TREE-INDISCERNIBILITY IN SOP1 AND ANTICHAIN TREES #### JOONHEE KIM YONSEI UNIVERSITY ABSTRACT. We study some tree properties and related indiscernibilities. First, we show that there is a tree-indiscernibility which preserves witnesses of SOP₁. Secondly we introduce notions of antichain tree property and show that every SOP₁-NSOP₂ theory (having SOP₁ but not SOP₂) has an antichain tree by using that tree-indiscernibility. And we construct a structure witnessing SOP₁- $NSOP_2$ in the formula level, *i.e.* there is a formula having SOP_1 but any finite conjunction of it does not have SOP₂. (This work is joint work with JinHoo Ahn at Yonsei University.) #### 1. Introduction The notion of SOP₁ and SOP₂ were introduced by Džamonja and Shelah in [1]. It is known that the implication $SOP_2 \Rightarrow SOP_1$ holds but it is still unknown whether the converse is true or not. We focus on the problem of equality of SOP₁ and SOP₂, and discuss some related topics. 2. Tree indiscernibility for witnesses of SOP₁ Let us recall a notion of SOP_1 in [1]. **Definition 2.1.** Let $\varphi(x,y)$ be a formula in T. We say $\varphi(x,y)$ has 1-strong order property (SOP₁) if there is a tree $\langle a_{\eta} \rangle_{\eta \in \langle \omega_2 \rangle}$ such that - (1) For all $\eta \in {}^{\omega}2$, $\{\varphi(x, a_{\eta \lceil \alpha}) \mid \alpha < \omega\}$ is consistent, and - (2) For all $\eta, \nu \in {}^{<\omega}2$, $\{\varphi(x, a_{\eta^{\frown}\langle 1\rangle}), \varphi(x, a_{\eta^{\frown}\langle 0\rangle^{\frown}\nu})\}$ is inconsistent. We say T has SOP_1 if it has a SOP_1 formula. We say T is $NSOP_1$ if it does not have SOP_1 . In this section, we develop a tree-indiscernibility which can be applied to witnesses of SOP_1 . The outline of proof came from [1]. But the proof in [1] omits some important step. We leave sketch of proof here, explain what proof of [1] omits, and how we complement it. **Definition 2.2.** For $\bar{\eta} = \langle \eta_0, ..., \eta_n \rangle$, $\bar{\nu} = \langle \nu_0, ..., \nu_n \rangle$ $(\eta_i, \nu_i \in {}^{\omega} \geq 2 \text{ for each } i \leq n)$, we say $\bar{\eta} \approx_{\alpha} \bar{\nu}$ if they satisfies - (i) $\bar{\eta}$ and $\bar{\nu}$ are \wedge -closed, - (ii) $\eta_i \leq \eta_j$ if and only if $\nu_i \leq \nu_j$ for all $i, j \leq n$, - (iii) $\eta_i \cap d \leq \eta_j$ if and only if $\nu_i \cap d \leq \nu_j$ for all $i, j \leq n$ and $d \leq 1$. We say $\bar{\eta} \approx_{\beta} \bar{\nu}$ if they satisfy (i), (ii), (iii), and (iv) $\eta_i ^\frown \langle 1 \rangle = \eta_j$ if and only if $\nu_i ^\frown \langle 1 \rangle = \nu_j$ for all $i, j \leq n$. We say $\bar{\eta} \approx_{\gamma} \bar{\nu}$ if they satisfy (i), (ii), (iii), (iv), and - (v) $\eta_i {}^{\smallfrown} \langle 0 \rangle = \eta_j$ if and only if $\nu_i {}^{\smallfrown} \langle 0 \rangle = \nu_j$ for all $i, j \leq n$. - (vi) $\eta_i = \sigma^{\widehat{}}\langle 0 \rangle$ for some $\sigma \in {}^{\omega} > 2$ if and only if $\nu_i = \tau^{\widehat{}}\langle 0 \rangle$ for some $\tau \in {}^{\omega} > 2$, for all i < n. - (vii) $\eta_i = \sigma^{\widehat{}}\langle 1 \rangle$ for some $\sigma \in {}^{\omega} > 2$ if and only if $\nu_i = \tau^{\widehat{}}\langle 1 \rangle$ for some $\tau \in {}^{\omega} > 2$, for all i < n. We say $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$ is α -indiscernible (β , γ -indiscernible, resp.) if $\bar{\eta} \approx_{\alpha} \bar{\nu}$ ($\bar{\eta} \approx_{\beta} \bar{\nu}$, $\bar{\eta} \approx_{\gamma} \bar{\nu}$, resp.) implies $a_{\bar{\eta}} \equiv a_{\bar{\nu}}$. Recall the modeling property of α -indiscernibility in [2]. **Fact 2.3.** [2, Proposition 2.3] For any $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$, there exists $\langle b_{\eta} \rangle_{\eta \in \omega > 2}$ such that - (i) $\langle b_{\eta} \rangle_{\eta \in \omega > 2}$ is α -indiscernible, - (ii) for any finite set Δ of \mathcal{L} -formulas and \wedge -closed $\bar{\eta} = \langle \eta_0, ..., \eta_n \rangle$, there exists $\bar{\nu} \approx_{\alpha} \bar{\eta}$ such that $\bar{b}_{\bar{\eta}} \equiv_{\Delta} \bar{a}_{\bar{\nu}}$. In order to make the proof shorter we introduce some notation. **Notation 2.4.** (i) For each $\eta \in {}^{\omega} > 2$, $l(\eta)$ denotes the domain of η . - (ii) For each $\eta \in {}^{\omega >} 2$ with $l(\eta) > 0$, η^- denotes $\eta[l(\eta)-1]$ and $t(\eta)$ denotes $\eta(l(\eta)-1)$. - (iii) For $\bar{\eta} = \langle \eta_0, ..., \eta_n \rangle$, $\operatorname{cl}(\bar{\eta})$ denotes $\langle \eta_0 \wedge \eta_0, ..., \eta_0 \wedge \eta_n \rangle \cap ... \cap \langle \eta_n \wedge \eta_0, ..., \eta_n \wedge \eta_n \rangle$. - (iv) η and ν are said to be incomparable (denoted by $\eta \perp \nu$) if $\eta \not \supseteq \nu$ and $\nu \not \supseteq \eta$. Note that $\eta = \eta^- f(\eta)$ for all η with $l(\eta) > 0$. The following remarks will also be useful. **Remark 2.5.** Suppose $\langle \eta_0, ..., \eta_n \rangle \approx_{\gamma} \langle \nu_0, ..., \nu_n \rangle$. Then it follows that - (i) $\eta_i \wedge \eta_j = \eta_k$ if and only if $\nu_i \wedge \nu_j = \nu_k$ for all $i.j.k \leq n$, - (ii) $\eta_i^- \leq \eta_j^-$ if and only if $\nu_i^- \leq \nu_j^-$ for all $i, j \leq n$, - (iii) for all $i, j \leq n$, if $\eta_i \perp \eta_j$ then $\eta_i^- \wedge \eta_j^- = \eta_i \wedge \eta_j$, - (iv) $\eta_i ^\frown \langle d \rangle \trianglelefteq \eta_j^-$ if and only if $\nu_i ^\frown \langle d \rangle \trianglelefteq \nu_j^-$ for all $i,j \leq n$ and $d \leq 1$, - (v) $\eta_i^- \cap \langle d \rangle \leq \mathring{\eta}_i^-$ if and only if $\nu_i^- \cap \langle d \rangle \leq \nu_i^-$ for all $i, j \leq n$ and $d \leq 1$, **Lemma 2.6.** Suppose $\varphi(x, \bar{y})$ witnesses SOP₁. Then there exists a γ -indiscernible tree $\langle d_n \rangle_{\eta \in \omega \geq_2}$ which witnesses SOP₁ with φ . Sketch of Proof. Suppose $\varphi(x, \overline{y})$ witnesses SOP₁ with $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$. For each $\eta \in \omega > 2$, put $b_{\eta} = a_{\eta \frown \langle 0 \rangle} \cap a_{\eta \frown \langle 1 \rangle}$. By Fact 2.3, there exists an α -indiscernible $\langle c_{\eta} \rangle_{\eta \in \omega > 2}$ such that for any $\overline{\eta}$ and finite subset Δ of \mathcal{L} -formulas, $\overline{\nu} \approx_{\alpha} \overline{\eta}$ and $\overline{b}_{\overline{\nu}} \equiv_{\Delta} \overline{c}_{\overline{\eta}}$ for some $\overline{\nu}$. Note that c_{η} is of the form $c_{\eta}^{0} \cap c_{\eta}^{1}$ where $|c_{\eta}^{0}| = |c_{\eta}^{1}| = |\overline{y}|$ for each $\eta \in \omega > 2$. For each $\eta \in \omega > 2$ with $l(\eta) \geq 1$, we define d'_{η} by $$d'_{\eta} = \left\{ \begin{array}{ll} c^0_{\eta^-} & \text{if} \quad t(\eta) = 0 \\ c^1_{\eta^-} & \text{if} \quad t(\eta) = 1 \end{array} \right.$$ and put $d_{\eta} = d'_{\langle 0 \rangle {}^{\smallfrown} \eta}$ for each $\eta \in {}^{\omega >} 2$. We show that φ witnesses SOP₁ with $\langle d_{\eta} \rangle_{\eta \in {}^{\omega >} 2}$ and $\langle d_{\eta} \rangle_{\eta \in {}^{\omega >} 2}$ is γ -indiscernible. Then $\langle \varphi(x,y), \langle d_{\eta} \rangle_{\eta \in {}^{\omega >} 2} \rangle$ witnesses SOP₁. One can show this by using the fact that $\langle c_{\eta} \rangle_{\eta \in {}^{\omega >} 2}$ is based on $\langle b_{\eta} \rangle_{\eta \in {}^{\omega >} 2}$. To show that $\langle d_{\eta} \rangle_{\eta \in \omega > 2}$ is γ -indiscernible, suppose that $\langle \eta_0, ..., \eta_n \rangle \approx_{\gamma} \langle \nu_0, ..., \nu_n \rangle$. For each $i \leq n$, let $\sigma_i = \langle 0 \rangle {}^{\smallfrown} \eta_i$ and $\tau_i = \langle 0 \rangle {}^{\smallfrown} \nu_i$. By definition of $\langle d_{\eta} \rangle_{\eta \in {}^{\omega_{>}} 2}$, it is enough to show that $d'_{\sigma_0} ... d'_{\sigma_n} \equiv d'_{\tau_0} ... d'_{\tau_n}$. Clearly $\langle \sigma_0, ..., \sigma_n \rangle \approx_{\gamma} \langle \tau_0, ..., \tau_n \rangle$. It's not difficult, but after a rather laborious calculation, one can show that $$\operatorname{cl}(\langle \sigma_0^-, ..., \sigma_n^- \rangle) \approx_{\alpha} \operatorname{cl}(\langle \tau_0^-, ..., \tau_n^- \rangle).$$ By α -indiscernibility of $\langle c_{\eta} \rangle_{\eta \in {}^{\omega}>2}$, we have $\overline{c}_{\operatorname{cl}(\langle \sigma_0^-, \ldots, \sigma_n^- \rangle)} \equiv \overline{c}_{\operatorname{cl}(\langle \tau_0^-, \ldots, \tau_n^- \rangle)}$. In particular, we have $c_{\sigma_0^-} \ldots c_{\sigma_n^-} \equiv c_{\tau_0^-} \ldots c_{\tau_n^-}$. By definition of $\langle d'_{\eta} \rangle_{\eta \in {}^{\omega}>2}$, $$d'_{\sigma_0^- \, \smallfrown \, \langle 0 \rangle} d'_{\sigma_0^- \, \smallfrown \, \langle 1 \rangle} ... d'_{\sigma_n^- \, \smallfrown \, \langle 0 \rangle} d'_{\sigma_n^- \, \smallfrown \, \langle 1 \rangle} \equiv d'_{\tau_0^- \, \smallfrown \, \langle 0 \rangle} d'_{\tau_0^- \, \smallfrown \, \langle 1 \rangle} ... d'_{\tau_n^- \, \smallfrown \, \langle 0 \rangle} d'_{\tau_n^- \, \smallfrown \, \langle 1 \rangle}.$$ Note that in general, if $m_{\xi_0}...m_{\xi_k} \equiv n_{\zeta_0}...n_{\zeta_k}$ and $i_0 < ... < i_e \leq k$, then $m_{\xi_{i_0}}...m_{\xi_{i_e}} \equiv n_{\zeta_{i_0}}...n_{\zeta_{i_e}}$ Since we assume $\langle \eta_0,...,\eta_n \rangle \approx_{\gamma} \langle \nu_0,...,\nu_n \rangle$, we have $t(\sigma_i) = m_{\xi_{i_0}}...m_{\xi_{i_e}} \equiv n_{\xi_{i_0}}...n_{\xi_{i_e}}$ $t(\tau_i)$ for each $i \leq n$. Thus $$d'_{\sigma_0}...d'_{\sigma_n} \equiv d'_{\tau_0}...d'_{\tau_r}$$ $d'_{\sigma_0}...d'_{\sigma_n}\equiv d'_{\tau_0}...d'_{\tau_n}$ as desired. This shows that $\langle d_\eta \rangle_{\eta \in {}^{\omega}>2}$ is γ -indiscernible, and completes the proof. Note that even if $i_0 < ... < i_e \le k$, $j_0 < ... < j_e \le k$ and $m_{\xi_0}...m_{\xi_k} \equiv n_{\zeta_0}...n_{\zeta_k}$, it is not sure that $m_{\xi_{i_0}}...m_{\xi_{i_e}} \equiv n_{\zeta_{j_0}}...n_{\zeta_{j_e}}$. So if we want to say $d'_{\sigma_0}...d'_{\sigma_n} \equiv d'_{\tau_0}...d'_{\tau_n}$ $$d'_{\sigma_0^- \, \smallfrown \, \langle 0 \rangle} d'_{\sigma_0^- \, \smallfrown \, \langle 1 \rangle} ... d'_{\sigma_n^- \, \smallfrown \, \langle 0 \rangle} d'_{\sigma_n^- \, \smallfrown \, \langle 1 \rangle} \equiv d'_{\tau_0^- \, \smallfrown \, \langle 0 \rangle} d'_{\tau_0^- \, \smallfrown \, \langle 1 \rangle} ... d'_{\tau_n^- \, \smallfrown \, \langle 0 \rangle} d'_{\tau_n^- \, \smallfrown \, \langle 1 \rangle}$$ in the last paragraph of proof of Lemma 2.6, it must be guaranteed that $t(\sigma_i) = t(\tau_i)$ for each $i \leq n$. This is why we introduce \approx_{γ} and find a γ -indiscernible witness of SOP₁ first, not directly find β -indiscernible one as in [1]. The proof in [1] uses the similar argument in this note, tries to show directly that there exists a β indiscernible tree witnessing SOP_1 without using γ -indiscernibility. So, by the problem mentioned above, the proof ends incomplete. **Theorem 2.7.** If $\varphi(x,y)$ witnesses SOP₁, then there exists a β -indiscernible tree $\langle e_{\eta} \rangle_{\eta \in \omega > 2}$ which witnesses SOP₁ with φ . *Proof.* By Lemma 2.6, there exists a γ -indiscernible tree $\langle d_{\eta} \rangle_{\eta \in \omega > 2}$ which witnesses SOP₁ with φ . Define a map $h: {}^{\omega}>2 \to {}^{\omega}>2$ by $$h(\eta) = \begin{cases} \langle \rangle & \text{if } \eta = \langle \rangle \\ h(\eta^-) \cap \langle 01 \rangle & \text{if } t(\eta) = 0 \\ h(\eta^-) \cap \langle 1 \rangle & \text{if } t(\eta) = 1, \end{cases}$$ and put $e_{\eta} = d_{h(\eta)}$ for each $\eta \in {}^{\omega} > 2$. Then $\langle e_{\eta} \rangle_{\eta \in {}^{\omega} > 2}$ is β -indiscernible, and φ witnesses SOP_1 with $\langle e_{\eta} \rangle_{\eta \in \omega > 2}$. ## 3. Antichain tree property In this section, we introduce a notion of tree property which is called antichain tree property (ATP) and explain how to construct an antichain tree in a SOP₁-NSOP₂ theory. Simply the concept of antichain trees is opposite to the concept of SOP_2 in the following sense. Definition 3.1. (i) A subset X of $\omega > 2$ is called an antichain if it is pairwisely incomparable (i.e. for all $\eta, \nu \in X$, $\eta \not \supseteq \nu$ and $\nu \not \supseteq \eta$. We denote it $\eta \perp \nu$). - 4 - (ii) A tuple $\langle \varphi(x,y), \langle a_{\eta} \rangle_{\eta \in \omega \geq 2} \rangle$ is called an *antichain tree* if for all $X \subseteq \omega \geq 2$, $\{\varphi(x,a_{\eta}) \mid \eta \in X\}$ is consistent if and only if X is pairwisely incomparable. - (iii) We say φ has antichain tree property (ATP) if φ forms an antichain tree with some $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$, T has ATP if it has an ATP formula, and T is NATP (non-ATP) if it does not have ATP. And the definition of SOP_2 can be written as follows. Notice the difference between (ii) of Definition 3.1 above and Definition 3.2 below. **Definition 3.2.** We say $\langle \varphi(x,y), \langle a_{\eta} \rangle_{\eta \in \omega > 2} \rangle$ witnesses SOP₂ if for all $X \subseteq \omega > 2$, $\{ \varphi(x,a_{\eta}) : \eta \in X \}$ is consistent if and only if X is pairwisely 'comparable'. In this sense we can consider ATP to have the opposite nature of SOP₂. If an antichain tree $\langle \varphi, \langle a_{\eta} \rangle_{\eta \in \omega > 2} \rangle$ is given, we can find a witness of SOP₁ and a witness of TP₂ by restricting the parameter set $\langle a_{\eta} \rangle_{\eta \in \omega > 2}$ as follows. **Proposition 3.3.** If $\langle \varphi(x,y), \langle a_{\eta} \rangle_{\eta \in \omega \geq 2} \rangle$ is an antichain tree, then $\varphi(x,y)$ witnesses SOP₁. *Proof.* By companents, it is enough to show that for each $n \in \omega$, there exists $h_n: {}^{n \geq} 2 \to {}^{\omega} > 2$ such that - (i) $\{\varphi(x, b_{\eta \lceil i}) : i \leq n\}$ is consistent for all $\eta \in {}^{n}2$, - (ii) $\{\varphi(x,b_{\eta^{\frown}\langle 0\rangle^{\frown}\nu}), \varphi(x,b_{\eta^{\frown}\langle 1\rangle})\}$ is inconsistent for all $\eta,\nu\in {}^{n>}2$ with $\eta \cap \langle 0\rangle$ $\neg \nu, \eta \cap \langle 1\rangle \in {}^{n\geq}2$. where $b_{\eta} = a_{h_n(\eta)}$ for each $\eta \in {}^{n \geq 2}$. We use induction. Define $h_0 : {}^{0 \geq 2} \to {}^{\omega > 2}$ by $h_0(\langle \rangle) = \langle 1 \rangle$, $h_0(\langle 0 \rangle) = \langle 011 \rangle$, and $h_0(\langle 1 \rangle) = \langle 0 \rangle$. For $n \in \omega$, assume such h_n exists. Define $h_{n+1} : {}^{n+1 \geq 2} \to {}^{\omega > 2}$ by $$h_{n+1}(\eta) = \begin{cases} \langle 1 \rangle & \text{if } \eta = \langle \rangle \\ \langle 011 \rangle \widehat{\ \ } h_n(\nu) & \text{if } \eta = \langle 0 \rangle \widehat{\ \ } \nu \text{ for some } \nu \in {}^{n \geq 2} \\ \langle 0 \rangle \widehat{\ \ } h_n(\nu) & \text{if } \eta = \langle 1 \rangle \widehat{\ \ } \nu \text{ for some } \nu \in {}^{n \geq 2}. \end{cases}$$ It is easy to show that $\langle \varphi, \langle b_{\eta} \rangle_{\eta \in n \geq 2} \rangle$ witnesses SOP₁ for each $n \in \omega$ where $b_{\eta} = a_{h_n(\eta)}$. **Definition 3.4.** We say a formula $\varphi(x,y)$ has TP_2 if there exists an array $\langle a_{i,j} \rangle_{i,j \in \omega}$ such that $\{\varphi(x,a_{i,j_0}), \varphi(x,a_{i,j_1}\}$ is inconsistent for all $i,j_0,j_1 \in \omega$ with $j_0 \neq j_1$, and $\{\varphi(x,a_{i,f(i)})\}_{i \in \omega}$ is consistent for all $f:\omega \to \omega$. We say a theory T has TP_2 if there exists a formula having TP_2 modulo T. **Proposition 3.5.** If $\langle \varphi(x,y), \langle a_{\eta} \rangle_{\eta \in \omega \geq 2} \rangle$ is an antichain tree, then $\varphi(x,y)$ witnesses TP_2 . *Proof.* For each $n \in \omega$, choose any antichain $\{\eta_0,...,\eta_{n-1}\}$ in $\omega > 2$. Define $h_n: n \times n \to \omega > 2$ by $$h_n(i,j) = \eta_i ^{\widehat{}} \langle 0 \rangle^j$$. Then $\{\varphi(x, a_{h_n(i, f(i))})\}_{i < n}$ is consistent for all $f : n \to n$ and $\{\varphi(x, a_{h_n(i, j)})\}_{j < n}$ is 2-inconsistent for all i < n. By compactness, there exists $h : \omega \times \omega \to {}^{\omega >} 2$ such that $\langle \varphi, \langle b_{i,j} \rangle_{i,j < \omega} \rangle$ witnesses TP₂ where $b_{i,j} = a_{h(i,j)}$. Now we show Theorem 3.7 which claims that an antichain tree exists in any SOP₁-NSOP₂ theory. Before we begin the construction, we need a lemma. **Lemma 3.6.** For any $c: {}^{\omega_1}>2 \to \omega$, one can find $g: {}^{\omega_2}>2 \to {}^{\omega_1}>2$ and $i \in \omega$ such - (i) $g(\eta) \cap \langle l \rangle \leq g(\eta \cap \langle l \rangle)$ for all $\eta \in {}^{\omega >} 2$ and $l \leq 1$, - (ii) $c(g(\eta)) = i$ for all $\eta \in {}^{\omega_1} > 2$. **Theorem 3.7.** Suppose there exists $\varphi(x,y)$ which witnesses SOP₁ and there is no $n \in \omega$ such that $\bigwedge_{i=0}^n \varphi(x,y_i)$ witnesses SOP₂. Then there exists $\langle b_{\eta} \rangle_{\eta \in \omega \geq 2}$ such that $\langle \varphi(x,y), \langle b_{\eta} \rangle_{\eta \in \omega \geq 2} \rangle$ forms an antichain tree. Sketch of Proof. By Theorem 2.7 and compactness, there exists an β -indiscernible $\langle a_n \rangle_{n \in \omega_1 \geq 2}$ which witnesses SOP₁ with φ . Define a map $h: \omega \geq 2 \to \omega \geq 2$ by $$h(\eta) = \begin{cases} \langle 1 \rangle & \text{if } \eta = \langle \rangle \\ h(\eta^{-}) \cap \langle 001 \rangle & \text{if } t(\eta) = 0 \\ h(\eta^{-}) \cap \langle 011 \rangle & \text{if } t(\eta) = 1. \end{cases}$$ For each $i, k \in \omega$ and $\eta, \xi \in {}^{\omega_1} > 2$, put $$L_{i} = \{h(\nu') : l(\nu') = i\}, \quad L_{i}(\eta) = \{\eta ^{\frown} \nu : \nu \in L_{i}\}$$ $$1_{\xi} = \{\xi ^{\frown} \langle 1^{d} \rangle : d \in \omega\}, \quad 1_{\xi}(\eta) = \{\eta ^{\frown} \nu : \nu \in 1_{\xi}\}$$ $$1_{\xi}^{k} = \{\xi ^{\frown} \langle 1^{0} \rangle, \dots, \xi ^{\frown} \langle 1^{k} \rangle\}, \quad 1_{\xi}^{k}(\eta) = \{\eta ^{\frown} \nu : \nu \in 1_{\xi}^{k}\}$$ $$M_{i} = L_{i} \cup 1_{h(\langle 0^{i} \rangle)}, \quad M_{i}(\eta) = \{\eta ^{\frown} \nu : \nu \in M_{i}\}$$ $$M_{i}^{k} = L_{i} \cup 1_{h(\langle 0^{i} \rangle)}, \quad M_{i}^{k}(\eta) = \{\eta ^{\frown} \nu : \nu \in M_{i}^{k}\}$$ $$m_{i}^{k} = h(\langle 0^{i} \rangle) ^{\frown} \langle 1^{k} \rangle, \quad m_{i}^{k}(\eta) = \eta ^{\frown} m_{i}^{k}.$$ For each $X \subseteq {}^{\omega_1} > 2$, let Φ_X denote $\{\varphi(x, a_\eta) : \eta \in X\}$. Then one can show that here exists $\eta \in {}^{\omega_1} > 2$ such that $\Phi_{M_i(\eta)}$ is consistent for all $i \in \omega$. By β -indiscernibility, we may assume $\eta = \langle \rangle$. For each $\eta \in {}^{\omega} > 2$, put $b_{\eta} = a_{h(\eta)}$. Then $\langle \varphi(x, b_{\eta}) \rangle_{\eta \in \omega \geq 2}$ is an antichain tree. Corollary 3.8. If T is SOP₁ and NSOP₂, then T has ATP. The witness of ATP can be selected to be strong indiscernible. *Proof.* If a theory has SOP₁ and does not have SOP₂, then the theory has a formula which witnesses SOP₁ and any finite conjunction of the formula does not witness SOP₂. So we can apply Theorem 3.7. The theory has a witness of ATP. Furthermore, we can obtain a strong indiscernible witness of ATP by using compactness and the modeling property in [3]. As we observed in the beginning of this section, one can find witnesses of SOP₁ and TP₂ from a witness of an antichain tree by restricting the set of parameters. But we can not use the same method for finding a witness of SOP_2 . Remark 3.9. The following are true. - (i) Suppose $\langle \varphi(x,y), \langle a_{\eta} \rangle_{\eta \in \omega \geq 2} \rangle$ is an antichain tree. Then there is no h: $2 \ge 2 \to \omega > 2$ such that $\langle \varphi(x,y), \langle b_{\eta} \rangle_{\eta \in 2 \ge 2} \rangle$ satisfies the conditions of SOP₂, where $b_{\eta} = a_{h(\eta)}$ for each $\eta \in {}^{2 \geq} 2$. - (ii) Suppose $\langle \varphi(x,y), \langle a_{\eta} \rangle_{\eta \in \omega \geq 2} \rangle$ witnesses SOP₂. Then there is no $h: {}^{2 \geq 2} \rightarrow {}$ $\omega > 2$ such that $\langle \varphi(x,y), \langle b_{\eta} \rangle_{\eta \in {}^{2^{\geq}} 2} \rangle$ forms an antichain tree with height 2, where $b_{\eta} = a_{h(\eta)}$ for each $\eta \in {}^{2 \geq} 2$. *Proof.* (i) To get a contradiction, suppose there exists such h. Then $h(\langle 00 \rangle)$, $h(\langle 01 \rangle)$, $h(\langle 10 \rangle)$, and $h(\langle 11 \rangle)$ are pairwisely comparable in $\omega > 2$, so they are linearly ordered. We may assume $h(\langle 00 \rangle)$ is the smallest. Since $h(\langle 0 \rangle)$ and $h(\langle 00 \rangle)$ are incomparable, $h(\langle 0 \rangle)$ and $h(\langle 11 \rangle)$ are incomparable. Thus $\{\varphi(x, b_{\langle 0 \rangle}), \varphi(x, b_{\langle 11 \rangle})\}$ is consistent. This is a contradiction. (ii) To get a contradiction, suppose there exists such h. Then $h(\langle 00 \rangle)$, $h(\langle 10 \rangle)$, $h(\langle 10 \rangle)$, and $h(\langle 11 \rangle)$ are pairwisely comparable in $\omega > 2$, so they are linearly ordered. We may assume $h(\langle 00 \rangle)$ is the smallest. Since $h(\langle 0 \rangle)$ and $h(\langle 00 \rangle)$ are incomparable, $h(\langle 0 \rangle)$ and $h(\langle 11 \rangle)$ are incomparable. Thus $\{\varphi(x, b_{\langle 0 \rangle}), \varphi(x, b_{\langle 11 \rangle})\}$ is inconsistent. This is a contradiction. But it does not mean the existence of an antichain tree prevents the theory having a witness of SOP₂. We will see in Section 4 that there exists an example of a structure whose theory has a formula $\varphi(x,y)$ which forms an antichain tree (so it witnesses SOP₁) and $\bigwedge_{i< n} \varphi(x,y_i)$ do not witness SOP₂ for all $n \in \omega$. But our example has SOP₂. We end this section with the following remarks. They discuss the possibility of that the concept of ATP can be helpful for solving the problem of equality of SOP_1 and SOP_2 . **Remark 3.10.** If the existence of an antichain tree always implies the existence of a witness of SOP_2 , then $SOP_1 = SOP_2$ by Corollary 3.8. **Remark 3.11.** If there exists a NSOP₂ theory having an antichain tree, then $SOP_1 \supseteq SOP_2$ by Proposition 3.3. # 4. An example of antichain tree In the last section, we showed the existence of an antichain tree in SOP₁-NSOP₂ context. It is natural to ask if an antichain tree exists without classification theoretical hypothesis. We construct a structure of relational language whose theory has a formula $\varphi(x,y)$ which forms an antichain tree and $\bigwedge_{i< n} \varphi(x,y_i)$ do not witness SOP₂ for all $n \in \omega$. Note that φ also witnesses SOP₁ by Proposition 3.3. We begin the construction with language $\mathcal{L}=\{R\}$ where R is a binary relation symbol. For each $n\in\omega$, let $\alpha_n\in\omega$ be the number of all maximal antichains in $^{n>}2$, and β_n be the set of all maximal antichains in $^{n>}2$. We can choose a bijection from α_n to β_n for each $n\in\omega$, say μ_n . For each $n\in\omega$, let A_n and B_n be finite sets such that $|A_n|=\alpha_n$ and $|B_n|=|^{n>}2|$. We denote their elements by $$A_n = \{a_l^n : l < \alpha_n\}, B_n = \{b_\eta^n : \eta \in {}^{n>}2\}.$$ And let N_n be the disjoint union of A_n and B_n for each $n \in \omega$. For each $n \in \omega$, let \mathcal{C}_n be an \mathcal{L} -structure such that $\mathcal{C}_n = \langle C_n; R^{\mathcal{C}_n} \rangle$, where $R^{\mathcal{C}_n} = \{\langle a_l^n, b_\eta^n \rangle \in A_n \times B_n : \eta \in \mu_n(l) \}$. For each $n \in \omega$, let ι_n be a map from $\alpha_n \cup {}^{n \geq 2}$ to $\alpha_{n+1} \cup {}^{n+1 \geq 2}$ which maps $c \mapsto c$ for all $c \in \alpha_n \cup {}^{n \geq 2}$, and define $\iota_n^* : C_n \to C_{n+1}$ by $a_l^n \mapsto a_{\iota_n(l)}^{n+1}$ and $b_\eta^n \mapsto b_{\iota_n(\eta)}^{n+1}$. Then ι_n^* is an embedding. So we can regard \mathcal{C}_n as a substructure of \mathcal{C}_{n+1} with respect to ι_n^* . Let \mathcal{C} be $\bigcup_{n < \omega} \mathcal{C}_n$, A and B denote $\bigcup_{n < \omega} A_n$ and $\bigcup_{n < \omega} B_n$ respectively. Then we have the following observations. **Proposition 4.1.** R(x,y) forms an antichain tree in Th(C). **Proposition 4.2.** $\bigwedge_{i < n} R(x, y_i)$ does not witness SOP₂ for all $n \in \omega$. But Th(\mathcal{C}) has a witness of SOP₂. Let $\varphi(x,y) = \neg \exists w (R(w,x) \land R(w,y)) \land \exists z (x \neq z \neq y \neq x \land \exists w (R(w,x) \land R(w,z)) \land \neg \exists w (R(w,y) \land R(w,z)))$. Then φ says "y is a predecessor of x in the set of parameters." (i.e., $y \triangleleft x$) So, $\langle \varphi(x,y), \langle b_{\eta} \rangle_{\eta \in \omega > 2} \rangle$ witnesses SOP₂, where $b_{\eta} = b_{\eta}^{n}$ for some $n \in \omega$. b_{η} is well-defined by the constructions of \mathcal{C} . ### References - [1] M. Džamonja and S. Shelah, On $\unlhd^{\star}\text{-maximality},$ Annals of Pure and Applied Logic 125 (2004), 119-158. - [2] B. Kim and H. Kim, Notions around tree property 1, Annals of Pure and Applied Logic 162 (2011), 698-709. - [3] K. Takeuchi and A. Tsuboi, On the existence of indiscernible trees. Annals of Pure and Applied Logic 163 (2012), 1891-1902. Joonhee Kim, DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 03722, SOUTH KOREA $E ext{-}mail\ address: kimjoonhee@yonsei.ac.kr}$