Ideas of proving symmetry of Kim-independence Hiroaki Mukaigawara Graduate School of Pure and Applied Sciences University of Tsukuba hmukai1124@math.tsukuba.ac.jp March 13, 2020 #### 1 Introduction and Preliminaries In [1], the notion of Kim-independence was introduced, and it was shown that $NSOP_1$ -theories are characterized as those theories for which Kim-independence has the symmetric property over models. In the proof of this characterization, the authors of [1] used Erdös-Rado theorem, which is a combinatorial set theoretic result on uncountable cardinals. In this article, we try to present a new proof of this fact only using Compactness theorem and Ramsey's theorem. We give an outline of the idea of the proof. In this article, L is a language and T is a complete L-theory having an infinite model. For simplicity, we assume L is countable. We fix a big saturated model M^* of T and we work in M^* . Small subsets of M^* are denoted by A, B, C, \ldots Finite tuples in M^* are denoted by a, b, c, \ldots Variables are denoted by x, y, z, \ldots Formulas are deoted by φ, ψ, \ldots Types are denoted by p, q, r, \ldots and S(A) is the set of all complete types over A. We say a and b have the same type over A (in symbol $a \equiv_A b$) if there is a type $p \in S(A)$ for which $a, b \models p$. For any $A \subset B$ and $p \in S(B)$, $p|_A = \{\varphi(x) \in p \mid \varphi(x) : L(A)$ -formula}. Let $\operatorname{Aut}(M^*/A) = \{\sigma : M^* \to M^* \mid \sigma \text{ is an automorphism over } A\}$. A sequence $\langle a_i \mid i < \alpha \rangle$, where α is an ordinal, is called an indiscernible sequence over A, if for any strictly increasing partial function $f : \alpha \to \alpha$, there is an $\sigma \in \operatorname{Aut}(M^*/A)$ with $\sigma \supset \{(a_i, a_{f(i)}) \mid i < \alpha\}$. ## 2 Kim-independence A complete type p over the domain M^* will be called a global type. The following definitions are from [1]. **Definition 1** (A-invariant global type). We say a global type $p(x) \in S(M^*)$ is A-invariant, if $$\varphi(x,a) \in q \iff \varphi(x,b) \in q.$$ holds, for any $a, b \in M^*$ with $a \equiv_A b$ and any L-formula $\varphi(x, y)$. **Definition 2** (Morley sequence). Let q be an A-invariant global type. $\langle b_i \mid i < \omega \rangle$ will be called an A-Morley sequence (defined by q) if $b_i \models q|_{Ab_{<i}}$, for all $i < \omega$. **Remark 3.** For any set A, an A-Morley sequence is an indiscernible sequence over A. This can be shown by an induction on the length of the sequence. **Example 4** $(T = \text{Th}(\mathbb{Q}, <))$. Let q(x) be an M-invariant global type extending $\{x > a \mid a \in M\}$. - 1. Suppose that all formulas x < a with a > M belong to q. Then any decreasing sequence $a_0 > a_1 > \cdots > a_i > \cdots > M$ becomes an M-Morley sequence defined by q. - 2. Suppose that all formulas x > a with a > M belong to q. Then any increasing sequence $M < a_0 < a_1 < \cdots < a_i < \ldots$ becomes an M-Morley sequence defined by q. **Definition 5** (Kim-divide). We say that a formula $\varphi(x, b)$ Kim-divides over A if there are an A-invariant global type q and an A-Morley sequence $I = \langle b_i \mid i < \omega \rangle$ defined by q such that - 1. $b_0 = b$, - 2. $\{\varphi(x,b_i) \mid i < \omega\}$ is inconsistent. A type $p \in S(B)$ Kim-divides over A if there is a formula $\varphi(x, b) \in p$ that Kim-divides over A. **Example 6** (T=Th($\mathbb{Q}, <$)). Let M be a model of T. Let us consider the formula $a_0 < x < b_0$. - 1. Suppose that there is an element $m \in M$ with $a_0 < m < b_0$. Then the formula $a_0 < x < b_0$ does not Kim-divide over M. - 2. Suppose that $M < a_0 < b_0$. Let q(y, z) be the global type $\{a < y < z : a \in M^*\}$. Then, the formula $a_0 < x < b_0$ Kim-divides over M by this q. **Definition 7** (Kim-fork). $\varphi(x, b)$ Kim-forks over A if there are $n < \omega$ and $\psi_0(x, c), \ldots, \psi_n(x, c)$ such that - 1. $\psi_i(x,c)$: Kim-divides over A, - 2. $M^* \models \forall x \left[\varphi(x, b) \to \bigvee_{i \leq n} \psi_i(x, c) \right]$. $p \in S(B)$ Kim-forks over A if there is $\varphi(x,b) \in p$ Kim-forks over A. By definition, If $\varphi(x, a)$ Kim-divides over A, then $\varphi(x, a)$ Kim-forks over A(but not the converse). ### 3 NSOP₁ theories **Definition 8** (NSOP₁). T has SOP₁ if there exist $\varphi(x,y) \in L$ and a binary tree of tuples $(c_{\eta})_{\eta \in 2^{<\omega}}$ suth that - 1. For all $\beta \in 2^{\omega}$, $\{\varphi(x, c_{\beta \upharpoonright m}) \mid m < \omega\}$ is consistent, - 2. For all $\gamma \in 2^{<\omega}$ and $\gamma \succeq \eta^{\smallfrown}\langle 0 \rangle$, $\{\varphi(x, c_{\alpha^{\smallfrown}\langle 1 \rangle}), \varphi(x, c_{\gamma})\}$ is inconsistent. T is NSOP₁ if T does not have SOP₁. "T is NSOP₁" characterizes an L-formula and two infinite sequence of tuples. Fact 9 ([1]). Let T be a complete theory. T.F.A.E. - 1. T has SOP_1 . - 2. There are $\langle a_i b_i \mid i < \omega \rangle$ and $\varphi(x,y) \in L$ suth that - $a_i \equiv_{(ab)_{< i}} b_i \ (\forall i < \omega),$ - $\{\varphi(x, a_i) \mid i < \omega\}$ is consistent, - $\{\varphi(x, b_i) \mid i < \omega\}$ is 2-inconsistent. By Fact 9, Fact 10 ([1]). Let T be a complete theory. T.F.A.E. - 1. T is NSOP₁, - 2. For all $M \models T$, $\varphi(x,b)$ and M-invariant global type $q \supset \operatorname{tp}(b/M)$, if $\varphi(x,b)$ Kimdivides over M by q, then for all M-invariant global type r satisfies $r|_{M} = q|_{M}$, $\varphi(x,b)$ Kimdivides over M by r. By Fact 10, Fact 11 ([1], $T : NSOP_1$). If $\varphi(x, b)$ Kim-forks over M, $\varphi(x, b)$ Kim-divides over M. By Fact 11, Fact 12 $(T : NSOP_1)$. For any B and $p \in S(B)$, p Kim-divides over $M \iff p$ Kim-forks over M. **Notation.** $a \downarrow_A^K b \iff \operatorname{tp}(a/Ab)$ does not Kim-fork over A. Fact 13 ([1], $T : NSOP_1$). \downarrow^K satisfies the following conditions: 1. (Extension over models) If $a \downarrow_M^K b$, then for all c, there exists $a' \equiv_{Mb} a$ satisfies $a' \downarrow_M^K bc$. - 2. (Chain condition) If $a \downarrow_M^K b$ and M-Morley sequence $I = \langle b_i \mid i < \omega \rangle$ starts with b, there exists $a' \equiv_{Mb} a$ suth that - $a' \downarrow_M^K I$ - I: an indiscernible sequence over Ma' In [1], Kaplan and Ramsey proved Fact 14 ([1]). T.F.A.E. - 1. T is NSOP₁. - 2. Symmetry : $a \downarrow_M^K b \iff b \downarrow_M^K a$. ## 4 Ideas proving Symmetry of Kim-independence I want to prove **Theorem 15** ([1]). If T is NSOP₁, \downarrow^K satisfies symmetry over models, i.e. $a \downarrow_M^K b \Rightarrow b \downarrow_M^K a$. by only using Compactness theorem and Ramsey's theorem. We introduce the notion of finitely satisfiability of types. **Notation.** We denote $\operatorname{tp}(a/A) = \{\varphi(x) : L(A)\text{-formula}, M^* \models \varphi(a)\}.$ **Definition 16.** $p(x) \in S(A)$ is finitely satisfiable in B if for any $n < \omega$ and $\varphi_0(x), \ldots, \varphi_n(x) \in p$, there is $b \in B$ satisfies $$M^* \models \bigwedge_{i \le n} \varphi(b).$$ Let α be an ordinal. $I = \langle a_i \mid i < \alpha \rangle$ is cohheir sequence over A if for any $i < \alpha$, $\operatorname{tp}(a_i/Aa_{< i})$ is finitely satisfiable in A and I is an indiscernible sequence over A. My main idea proving Theorem 15 is using Fact 9. First, I proved **Lemma 17** $(T : \text{NSOP}_1)$. We put p(x, a) = tp(b/Ma). If $a \downarrow_M^K b$, then for all $n < \omega$, there is a sequence $(a_i a_i')_{i < n}$ satisfies the following conditions: - 1. $a_i \equiv_M a'_i \equiv_M a \ (\forall i < n),$ - 2. $a_i \equiv_{M(aa')_{>i}} a'_i \ (\forall i < n),$ - 3. $\bigcup_{i \le n} p(x, a_i)$: consistent, - 4. $(a_i')_{i < n}$: For all i < n, $\operatorname{tp}(a_i'/Ma_{< i}')$ is finitely satisfiable in M. **Proof.** We confirm only n=2. But same method is applicable for all $n<\omega$. Let κ be a sufficiently large cardinal. Since $a\downarrow_M^K b$, there is $I_0=(b_i)_{i<\kappa}$ starts with b satisfies the following conditions, - $a\downarrow_M^K I_0$, - I_0 : coheir sequence over M and Ma-indsicernible sequence. Since $a \downarrow_{M}^{K} I_0$, there is a'' and $I_1 = (c_i I_i')_{i < \kappa}$ starts with aI_0 satisfies the following conditions, - $a' \equiv_{MI_0} a$, - $a' \downarrow_M^K I_1$, - I'_1 : coheir sequence over M and Ma'-indsicernible sequence. Let $I_2 = (c_i' I_i'')_{i < \kappa}$ be an coheir sequence over M starts with $a' I_1$. Let $a_1 = c_0'$ and $a_1' = c_1'$. Since $(c_i)_{i < \kappa}$ is sufficiently long, there is $i < j < \kappa$ suth that $c_i \equiv_{Ma_1a_1'} c_j$. Let $a_0 = c_i$ and $a_0' = c_j$. **Question 18.** For all $n < \omega$, Can we take $(a_i a'_i)_{i < n}$ satisfies the following condition?: - 1. For all $m \le n$ and $(b_i b'_i)_{i < m}$ are taken by Lemma 17, $(a_i a'_i)_{i < m} \equiv_M (b_i b'_i)_{i < m}$. \implies If m < 2, $(a_i a'_i)_{i < m} \equiv_M (b_i b'_i)_{i < m}$ but the other case can't satisfy this condition. - 2. $\operatorname{tp}(a'_i/Ma'_{< i}) \subset \operatorname{tp}(a'_{i+1}/Ma'_{< i+1})$ for all i < n-1? \Longrightarrow For all $n < \omega$ and $(a_ia'_i)_{i < n}$, $\operatorname{tp}(a'_0/M) \subset \operatorname{tp}(a'_i/Ma'_{< i})$, but the other case can't satisfy this condition. We explain another idea. **Lemma 19.** Let T be a complete theory. Let $M \subset A$, where $M \models T$ and $p(x) \in S(A)$ be a type finitely satisfiable in M. Let $q(X) \in S(M)$, where X is a set of variables with $x \in X$. Suppose that $p(x) \cup q(X)$ is consistent, in other words, $p|_{M} \subset q(X)$. Then, there is a type $q^*(X) \in S(A)$ such that - 1. $q^*(X)$ is finitely satisfiable in M, and - $2. \ q^*(X) \supset p(x) \cup q(X).$ **Proof.** Let $\Pi(X) = \{\neg \theta(X) \mid \theta(X) : L(A)\text{-formula}, \theta \text{ isn't satisfiable in } M\}$ and $\Gamma(X)$ be $p(x) \cup q(X) \cup \Pi(X)$. We claim that $\Gamma(X)$ is consistent. Suppose otherwise, We can find $\varphi_p(x) \in p, \ \varphi_q(x) \in q, \ n < \omega \ \text{and} \ \psi_0(X), \ldots, \psi_n(X) \in \Pi(X) \ \text{suth that}$ $$\varphi_p(x) \wedge \varphi_q(X) \models \bigvee_{i \le n} \neg \psi_i(X).$$ But this is contradiction since $\exists X \setminus x [\varphi_p(x) \land \varphi_q(X)] \in p$ and p is finitely satisfiable in M. \Box **Proposition 20.** Let T be a NSOP₁ theory and $M \models T$. Let $r(x,y) = \operatorname{tp}(ab/M)$, where $a \downarrow_M^K b$. Then for any $n < \omega$, there is a tree $(a_\eta)_{\eta \in 2^{\leq n}}$ suth that - 1. $a_{\eta \upharpoonright m} a_{\eta} \models \gamma$, for any $\eta \in \omega^n$ and m < n; - 2. For any $i < \omega$ and $i \smallfrown \eta \in \omega^{< n}$, $I_{i \smallfrown \eta} = \langle a_{j \smallfrown i \smallfrown \eta} \mid j < \omega \rangle$ is indiscernible sequence over $M \cup \{a_{i \smallfrown \eta}\} \cup \{a_{\nu \smallfrown k \smallfrown \eta} \mid k < i, \nu \in \omega^{< n-1}\}$. - 3. $a_{0^{n-2}}, a_{0^{n-3}}, \ldots, a_1$ forms a coheir sequence over M. **Proof.** Suppose we already defined a desired tree $(a_{\eta})_{\eta \in 2^{\leq n}}$ for $n < \omega$. We rename each a_{η} to $b_{0 \cap \eta}$. By assumption, $b_{0^{n-1} \cap 1}, b_{0^{n-2} \cap 1}, \ldots, b_{0 \cap 1}$ forms a coheir sequence over M. Let $B = \{b_{0^{2} \cap \eta} \mid \eta \in \omega^{< n-1}\}$. Since the type $p(x) = \operatorname{tp}(b_{0 \cap 1}/MB)$ is finitely satisfiable in M, there is a coheir extension $p'(x) \in S(M(a_{\eta})_{\eta \in \omega^{\leq n}})$ of p. Let $q(X) = \operatorname{tp}((a_{\eta})_{\eta \in \omega^{\leq n}}/M)$, where $X = (x_{\eta})_{\eta \in \omega^{\leq n}}$ and the variable corresponds to a_{η} . By Lemma 19, there is a type $p^*(X) \in S(M(a_{\eta})_{\eta \in \omega^{\leq n}})$ which is finitely satisfiable in M and extends $p'(x_{\emptyset}) \cup q(X)$. Choose a realization $B_1 = (b_{1 \cap \eta})_{\eta \in \omega^{\leq n}}$ of p^* . Notice that $b_{1 \cap \eta}$ corresponds to x_{η} . Then we choose $B_i(i \geq 2)$ suth that B_0, B_1, B_2, \ldots forms a coheir sequence over M. Since $\operatorname{tp}(b_0/M(b_{0 \cap \eta})_{\eta})$ is does not Kim-fork over M and Fact 13, there is $r(x) \in S(M(B_i)_{i < \omega})$ satisfies $r(x) \supset \operatorname{tp}(b_0/M(b_{0 \cap \eta})_{\eta})$ and does not Kim-fork over M. we choose a realisation b_{\emptyset} of r(x). Then $(b_{\eta})_{\eta \in \omega^{\leq n+1}}$ satisfies the condition 1-3. #### References - [1] I. Kaplan, N. Ramsey, On Kim-independence, J. Eur. Math. Soc. (JEMS), 2019. Accepted, arXiv:1702.03894. - [2] K. Tent, M. Ziegler, A Course in Model Theory (Lecture Notes in Logic), Cambridge University Press, 2012. - [3] A. Chernikov, N. Ramsey, On model-theoretic tree properties, Journal of Mathematical Logic, 2016, World Scientific, arXiv:1505.00454. - [4] P. Simon, A Guide to NIP theories, in Lecture Notes in Logic, 2014, http://www.normalesup.org/~simon/NIP_lecture_notes.pdf. - [5] B. Kim, H. Kim, L. Scow, Tree indiscernibilities, revisited, Archive for Mathematical Logic, 2014, Springer, arXiv:1111.0915. - [6] L. Scow, Characterization of NIP theories by ordered graph-indiscernibles, Annals of Pure and Applied Logic, 2012, Elsevier, arXiv:1106.5153. - [7] D. Marker, Model theory: An introduction, Springer Science & Business Media, 2006. - [8] C.C. Chang, H. Keisler, *Model Theory*, Dover Publications, 2012. - [9] J. Dobrowolski, B. Kim, N. Ramsey, Independence over arbitrary sets in NSOP₁ theories, arXiv:1909.08368. - [10] A. Chernikov, Theories without the tree property of the second kind, arXiv:1204.0832. - [11] Akito Tsuboi, Lecture note, 2020. - [12] 坪井 明人著, 田中 一之編, ゲーデルと 20 世紀の論理学 2. 東京大学出版会, 2006. - [13] 坪井 明人, 授業ノート, http://www.math.tsukuba.ac.jp/~tsuboi/gra/simp(lec).dvi.