ch = 0. $\Gamma \subseteq \text{Tor}(G)$ where G is a finitely generated subgroup of A(K), (ii) in ch > 0, $\Gamma \subseteq \text{Tor}_{p'}(G)$ where G is a finitely generated suggroup of A(K).
 - (2) in fMM, $\Gamma \subseteq \text{Tor}(A)$.

The condtion (2) is stronger than (1). Model theory of differentially closed fields and separably closed fields is needed to fill the gap of assumptions on Γ in fML and fMM. The authors of [BBPa, BBPb, BBPc] managed to proceed their project without appealing to the dichotomy theorem of Zariski geometry.

References

[BBPa] F. Benoist, E. Bouscaren, and A. Pillay, Semiabelian varieties over separably closed fields, maximal divisible subgroups, and exact

- sequences, Journal of the Institute of Mathematics of Jussieu 15 (2016), no. 1, 29-69
- [BBPb] F. Benoist, E. Bouscaren, and A. Pillay, On function field Mordell-Lang and Manin-Mumford, Journal of Mathematical Logic 16 (2016), no. 1.
- [BBPc] F. Benoist, E. Bouscaren, and A. Pillay, On function field Mordell-Lang: the semiabelian case and the socle theorem, arXiv:1702.02635v2 [math.AG], 2018
- [H96] E. Hrushovski, The Mordell-Lang conjecture for function fields, J. AMS, vol. 9, no. 1, 667-690, 1996
- [Bu] A. Buium, Intersection in jet spaces and a conjecture of S. Lang, Ann. of math. (2) 136(1992), 557-567
- [BM] Barry Mazur, Abelian Varieties and the Mordell-Lang Conjecture, Model Theory, Algebra, and Geometry, MSRI Pub. vol. 39, 199-227, 2000
- [PR] R. Pink and D. Rössler, On ψ -invariant subvarieties of semiabelian varieties and the Manin-Mumford conjecture, J. Algebraic Geometry 13 (2004), 771-798
- [R1] D. Röossler, Infinitely p-divisible points on abelian varieties defined over function fields of characteristic p>0, Notre Dame Journal of Formal Logic 54 (2013), no.3-4, 579-589
- [R2] D. Röossler, On the Manin-Mumford and Mordell-Lang conjectures in positive characteristic: Algebra and Number Theory 7 (2013), no. 8, 2039-2057.
- [Z15] P. Ziegler, Mordell-Lang in positive characteristic, Rend. Sem. Mat. Univ. Padova, vol. 134, 93-131, 2015
- [MK] 森脇淳,川口周,生駒英晃,モーデル-ファルティングスの定理,サイエンス社,2017

Department of Mathematical Sciences Tokai University Hiratsuka 259-1292 Japan

E-mail address: itai@tokai-u.jp