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1 Introduction
We consider positive solutions to semi-linear elliptic problems on a metric graph G:
—Au+u = f(u) on G, (1.1)

where € > 0 is a parameter and we assume the Neumann boundary condition or the
Dirichlet boundary condition on the ends of G.

Semi-linear elliptic problems on a domain in R™ has been studied very well. Many
authors have obtained various results about the existence and non-existence of solutions,
the multiplicity of solutions, the asymptotic behavior of solutions, and so on. Recently,
in [1-3,5,7], they studied this kind of problems on graphs. Motivated by those results, we
study the asymptotic behavior of positive solutions as ¢ — 0. In this paper, we introduce
our recent results and show part of our results. To state our setting and results, we use
following notations in graph theory.

e G =(G(V,FE) is a graph, where V is a set of vertices and E is a set of edges. We
always assume that GG is connected and the number of edges #FE is finite.

e (I is a metric graph if each edge e € F is isometric to an interval [0, ¢(e)] ([0, o) if
l(e) = 00), where {(e) € (0,00] is the length of e. We identify e with [0, ¢(e)].

A metric graph G is compact if ¢(e) < oo for each e € F.

e ¢ > v means that e is incident to v.

degv is the number of edges that are incident to v. We assume degv # 2 for any
veV.

Vit 1s the set of all vertices with degwv > 3.

e V.4 is the set of all vertices with degv = 1, thus Vi, U Vg = V.

*This is based on joint work with Kazuhiro Kurata (Tokyo Metropolitan University).
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e A loop is an edge that connects a vertex to itself.
Throughout this paper, we always assume the following assumptions:
(f1) f € C(R,R) is a locally Lipschitz odd function.
(f2) limyo f(t)/t = 0.
(f3) lim; o f(t)/t? = 0 for some g > 0.
(f4) f(t)/t is strictly increasing on (O, 00).
(f5) limy_o F(t)/t? = 0o, where F(t fo

A typical example is f(u) = |u[P~u (1 <p< oo). To formulate (1.1), we use a variational
structure. Let H'(G) be the set of every continuous function u on G with u® € H(e)
for each edge e € G, where u(®) is the restriction of u on e. Then we can check that H'(G)
is a Hilbert space with norm

il / Va2 +utdr = 3 / VuOP + (@) d

eck

where V = L. We define L?(G)-norm similarly. Let J. be a functional on H'(G) such

that ) )
€ 2 2
= = — -2 | F .
Je(u) 5 /G |Vu|* dx + P /Gu dz 6/ (u) dzx

Then J. € C'(H'(G),R). Each critical point u, of J, satisfies (1.2) as the Euler-Lagrange
equation.

ezAuge) + uge) = f(uge)) for each edge e € E,

Y oenn ' (v) =0 for each vertex v € Viy, (1.2)
' (v) =0 for each e with e = v and v € Vuq, '
u (v )—uge/)( ) if e > v and € > v,

where A = d22, and dul” (v) is the outward derivative of u{” at v. In (1.2), the second

line is the Kirchhoff law, the third line is the Neumann boundary condition, and the last
line is the continuity condition at v. Put

o= inf supJ.(tu).
u€HN(G) t>0
u#0
Then, for each ¢ > 0, there exists a positive solution u, with J.(u.) = oc. u, is called
a least energy solution. In [7], they proved that wu, is a constant solution for sufficiently
large € > 0. Our results are the asymptotic behavior of least energy solutions as ¢ — 0.

Theorem 1.1 ([6]). Assume that G is a compact metric graph with Viy, # 0 and Vinq # 0.
For each € > 0, let u. be a least energy positive solution. Then (i)—(iv) hold.

(i) For sufficiently small € > 0, u, has exactly one local maximum point x.. Moreover,
T € Vinq holds.



(ii) Let e. be the edge with e, = x.. We use identification e. = [0,{(e.)] with x. = 0.
Then,
ul®) (ex) — ®(x) as € — 0 in C2.([0,00))

holds. On G\e., u, converges to 0 uniformly as e — 0, that is, lim._q [|uc|| LG \e) =
0. Here, ® is a unique solution to

{—Acp +O=f(®), >0 onR, 13)

V(I)(O) = 0, lim|z|_>oo q’(l’) = 0.

(iii) For sufficiently small € > 0, the edge e, is longest in Eong = {e € E;e > v € Voa},
that s,
l(e.) = lpax := max ((e).

e€Fond

(iv) It holds that

2

where o is the energy of ®.

o= 4 exp (@(1 + 0(1))) as € — 0,

Remark 1.2. For the uniqueness of solutions to (1.3), see [4, Theorem 5].

Moreover, in the typical case with p > 2, we can get more precise information about
the asymptotic behavior. Let E! ; be the set of longest edges in Ee,q, that is,

E. 4 :=1{€ € Eua; l(€) = lax} -

Since G is connected, if Vi, # 0, for each e € E! ,, there exists v € Vi, such that e > v.
We denote such vertex by v(e). By Theorem 1.1, e, € E! , holds for sufficiently small
e > 0.

Theorem 1.3 ([9]). Assume that G is a compact metric graph with Viy, # 0. In addition,
we suppose f(t) = |t[P~'t for some p € (2,00). Then, same conclusions as in Theorem
1.1 hold. Moreover,

(i) For sufficiently small € > 0, degv(e.) is a smallest number of degv(e) among e €
El/

end *

(ii) It holds that
o degv(e.) — 2

Oc =~ '

2

exp (_%6(66)) (1+0(1))) as ¢ — 0,

where C,, is a positive constant depending only p.

degv(ec)

Remark 1.4. We can show similar results as Theorems 1.1 and 1.3 for (1.2) with the
Dirichlet boundary condition. In the Dirichlet case, the maximum point z. converges the
center of a edge which is a longest one in F.

In this paper, we give the outline of the proof for Theorem 1.1. The paper is organized
as follows. In Section 2, we give preliminary results. In Section 3, we consider the
asymptotic behavior of bounded energy solutions. In Section 4, we get more precise
asymptotic behavior of least energy solutions and prove Theorem 1.1.



2 Preliminaries

Hereafter, for simplicity, we assume f(t) = [{[P"' and 1 < p < co. For a metric graph G,
we define a functional I by

1 1 1 1
I(u,G) = 3 /G (Vul? +u? dz — ﬁ/g’“v’“ dr = §HuH§{1(G> — m|\uH§p+1

for u € HY(G). Let G.(V,E) be the dilation image of G(V, E) with a scale factor 1/e,
that is, each e € E and é € E represent the same edge of the graph, and the length of
é € Eis ((e)/e. For u € H(G), we denote 4 € H'(G.,) which satisfies (i) = u(z), where
Z is defined by

v ifr=veV,

rje€ée=[0,l(e)/e] ifxee=]0{(e).

T =

Then, we have
Jo(u) = I(0,G,) for u € H'(Q).

Moreover,
J!(u) = 0 if and only if I'(a,G.) = 0.

It is well-known that ® is uniquely determined and has explicit formula.
-1 —2/(p-1)
O(x) = M, <coshp 5 x) ,

where My = ((p +1)/2)V/®=Y.
Lemma 2.1. It holds that ®(x) = exp(—z(1 + o(1))) as |z| = co.

Proof. Using explicit formula, we can check it. O

Next, we recall a characterization of solutions on a interval. For this purpose, we
consider an initial value problem

—AU+U =|UP'U, U0)=a, VU(0)=0. (2.1)

By ODE theory, for any a,b € R, it has a unique solution on R. Thus, to characterize
solutions, it is sufficient to consider

~AU+U = |UPP7'U on R. (2.2)
Using the phase-plane analysis, we can check the following:

Proposition 2.2. The initial value problem (2.1) has a unique global solution on R, hence
the solution satisfies (2.2). Let U be a solution of (2.2). Then, one of the following is
satisfied.

(i) U is a constant solution, that is, U = 0,+1.
(ii) There exists d > 0 such that U is a d-periodic solution.
(i) U is a ground state, that is, there exists y € R such that U = £®(- — y).

Remark 2.3. By Proposition 2.2, up to translation, any solution of —Au + u = |u[P~u
on a open interval is the restriction of U which satisfies one of (i)—(iii) in the proposition.



3 Asymptotic behavior of bounded energy solutions.

In this section, we assume that G is a compact metric graph.

3.1 H! and L*®-boundedness

Lemma 3.1. Let (U)o be a family of critical points with bounded energy, that is,
for each ¢ > 0, 4. € HY(G.) is a critical point of I(-,G.), and the family satisfies
limsup,_, I (t., G.) < oo. Then,

(i) (tc)eso ts H'(G.)-bounded, that is, limsup,_q |G| g1,y < oo-
(i) (te)eso s L°(G)-bounded, that is, limsup,_,q ||ic|| Lo (c) < 00.
Proof. (i): Since each u, is a critical point, we have

1
I/(um Ge)ue = HuEH%Jl(Gé) - ||UEHIEJ_+1(G€) =0,

11 11 (3.1)
10,60 = (5= 557 ) Wl = (5= 557 ) Tl

which mean the claim.
(i): Let —oo < a <b < oc. If b—a > 1, by the Sobolev embedding theorem, there
exists C' > 0 which is independent of a and b such that

||| oo a,p) < O] 1 ap) for u e H'(a,b). (3.2)

We can assume 0 < € < ¢y. For small ¢y, the length of each edge é € G, is grater than
1. Thus,
[29]| poe ey < CNED i1y < Cllil| e e

holds, where C' is a constant independent of 4, é, and €. It implies the conclusion. O

3.2 Asymptotic behavior on edges

Lemma 3.2. Similarly as in Lemma 3.1, let (G, )~ be a family of solutions with bounded
energy. Let (€,)nen be a subsequence of € — 0 and fix é = [0,4(e)/e,] € G, . Suppose
that there exists a sequence (Zy,)nen Such that &, € [0,4(e)/€,], ¢ :=lim, aﬁf} () > 0.
Then, taking a subsequence if necessary, there exists y € R such that

agi)( +Z,) = (-4 y) in C]%)C(R)'

Here, if necessary, we extend a&? onto R as a solution of (2.2). Moreover, if Vﬂgi) (Z,) =0
(n eN), y=0 and c = My holds.

Proof. By Lemma 3.1, the assumption inf,cn ¢, > 0, and the regularity of solutions,
¥ are bounded with respect to C?(0,¢(e)/e,)-norm. If necessary, we extend ) onto

R as a solution of (2.2). Then, @'© are bounded with respect to C?*(R)-norm. By the
Arzela—Ascoli theorem, there exists u,, € C'(R) such that

W (4 &) = Uog in Ce(R) as n — oo,



By the regularity theorem, we have
WO (- + 2,) — oo in O (R) as n — 0.

In addition, since [|a{?(- + L) |t (2 0(e) Jen—2n) ATE bounded, for sufficiently large d, we
get Uy € H'(—00,—0) or us,, € H'(d,00). The limit u,, satisfies (2.2), and it holds
that lim, o u,(2,) = ux(0) = ¢ by the assumption. Thus, Proposition 2.2 implies
Uso = P(- + y), it means the conclusion. O

3.3 Asymptotic behavior at vertices

Hereafter, for simplicity, we use same notation for subsequences.

Lemma 3.3. Let (U)eso be a family of solutions with bounded energy. Assume that, for
a subsequence, there exists v € V' such that lim o t.(x)(v) = M > 0. Then

(i) For each é; = [0,€(e;)/e] = v (1 < i < degv), we choose its coordinate satisfying
v =0. Then, taking a subsequence if necessary,

%) — ®(- £ y) in C2.([0,00)) as e — 0
holds. Here y > 0 is uniquely determined by ®(y) = M.

(ii) In (i), the number of edges é; with lim, g 4l = O(-+y) equals the number of edges

é; with lim,_,g ') = O(- —y). In particular, if degv is odd, y = 0 and M = M,
hold.

(ili) liminf, o 0 > (degV')o/2 holds.

Proof. For each edge é;, we can apply Lemma 3.2 with &, = 0 to obtain (i). By the
Kirchhoff law at v, we have Zdeg Y Eel)(O) = 0. Let i+ be the number of edges such that
the limit of 4. on the edge is ®(- & y), respectively. As e — 0, we get

i+ Ve(y) +i-Ve(-y) =0,
hence (ii) holds. By (3.1), we have

degv
1
- p+1 (51 p+1
062<2 p—+1>H Iz Lr+1(Ge) >( p—i—1> E /|u dx.

Using Fatou’s lemma and (i), we obtain.
degv
lilcrbionfa6 > (— — m) Z/ PPtz +y)d
By (ii), if degv is even, we have
(1_ )Z/ B et y)d
2 p+1

1 1 degv o (degv)o
(- - - (I)p-i-l (I)p—H o _ \EPe Y)Y
(2 p+1> 5 </0 (:U+y)dx+/0 (x y)dw) 3




If deg v is odd,

(——m>(§/¢f’+ldag—<-—%> (deg ) </0 ¢P+1d> (deg o,

4 Asymptotic behavior of least energy solutions

Throughout this section, we assume that Vi # 0, Vinq # 0, and u, is a least energy
solution with its energy o, for € > 0.

4.1 Upper energy estimate

Lemma 4.1.

_2£max
aegg—f—exp( (1+0(1))> as e — 0
€
holds.

Proof. Choose e € Egnq such that £(e) = (.x. We may assume that é = [0, {1,a /€] and
0 € Vina. We define a test function W, by W, =0 on G, \ é and

c

L 0 < 2 < /e — 1
D(lpax/€ — 1)(lpax /€ —x) i lpax /€ — 1 < & < lay /€.

Then, we can check that W, € H'(G,) and

o < sup J(tW,) = sup I(tW¢, [0, lrnax/€])-

t>0 t>0

Moreover, there exists a global maximum point ¢, > 0. Since %7 (¢tW., [0, luax/€]) ‘t:t =0,
t. > 0 is uniquely determined by

b1 _ IWell, /)

€

Wl 7010, manf)
By the definition of W,, we have

oy 10l

6 Hq)Hp =lase—0,

P+1(0,00)
hence t, =1+ o(1). Using t., we get
O¢ < I(teWea [Oa Emax/e])
= 1(t®,[0,00)) — I(tD, [lmax/€ — 1,00)) + I(tWe, [lmax/€ — 1, lmax/€]).

First, we see
1(t®,[0,00)) < sup(t®,[0,00)) = 5

t>0



Next, for sufficiently small €, since @ is small on [{yax /€ —1, 00), we have [t.P[P™!/(p+1) <
202 /4 and

2 [
I(t®, [lmax /€ — 1,00)) > Zﬁ/ IVD[* + & dx > 0.
frmax/e—1

For sufficiently small € > 0, we obtain

t2 Crax /€ 2t2
Tt W, [bmax/€ — 1, bmax/€]) < EE/ VW > + W2 do = ?@%Emw/e —1).
Lmax/c—1

Therefore, since t, = 1+ o(1), we have
g 2
o < 5 + P (ﬁmax/ﬁ — 1).

Applying Lemma 2.1, we get the conclusion. (]

4.2 Number and position of maximum points

Lemma 4.2. If € > 0 is sufficiently small, ue has exactly one local mazrimum point x..
Moreover, it is an end vertex of G, that is, x. € Vinq.

Proof. If v € Viy, then lim, o 4.(v) = 0 holds. Indeed, if there exists a subsequence with
Ue(v) = M > 0, Lemma 3.3 (iii) contradicts Lemma 4.1.

Since the energy estimate and H'-boundedness, for sufficiently small € > 0, 4, is a non-
constant solution. Hence, 4, has a local maximum point .. Extracting a subsequence if
necessary, we may assume that there exists é = [0, £(e)/¢] € G, such that &, € é. Suppose
that 2. — oo and {(e)/e — &, — oo. Then by Lemma 3.2 and the argument in the proof
of Lemma 3.3, we have

1
liminf o, > (— - —) hmlnf/|u(e [Pt de > (— — —> / |P[Pt dz = o,
e—0 2 e—0 p+1

which contradicts Lemma 4.1. Thus, (Z¢)eso or (£(e)/e — Z¢)eso is bounded. We may
assume (Z.)eso is bounded without loss of generality. Taking a subsequence, we have
ZTe — Zo for some Ty > 0. By Lemma 3.2, we get

al® — ®(- — i) in C2 ([0, 00)).

If 0 € Vi, as mentioned above, @ (0) — 0 holds, hence ®(—2y) = 0, which is a con-
tradiction. Thus, we obtain 0 € V4. By the Neumann boundary condition, we have
®'(—1y) = 0, which implies Zy = 0. Thus,

a@ — & in C’ic([O, 0))

holds. Next, we show z. = 0 for sufficiently small ¢ > 0. Contrary, suppose that there
exists a subsequence such that Z. > 0. By the mean value theorem, there exists z. € (0, z)
such that

val(z) - val (0)

0= —
Z.—0

—Aa (&7) = (@ (2))" - (z0).



Taking a limit, since 2. — 0, we get
0=aP(0) — ®(0) = M — M.

It contradicts the definition of My, hence . = 0 € V_,q for small €.

Finally, we show the uniqueness of local maximum points. Suppose that there exist
two local maximum point z, and Z/ for small e. Then, as mentioned above, ¢, Z! € Vipq
holds. It means that there are two different edges é and €' such that z. € é and 2/ € €.
By similar arguments in Lemma 3.3, we have

1 1 . 1 1 5
liminfo, > <§ — —) lim inf /é(age))pﬂ de + <5 _ m) lim inf /é, (0 )P+ e

e—0 p+ 1 e—0 e—0
1 1 o
>2| 5 ——— / PPl dy = o,
2 p+1) )y
which contradicts the energy estimate. O

4.3 Lower energy estimate

To get precise lower energy estimate, we calculate

o(0,L):= inf supl(u,(0,L)).
uGH;(O,L) >0
u#0

Lemma 4.3. For o > 0, there exists a constant C' > 0 such that
o(0,L) > % — Cexp(—2L(1—=9)) as L — oc.

Proof. We fix 0 > 0. Let wy, be a least energy solution for ¢(0, L). We may assume that
wy, is strictly decreasing positive solution on [0, L], and there exists a constant C' > 0
independent of L > 1 such that

w(z) < Ce” 1797, (4.1)

In addition, we extend wy on [0,00) by w(z) := wp(L)el=® for x > L. Then w; €
H*'(0,00) holds. By the characterization of o(0, L), for any ¢ > 0, it holds that

o(0,L) > I(twy, (0, L)) = I(twy, (0,00)) — I(twy, (L, 0)).

Take t;, > 0 with /' = HwLH%{l(o,oo)/HwLHiﬁl(om)‘ Then,

I(trwy, (0,00)) = sup I (twy, (0,00)).

t>0

By the definition of o, we have

sup I (twyg, (0,00)) > 7
>0 2
Thus, we get
(0, L) > % — I(tywy, (L, 00)). (4.2)



Since w;, — ® € H'(0, 00) because of Lemma 3.2, we have

p—1 Hq)H%{l(O,oo) —1 I
I (I)p+—1 =1 as — OQ,
@] Lr+1(0,00)

hence, t; =1+ o(1) as L — co. Using ¢2 < 2 for sufficiently large L, we get

t2 [e%e] [e’e]
[(twr, (L,00)) < / [V |? +wi dr < / 2w} (L)e** ™ da = wi(L).
L L

By (4.1), we obtain
I(tpwy, (L,00)) < Ce 179 as [, — 0.
Therefore, we get the conclusion. O

Proposition 4.4. Suppose that, for a subsequence of ¢ — 0 and e € G, a least energy
solution u, has a local mazximal point x. on e. Then, it holds that

—2((e)

062%+exp< (1+0(1))) as € — 0.

Proof. For simplicity, we assume that G is a star graph. Thus, we may assume that G =

(V,E), E={ey,...,ex} with k>3, V = {vg,..., 0}, vo € Vine, i € Vena (1 = 1,... k),
and each edge e; connects vy and v;.

€1 €2
@ @ L ]
U1 Vo )]

By Lemma 4.2, we may assume that x. = v; € e; without loss of generality. Therefore,
we consider a sub-graph G, = {{vg,v1,v2},{€0,é1}}. We estimate similarly as Lemma
4.3. By the characterization of the least energy, for any ¢t > 0, it holds that

k
e > I(the, GL) + > I(ti, é;).

i=3
We choose t. > 0 such that

I(t ., GL) = sup I(ta., G).

>0
Since G is identified with the interval [0, (¢(e1) + £(e2))/€], by the characterization of
a(0, (¢(e1) + £(ez))/€), we have

sup I (ti., GL) > o(0, (£(e1) + £(ea))/€).

t>0

Thus, we get

02 (0, (Eer) + Ue2)) )+ Y (tete, ). (4.3)



Next, to estimate the second term of the right-hand side, we focus t.. Since 4, — ® € H*
on G, we obtain t. = 1+ o(1) as € — 0, similarly as in Lemmas 4.1 and 4.3.

Recall that u. is a positive solution and i, has the unique local maximum point
v1. Thus 4, take the global maximum value on é; at vy (i = 3,...,k). Denote the
maximum value by m, := u.(vg). By the proof of Lemma 4.2, we have m, — 0, hence
ltetie|| oo,y = o(1) (4 =2, ..., k), which implies

1 1
p + 1 éi(teaE)p'i‘l dx S Z /E:Z tf(aE)Q dJ,‘ (Z = 37 .. ’k)
for sufficiently small €. Thus, we get

ot 1+o0(1)
I(ta, é) > ZHULH%P(éi) =

|3y (6=3,....k). (4.4)

Since u, is a solution on é; and satisfies the Neumann boundary condition at v;, using
partial integration, we have

el ey = / V (@{VaE) + (= Al + al)al de
= / \V4 (ﬁgéi)vagéi)) + (ﬁgéi))p+1 dr (4.5)
> / V (VD) dr = (00 (vg)) 4l (ve) (i =3,...,k).

Next, we estimate the right-hand side. For each i € {2,...,k}, we apply Lemma 4.6
below for é;. Then, we have

1 ~1 AL (vy) 1 1
¢ + = < — < + = ;
tanh A l(e;)/e ~ sinh A\ {(e;)/¢€ @Eei)(vo) tanh l(e;)/e ~ sinh{(e;)/e

where A\, = /1 —mf . Thus, we get
(008 (vg)) 4 (vg) = m2(1 +o(1)) as € > 0 (i =2,....k). (4.6)

€

Thus, we have
k
> lalFre,y = (k= 2)mi(1+o(1)) > mZ(1 4 o(1)). (4.7)
=3

Finally, we estimate m,. For the sake of simplicity, we denote 4 and ¢(e1) by u. and ¢
respectively, and assume é; = [0, £(e1)/€] with v; = 0. Put
k 1 —z+Llfe _ k—1 x—L/e
z(x) = (k4 De ( )6,
(k+ 1)et/e — (k —1)e~t/e

4(0).
Then z is a solution of

CAz4z=00n(0.0/c), 20)=a(0), V= (f) Iy <€> _0.

€



Putting w := z — 4., we have
—Aw+w=(—Az+2) — (—Ad.+0.) = —u’ <0 on (0,(/e)

and
w(0) = 2(0) — @.(0) = 0.

Using (4.6) and the Kirchhoff law at vy, we get

Vidl/e)  —S0,0u (w) o _
P77 e L A s

oo () an(§) o (o ()

Applying Lemma 4.5 below to w, we obtain w < 0 on (0, ¢/¢). Moreover,

Thus we get

2a.(0) oMy .
(k+ Defle— (k— D)ot k+1 (L+o(1) as e =0

me = U (l/e) > z(l/€) =

holds. Combining (4.3), (4.4), and (4.7), for 6 > 0 with (¢(ey) + {(e2))(1 — 6) > L(ey),
using Lemma 4.3, we get

0.2 % —exp (—2(6(‘31) - gffz))(l I 0(1))> + (k]\fol)2 exp <_2i<61>) (14 o(1))

g Mg —2661)
=4+ -0 1 1 .
2+(k+1)Zexp< - (1+o0(1))) ase—0

O

Proof of Theorem 1.1. Lemma 4.2 asserts (i) in Theorem 1.1. Then, we can apply Lemma
3.2 to get (ii). Finally, combining Lemma 4.1 and Proposition 4.4, we obtain (iii) and
(iv). O

Lemma 4.5. Assume that R > 0 and o > 0. Let w be a solution of
—Aw+w<0on(0,R), w(0)=0, VwR)+aw(R)<O0. (4.8)
Then w < 0 holds on [0, R].

Proof. Multiplying (4.8) by w,(x) := max{w(x),0} and integrating, since VwVw, =
(Vw,)? and ww, = w?, we have

+
R R
0> / —Awwy +wwy dr = —Vw(R)wi(R) + Vw(0)w4(0) + / (Vw,)? +w? dx
0 0
R
> aw? (R) +/ (Vw,)? +w? dz > 0.
0

Hence fOR(Vw+)2 + w? dx = 0, which means the conclusion. O



4.4 Estimates for small solutions

Let u be a positive solution of
—Au+u=uP on (0, L) (4.9)
with [Ju||pe(o,r) < m. Putting § :== m?~!, if 0 <t < m, we have t* < §t. Hence,
—Au+u>0, —Au+(1—-0)u<0.
Thus, we can estimate u by sub-super solutions.

Lemma 4.6. Let u be a positive solution of (4.9). Suppose that ||ul|Le(o,r) < m, u(0) = a,
uw(L) =b, and 6 =mP~t > 0. Then

asinh(L — x) + bsinhx asinh A\(L — z) + bsinh Az

sinh L < ulw) < sinh AL forz € [0, L],
-1 b Vu) _ ( 1 )
tanh L | a smhL u(O) tanh AL~ asinh AL )’
\ ( 1 a > (L) 1 a
tanh AL bsinh AL w(lL) ~ tanhL ~ bsinh L’

where A :==+/1 — 9.

Proof. By the assumption and the maximum principle, we have ||u|ze(0,z) = max{a, b}.
Hence,
—~Au+u>0, —Au+ M u<0on (0,L).

Let w and u be unique solutions to
—AT+ Au=0on (0, L),
—Au+wu=0on (0,L),
u(0) = u(0) = a,u(L) = u(L) = 0.
Then, we have explicit formulas:

asinh(L — z) + bsinh x asinh \(L — x) 4+ bsinh Az

u(w) sinh L @) sinh AL on [0, Z]
Moreover, u < u < w holds by the comparison theorem. Since u = u at x = 0, L, we get
the estimates for the derivative. O
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