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Abstract

It is useful to express constraints for Dung’s extensions as FO-formulas
so that we can enumerate extensions with an SMT solver. We can extract
an extension with a naive SMT solver if we naively express constraints
for extensions as FO-formulas. But the definitions of some extensions
require maximality /minimality conditions that can not be expressed as
FO-formulas. On the other hand, a naive expression is readable but some-
times hard to solve with an SMT solver. Moreover, we need to improve
a naive SMT solver to enumerate extensions since an enumeration is an
iteration of an extraction.

In this paper, we propose a method to enumerate Dung’s extensions
by solving a Partial Maximal Satisfiable Subsets Enumeration problem,
which is an extension of a Maximal Satisfiable Subsets Enumeration problem[1].
In particular, we express hard constraints and soft constraints, which are
required for a Partial Maximal Satisfiable Subsets Enumeration problem,
with FO-formulas.

1 Introduction

As products have become more complicated and complex, it has become more
difficult to produce high-quality products. On the other hand, it is known that
the cause of a product defect largely depends on the quality of its specifica-
tions document. Therefore, it is very important to improve the quality of the
specification documents.

In TEEE830-1998, eight attributes for the quality of the software require-
ment specification, namely correctness, unambiguity, completeness, consistency,
ranked for importance and/or stability, verifiability, modifiability, and traceabil-
ity are introduced. Many research activities have been conducted to improve
these attributes. In our project “Development of a Tool to Resolve Inconsis-
tencies in the Specification Documents based on Mathematical Argumentation
Theory”, we are conducting a project to propose a method to support resolving
“inconsistencies” in a specification document.
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The first part of our proposal is to suggest acceptable subsets of claims in
the specification document. Since an acceptable subset of claims is consistent,
if we decided to accept an acceptable subset then it is enough to correct claims
not contained in the acceptable subset. This suggestion is based on an argu-
mentation framework, which can be a model of a given specification document,
of Mathematical Argumentation Theory.

The second part of our proposal is to extract an attack relation from a
specification document since an argumentation framework is a directed graph
whose vertex is an argument, which is a chunk of descriptions in the given
specification document, and edge relation is an attack relation. If we can extract
an attack relation that represents pairwise inconsistencies, then we can resolve
an inconsistency as a whole based on Mathematical Argumentation Theory. We
will extract an attack relation based on Mathematical Argumentation Theory
and Natural Language Processing but this is ongoing work.

In this paper, we show a first step of the first part. As an acceptable subset
of an argumentation framework can be represented as a Dung’s extension, we
propose a method to enumerate extensions. Furthermore, we express constraints
for extensions as FO-formulas so that we can enumerate extensions with an SMT
solver.

In Section 2, we introduce definitions of Satisfiability Modulo Theories.
These definitions are used to formulate a problem to enumerate extensions.
In Section 3, we define hard constraints and soft constraints for Dung’s exten-
sions as FO-formulas so that we can enumerate extensions with an SMT solver.
In Section 4, we conclude with several remarks.

2 Satisfiability Modulo Theories

In this section, we introduce definitions[2] of SMT problems that are used for
enumerating extensions. First, we define a satisfiable subset and a maximal
satisfiable subset of a set of constraints, and then extend it to a partial maximal
satisfiable subset of a set of constraints by declaring constraints to be hard
and soft. Second, we define a Partial Maximal Satisfiable Subsets Enumeration
problem (a Partial MSSEn problem) that is used for enumerating extensions
from an argumentation framework in Section 3.

Definition 1 (Satisfiability) 1. A first-order formula @ is satisfiable if there
is a model of ¢. A first-order formula ¢ is unsatisfiable if it is not satis-
fiable.

2. A set C of first-order formulas is satisfiable if there is a model of the
congunction of all the first-order formula in C, namely a model of C. A
set C of first-order formulas is unsatisfiable if it is not satisfiable.

We note that a set C' of first-order formulas is satisfiable if and only if there is
a model that satisfies all the formulas in C'.



We define a maximal satisfiable subset and a partial maximal satisfiable
subset. A maximal satisfiable subset is defined in [1], and it can be extended
to a partial maximal satisfiable subset as in [3]. The definition of a partial
maximal satisfiable subset requires hard constraints that must be satisfied and
soft constraints that should be satisfied as possible.

From now on, we use a word “constraint” instead of an FO-formula, because
a constraint can represent both an FO-formula and a propositional logic formula.

Definition 2 (Maximal Satisfiable Subset, Partial MSS) 1. Let C be
a set of constraints. A satisfiable subset S of C is a maximal satisfiable
subset (MSS) if Ve € C'\'S. SU{c} is unsatisfiable.

2. Let C be a set of constraints in which some constraints are declared to
be hard and the rest are declared to be soft. A satisfiable subset S of C
is a partial maximal satisfiable subset (Partial MSS) if S is a mazimal
satisfiable subset and includes all the hard constraints.

We define an extraction problem and an enumeration problem. We extract
the grounded extension from a given argumentation framework (A, R) since
there is unique grounded extension in (A, R). And we enumerate other exten-
sions in (A, R) since, for instance, there are possibly many preferred extensions

in (A, R).

Definition 3 (Partial MSS Enumeration Problem) Let C be a set of con-
straints in which some constraints are declared to be hard and the rest are de-
clared to be soft.

1. The Partial MSS Eztraction problem (a Partial MSSEz problem) for C is
the problem of extracting a partial MSS of C.

2. The Partial MSS Enumeration problem (a Partial MSSEn problem) for C
is the problem of enumerating partial MSS’s of C.

We can consider an extraction problem as a special case of an enumeration
problem.

3 Expressing Extensions with FO-formulas

In this section, we express extensions as FO-formulas. Then we show that we
can enumerate extensions of an argumentation framework (A, R) by solving
a Partial MSSEn problem. For instance, a preferred extension of (A, R) is a
maximal subset S of A satisfying that S is an admissible subset of A. In other
words, a preferred extension is a maximal subset in {S’ C A | S’ is admissible}.
We show that we can enumerate preferred extensions by enumerating partial
maximal satisfiable subsets of A with a hard constraint that “S is admissible”
and soft constraints that “S is maximal under the hard constraint”. Moreover,
the other extensions can be enumerated in a similar way.



In 3.1, we define hard constraints for extensions as FO-formulas. In 3.2,
we define soft constraints for extensions to enumerate extensions by solving a
Partial MSSEn problem.

3.1 Hard Constraints for Extensions

In this subsection, we define hard constraints for Dung’s extensions [4, 5] as
FO-formulas. More precisely, we define a hard constraint SE(S) (respectively
CE(S)) for a stable extension (a complete extension) so that we can enumer-
ate stable extensions (complete extensions) by enumerating subsets satisfying
SE(S) (respectively CE(S)). And we define a hard constraint PE(S) for a pre-
ferred extension so that we can enumerate preferred extensions by enumerating
maximal subsets satisfying PE(S). Finally, we define a hard constraint GE(S)
for the grounded extension so that we can enumerate (extract) the grounded
extension by enumerating the minimal subset satisfying GE(S).

We model an argument framework (A, R) as a first-order structure of a
directed graph i.e., A is a set and R is a binary relation on A.

Definition 4 (Argument Framework) An argument framework (A, R) is a
pair of a set A of arguments and a binary relation R on A. R represents an
attack relation between arguments, namely (a,b) € R (or R(a,b) holds) means
that an argument a attacks an argument b. A subset S of A attacks an argument
a if there is an argument b € S such that (b,a) € R

We model an extension S in (A4, R) as a uninterpreted unary predicate S(z).
Since a subset of A can be represented as a set {a € A | (A,R) = S(a)} for
an appropriate unary predicate S(z), we can consider an extension S as an
uninterpreted unary predicate S(x). In a first-order structure (A, R), a unary
predicate S(z) is interpreted by assigning a subset S of A to S(z) (we write
S(x)AR) = S for the assignment). A uninterpreted unary predicate S(z) is
not assigned to a specific subset of A. Thus solving a satisfiability problem to
a FO-formula with a uninterpreted unary predicate S(z) is assigning a specific

subset S to S(z)[2].

We express the definition of a conflict-free subset (a stable extension) in [4, 5]
as a FO-formula.

Definition 5 (Conflict-Free Subset, Stable Extension) A subset S of A
is conflict-free if there are no two arguments a and b such that (a,b) € R. A
subset S of A is a stable extension if it is conflict-free and, for each argument
a € A, ifa &S then there exists an argument b € S such that (b,a) € R.

By Definition 5, the definition that “a subset S is conflict-free” can be ex-
pressed as a FO-formula with a uninterpreted unary predicate S(x) ([5]):

vavy((S(z) A S(y)) — —R(z,y)) (CF(S)).



Again by Definition 5, a part of the definition that “a subset S is a stable
extension” can be expressed as a FO-formula [5]:

Va(=S(z) = Jy(S(y) A Ry, x)))
which is logically equivalent to a FO-formula in prenex normal form:
Vady(=S(x) — (S(y) A R(y,z))) (SE(S))

Moreover, we use Skolem functions[6, 7] to solve the satisfiability of a formula
in prenex normal form:

VaIye(x,y).

The above formula is equisatisfiable to the following formula with a Skolem
function f.

Vao(z, f(z))
Then the satisfiability of SE(S) is equivalent to the satisfiability of the FO-
formula SE(S, f1) with a uninterpreted unary predicate S(z) and a Skolem
function f(x) where

Va(=S(x) = (S(f1(2) A R(fi(x),x)))  (SE(S, f1))-

Then a stable extension of (A, R) is a subset S of A satisfying a hard constraint
CF(S) ASE(S, f1).

We express the definition that “an argument z is defend by a set of arguments
S” in [4, 5] as FO-formulas D(S, x) with a uninterpreted unary predicate S(z)
and a uninterpreted constant x.

Definition 6 (Defend) An argument a is defended by a set S C A (or S
defends a) if and only if for any argument b € A, if b attacks a then S attacks
b.

We say that “a is defended by S” instead of saying that “a is acceptable with
respect to S” in [4].
By Definition 6, the definition of “z is defended by S” can be defined as a
FO-formula[5]:
vy (R(y.2) = 32 (S(2) A R(z,))

which is logically equivalent to a FO-formula in prenex normal form:

Vy3z(R(y,x) — (S(2) A R(z,9)))  (D(S,2)).

We express the definition of an admissible subset in [4, 5] as a FO-formula
AS(S) with a uninterpreted unary predicate S(z). Then an admissible subset
of (A, R) is a subset S of A satisfying a [hard] constraint CF(S)AAS(S).

Definition 7 (Admissible Subset) A subset S of A is admissible if it is
conflict-free and, for each argument a € A, if a € S then a is defended by
S.



By Definition 7, a part of the definition that "a subset S is an admissible
subset” can be expressed as a first-order formula[5]:

vz (S(z) — D(S,z))
which is logically equivalent to the following FO-formula in prenex normal form:
VaVy3z[(S(z) A R(y, x)) = (S5(2) A R(z,y))]  (AS(S))

Moreover, the satisfiability of CF(S)AAS(S) is equivalent to the satisfiability
of the FO-formula CF(S)AAS(S, f2) with a uninterpreted unary predicate S(x)
and a Skolem function fy(z,y) where

vz € Avy € A[(S(z) A R(y, ) — (S(fa(x,y)) A R(f2(2,y),y))] (AS(S, f2)).

Then an admissible subset of (A, R) is a subset S of A satisfying a hard con-
straint CF(S)AAS(S, fa).

We express a part of the definition of a preferred extension in [4, 5] as a
FO-formula.

Definition 8 (Preferred Extension) A subset S of A is a preferred exten-
sion if it is a mazimal admissible subset of (A, R).

By Definition 8, a preferred extension of (4, R) is a maximal subset of A satis-
fying a hard constraint CF(S)AAS(S, f2) with a uninterpreted unary predicate
S(z) and a Skolem function fs.

We express the definition of a complete extension in [4, 5] as an FO-formula.

Definition 9 (Complete Extension) A subset S of A is a complete exten-
sion if it is an admissible subset of (A, R) and, for each argument a € A, if a is
defended by S then a € S.

By Definition 9, a part of the definition that “a subset S is a complete
extension” can be expressed as a FO-formula[5]:

Vo € A{(D(S,z)) — S(z)}
which is logically equivalent to the following FO-formula in prenex normal form:
Vo € A3y € AVz € A[{(R(y,z) = (S(z) A R(z,y))} — S(z)] (CE(S)).

Moreover, the satisfiability of AS(S, f2)ACE(S) is equivalent to the satisfiability
of the FO-formula AS(S, fo)ACE(S, f3) with a Skolem function f3(x) where

Vo € AVz € A[{(R(f3(z),x) = (5(2) A R(2, f3(x)))} = S(x)] (CE(S, f3))-

Thus a complete extension of (A, R) is a subset of A satisfying a hard constraint
AS(S, f2)ACE(S, f3) with uninterpreted unary predicate S(x) and Skolem func-
tions fy and f3.

We express a part of the definition of the grounded extension in [4, 5] as
FO-formulas.



Definition 10 (Grounded Extension) A subset S of A is the grounded ex-
tension if it is the least complete extension of (A, R).

By Definition 10, the grounded extension of (A4, R) is a minimal subset S of
A satisfying a hard constraint AS(S, f2)ACE(S, f3). Indeed the solution S for
AS(S, f2)ACE(S, f3) is unique.

3.2 Soft Constraints for Extensions

In this subsection, we define soft constraints for extensions to enumerate ex-
tensions by solving Partial MSSEn problems. We define three kinds of soft
constraints, namely soft constraints to enumerate maximal satisfiable subsets,
soft constraints to enumerate minimal satisfiable subsets and soft constraints
to enumerate satisfiable subsets. By using these three kinds of soft constraints,
we can uniformly enumerate extensions. However, the third kind is redundant,
and it is more efficient to simply solve it as a problem to enumerate subsets
satisfying hard constraints.

Let G(A, R) be the set of FO-formulas representing an argument framework
(A, R), namely an FO-formula representing an enumeration of A and the set
{R(a,b) | (a,b) € R} of FO-formulas.

3.2.1 Preferred Extensions

In general, we can extract a maximal subset S of A satisfying an FO-formula
U(S) by extracting a MSS of a hard constraint ¥(S) and soft constraints
S(a1),S(az),...,S(a,) where A = {ay,as,...,a,}. Since a preferred exten-
sion is a maximal subset S of A satisfying an FO-formula CF(S)AAS(S, f2),
we can enumerate preferred extensions by enumerating MSS’s for

e Hard Constraints: CF(S)AAS(S, f2), G(A, R) and
e Soft Constraints: S(a1),S(as2),...,S(a,) where A = {a1,as,...,a,}.

We show an example of enumerating preferred extensions whose soft con-
straints are S(a), S(b), S(c), S(d), S(e). Assume that the union of the hard con-
straints and a subset {S(a), S(d)} is a solution for the Partial MSSEn problem.
This shows that the subset {a,d}(= S) of A is a maximal subset satisfying the
hard constraint CF(S)AAS(S, f2). Thus the set {a,d} is a maximal admissible
subset, namely a preferred extension.

3.2.2 The Grounded Extension

The grounded extension is a minimal subset of A satisfying an FO-formula
AS(S, f2)ACE(S, f3). Let A be a set {a1,aq,...,a,}. Then, the grounded ex-
tension is the complement of {a;1, a2, . .., aim }(C A) such that {—=S(a;1), ~S(ai2),
ooy 8(aim), AS(S, f2)ACE(S, f3)} is a maximal satisfiable subset for hard
constraints including AS(S, f2)ACE(S, f3) and soft constraints {-S(a1), ~S(az),



..,2S(ay)}. Thus we can extract the grounded extension from (A, R) by enu-
merating MSS’s for the following constraints:

e Hard Constraints: AS(S, f2)ACE(S, f3), G(A, R) and
e Soft Constraints: —S(a1),S(az2),...,S(a,) where A = {a1,aq9,...,an}.

We note that the result of enumeration of MSS’s is unique by the definition of
the grounded extension.

We show an example of extracting the grounded extension whose soft con-
straints are —.S(a), =S(b), ~S(c), ~S(d),~S(e). Assume that the union of the
hard constraints and a subset {—S5(b), =S(c), 7S(d), ~S(e)} is a solution for the
Partial MSSEn problem. The resulting subset shows that the subset {a}(= S) of
A is a minimal subset satisfying the hard constraint AS(S, f2)ACE(S, f3). Thus
the set {a} is a minimal complete extension, namely the grounded extension.

3.2.3 Stable Extensions and Complete Extensions

Since a stable extension is a subset S of A satisfying an FO-formula CF(S) A
SE(S, f1), we can enumerate stable extensions by enumerating MSS’s of

e Hard Constraints: CF(S) A SE(S, f1), G(A, R) and

e Soft Constraints: S(aq),S(a2),...,S(ay), 2S(a1),~S(az),...,~S(an)
where A = {a1,a9,...,an}.

We can enumerate complete extensions in a similar way since a complete exten-
sion is a subset S of A satisfying an FO-formula AS(S, f2) A CE(S, f3).

We show an example of enumerating stable extensions whose soft constraints
are S(a), S(b),S(c),S(d),S(e),~S(a), ~S(b), ~S(c), ~S(d), ~S(e). Assume that
the union of all the hard constraints and a subset {S(a), =S(b), ~S(c), S(d), ~S(e)}
of the soft constraints is a solution for the Partial MSSEn problem. The result-
ing subset shows that the subset {a,d}(= S) of A is a subset satisfying the hard
constraint CF(S) A SE(S, f1). Thus the set {a,d} is a stable extension.

4 Concluding Remarks

In this paper, we propose a method to enumerate Dung’s extensions by solving
Partial MSSEn problems. In particular, we define hard constraints and soft
constraints for extensions as FO-formulas so that we can enumerate extensions
with an SMT solver.

Our future work is implementing a Partial MSSEn solver that is an extension
of a (naive) SMT solver. In [1], authors propose a method to enumerate MUS’s
based on an SMT solver. The method can also enumerate MSS’s, then we
will extend it to enumerate Partial MSS’s. Moreover, comparison with other
extension enumeration methods is necessary.

We introduce FO-formulas to express Dung’s extensions. These FO-formulas
are optimized to solve corresponding Partial MSSEn problems with an SMT



solver. In general, the expressed constraints tend to be complicated if we ex-
press constraints naively, and then we may not solve them with an SMT solver.
Depending on the application of a argumentation framework, constraints other
than those introduced in this paper may be added, so other constraints must
also be concisely expressed.
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