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1 Introduction
We consider the reaction-diffusion equation
u = Au+ (u+a)(l—u?), (z,y) €R? (1.1)

where u = u(z,y,t) is unknown and a € (0, 1) is a constant. Our interest is the asymp-
totic behavior of solutions of (1.1).

It is well-known that (1.1) has one-dimensional traveling fronts connecting stable
equilibria 1 and —1. One of the fronts is given by u.(z,y,t) = ®(y — kt), where
®(n) := —tanh(n/+/2) and k = /2a. We note that the front propagates in y-direction
with speed £ and that ¢ solves

" 4+ k® 4 (D + a)(1 — d?) = 0. (1.2)

It is shown that w, is stable in appropriate senses (see for instance [3, 4, 8]), and therefore
u, plays an important role to understand front propagation in (1.1). To see this, let us
observe the asymptotic behavior of a radially symmetric solution u(x,y,t) = u(r,t),
r = y/x? + y2. According to [1, 5, 6, 7, 10, 11, 12], the following hold. For any £ > 0,
there exists o > 0 such that if

1
minu(r,0) > —a+¢, limsupu(r,0) < —a, liminfu(r,0) > ——,

r<ro r—00 =00 €

then for some function A satisfying h(t) — oo (t — o0),
u(r,t) — ®(r — h(t)) — 0 uniformly for r > 0 as t — oc. (1.3)
Furthermore, the asymptotic behavior of & is given by
h(t) = kt — %logt +0(1) (t— o). (1.4)

From (1.3), we see that the profile of u locally looks like a one-dimensional traveling
front. Indeed, one finds that

w(x,n + kt + h(t),t) — ®(n) locally uniformly for (z,7) € R ast — oo, (1.5)



where h(t) = h(t) — kt. (1.4) and (1.5) mean that the difference of the position of a level
set between v and u, grows logarithmically while u converges locally to u,. The natural
question arises whether it is possible to find a solution which satisfies (1.5) for some iL(t)
growing polynomially. Our main result is concerned with the existence of such solutions.

Theorem 1. Let 0 < 5 < 1/2 and b > 0. Then there exists a solution u of (1.1) such that
for some function h satisfying h(t) = kt + bt + o(t?) (t — o) and some time sequence
{ti}Withtl <ty < -or =00,

u(z,n + h(t;), t;)) — ®(n) locally uniformly for (z,n) € R* asi — oo. (1.6)

Remark 2. The theorem should hold for § < 1 and without taking a time sequence.

2 Sketch of the proof of Theorem 1

In this section we give a procedure to prove Theorem 1.

2.1 Supersolutions and subsolutions

We find the desired solution by constructing a supersolution and a subsolution. We look
for a supersolution in the form

UW%%6=¢<;%%%%%§—p®>+ﬂw

where the functions ¢, p and ¢ are determined later. A supersolution of this type was first
used in [9] to construct conical traveling wave solutions. Put f(u) = (u+a)(1 — u*) and
Flu] = uy — Au — f(u). By a direct calculation, we have

d'o

¥ o( | 2620 - ~ (1—2¢3) %}
o | e {0 - B ]

- (<+p)(q)//og“)¢§¢m 24 (C—i—p)gbm
(1+¢2)%2 V1+ 32

— (@ o Qpi + f(@oC) = f(PoC+aq)+a,
where we have used (1.2) and put

Yy — ¢($,t>
1+ d)w(x,t)Q

C(x,y,t) = —p(t).



Since we are looking for a solution converging locally to a one-dimensional traveling
front, the derivatives of ¢ with respect to x should decay as ¢ — oo. For this reason
Ot — Gre — k/1 + ¢2 would dominate other terms. Hence it is appropriate to choose ¢
as a solution of the equation

k
¢t=¢m+k+§¢>§, r €R. 2.1)
As an initial value of ¢, we take a function with sublinear growth, that is,
o(x,0) = Alz|*, z€R, (2.2)

where A > 0 and « € (0, 1). Then the derivatives ¢, and ¢, indeed decay.
Lemma 3. Let ¢ be a solution of (2.1)—(2.2). Then there is a constant C' > 0 such that

2(1—w)

_1-a _
|G-, 1) || Loom) < Ct™ 2=, | aa (-, ) || Loy < Ct™ 2=

forallt > 1.

We omit the proof of this Lemma. Suppose that ¢ satisfies (2.1)—(2.2). Then Flu™] is
written as

Flutl==(® o)pe + f(®o () = f(Po(+q)+ ¢+ R,

where
k(®' oC 1,
\/W (x/ tor—1-5d
— ‘o C 2¢3~¢m qub?gb o 1 — 2¢2)
o 2| /ireE =T T 1t
. (C+p)(P"o O(Z)Z;(bm 92+ (€ + p)Pux
(1+¢3)%2 Vi+aé2 |

Note that n®’(n) and 1?®" (1) are bounded in R. From this fact and Lemma 3, we deduce
that

|R| < K(1+p*)t™ (2.3)

fort > 1, where K > 0 is a constant and v = 4(1 — «) /(2 — «). For positive constants
Po» qo and ¢y, we put

p(t) = Kpolty ™ —t774), q(t) = Kot .

We check that under the condition
a < —, 2.4)



ut satisfies F[ut] > 0 for t > ¢, provided that py, qq and ¢, are chosen appropriately. We

first note that (2.4) implies v > 1. It is easy to see that

(i, (-0 ) >0

s|>1-26

for some 9 > 0. Then we take g > 0 such that

(min, 7)) >3

s|>1-26
Since ®(n) — +1 as n — Foo, one can pick up 79 > 0 such that

[®(n)| =1 =46 forall [n| = no.

The constant pg > 0 is then chosen so that
(1min (=20 ) (= D = (w9 ) 2 3.
[nl<no s€ER
Finally we choose ¢, > 1 so large that

max {KPOt(;vHa Yoty !, 5_1Kq0t57} < 1.

(2.5)

(2.6)

2.7)

(2.8)

This particularly gives 0 < p < Kpyt,, v+l < 1fort > ty. From (2.3), (2.8) and the fact

that 0 < p <1, we have

Flut]

> Kt {—(‘P’ o ()(v = 1)po + (/01 —f(®o(+ 961)619> G —vqt " = (1 +p2)}

— kit { @ e - v + (/ (@ o¢+ 0a)it) a3}

fort > t,.

Let us verify F[ut] > 0. We consider the case || > 1. We see from (2.6) and (2.8)

that

Dol +0g >|Pol|l—g>1—-0—Kqoty” >1—-20
q q qolg

for 6 € [0, 1]. Hence, by (2.5) and the fact that ' < 0,

Flut] > Kt {( min (—f/(s))> do — 3} > 0.

|s|>1-25



Moreover if (| < 7, then (2.7) gives

Fut) = e { (min (<00 ) (= D = (max £0) ) = 3f >0

Thus we conclude that F[u™] > 0.
Let ¢, p and q are chosen as above. Then from a similar computation we see that

_ o Yy — ¢(xat) _
u”(2,y,t) = @ (—1 e +p(t)) q(1)

satisfies F[u~] < 0 provided ¢t > t,. By the monotonicity of ®, we have v~ < u™.
Consequently the comparison principle shows that there is a solution w of (1.1) satisfying
u <u<ut.

2.2 Asymptotic behavior of ¢

To determine the asymptotic profile of ™ and u~, we need to examine the precise be-
havior of ¢. It is well-known that by the putting v = e®~* the problem (2.1)—(2.2) is
transformed into the heat equation

Vp = Vg, r€eR,t>0,
v(x,0) = exp(Al|z]*), = e€R.

Hence ¢ is given by

gb(:z: t) = kt + logv(x,t),

—y)’ a
v(x,t) \/R exp< m + Aly| >d

Splitting the interval of integration into [0, c0) and (—o0, 0) gives

)2
v(x,t) = \/E exp( x4—y)+Ay“) dy
z +y)? o
\/E exp( Ty)—i-Ay)dy.

By the change of variables y = ¢t'/(?>~®Y’, we obtain

oz, t) =1 (t—ﬁx, t) ) (—t—ﬁx, t) , (2.9)



where

1 &3 > o
I(X,8) i= =t / exp (tmg(y)) dy,
0
1

g(YV)=g(V: X) := —Z(Y - X)? + AY“.

It is easily seen that g(Y) has a unique critical point Y, = Y,(X) > 0. Then we define
M = M(X)and K = K(X) by
1 2 a
M = g(Ve) = = (Yo = X)? + AV,
1 1
K = = .
V=29"Y.) V14 2a(1 —a)AY>2

It is elementary to show that

1
g'r) < -3, (2.10)
Y.(X), M(X) and K(X) are increasing. (2.11)

We set
U(X,t) = K(X)exp (tﬁM(X)) .

The asymptotic behavior of ¢ is described by means of U.
Proposition 4. The solution ¢ of (2.1)—(2.2) satisfies

o, 1) bt —log (U (=5 1) + U (~75a,t) )| < OF

forall x € Randt > 1 with some constant C > (.
To prove the proposition we consider the estimate of .

Lemma 5. There is a constant C' > 0 such that

’ I(X,t)

—1| <t T
U(X,1) ‘_

forall X > —landt > 1.

Proof. Let X > —1. In the proof, constants in big O notation do not depend on X. Put

1 Y, 22—« -
=YD G g (3) = Hrali - - aan,

and define 6 > 0 by



From (2.11), we see that 0 < 0 < Y,(X). We rewrite I as

I =

£22-a) exp <tﬁM> / exp <tﬁ(9(y) - M)) ay
4m 0

= 1 t2(20ia) exp <tﬁ M) </. N /. >
vam |Y =Y, |>8,Y >0 Y —Yi|<5

1 @ a
=: 12C=2) ex <tﬂM> I+ 1y).
T p (1 + 1)

Let us estimate /;. From (2.10) and the fact that ¢'(Y,) = 0,

o) =21 = { [ o) oty = voaef (v = v < o - v

For a,b > 0,
1 1 1
/ e P gy = / — - |zle P dz < —/ |zl de = = (2.12)
|z|>a |z|>a |$| aJr ab

1 o 4 _ a
L] < / exp (——p—a(y - Y*)?) dY < <t 7a. (2.13)
Y =Yy[>d 4 0

Hence

15 is handled as follows. We rewrite Iy as Iy = 5y + Iao + I93, where
1 " o 2
Iy = [ exp 29 (Yotz== (Y = Y,)" ) dY,
R

) 1 o
Iy = / exp (—QN(Y*)tM(Y - Y*)2> dy,
Y —Y,[>6,Y >0 2

a 1 a
Iys = / (exp <tﬂR(Y)) — 1) exp (59//(K)tm(y — y*)2> dy,
IV -Yi|<5

By a direct computation,
121 = Var Kt 2¢C-o,

From (2.10) and (2.12), I5, is estimated as

o

1 o 4
12| < / exp <——tM(Y — Y*)2> dY < -t 7a,
Y —Yi|>6 4 S

We consider I3. Let |Y — Y,| < 0. Then, by (2.11) and the definition of §, we have
Y. +60(Y =Y.) >Y,—3d>Yy/2forall 6 € [0,1]. This together with the fact that ¢"” is



positive and decreasing yields

g (Y, + (Y = Y.))| < g" (?) — 60,
Therefore
|R(Y)| = % /01(1 —0)*¢"" (Y. +0(Y — Y*))dé" Y - Y. <CllY = Yi]2. (2.14)
Furthermore,

Gl -Y| <Gy (2.15)

Combining (2.10), (2.14), (2.15) and the inequality |e® — 1| < |a|el*! (a € R), we deduce
that

o o 1
l <o [ Rwes (17 {40 v+ R ) ay
[V —Yi|<6 4
o o 1
§C’1t2a/ Y —Y,|? exp (tM (———I—CﬂY—Y;J) (Y—Y*)2> ay
[V —Yi|<6 4
(o] 1 (o]
< Citz-« / Y — Y*|3exp (—gtM(Y — Y*)2> dY
R
= 64C,t 7.
From the computations for I5;, I59 and I3, we obtain
I = VinKt ™ w (1 410 (t*72<2ia>)) (t = 00), (2.16)
where we have used the fact that
K(X)> K(-1). 2.17)
By (2.13), (2.16) and (2.17), we conclude that
1,6 = (1+0 (1779 ) ) U(X,1),
as claimed. OJ

Lemma 6. There is a constant C' > 0 such that

I[(X,t) < Ctr@a U(—X, t)

forall X < —landt > 1.



Proof. By (2.10),

I =

t2(201a) e <t230¢ M> /e (thOé { — M > dY
\/E P R P (g( ) )
<

[e3 [e3 1 (e
< t2@-9) ex (t2—aM) / ex <——t2—a Y — Kk 2) dY
Vir g L)
= exp <t2faM> .

Since X < —1 <1 < —X, we see from (2.11) that

exp (155 M (X)) = ﬁexp (~t255 (M (=) ~ M(X))) U(-X, 1)
< % exp (—1725 (M (1) = M(-1))) U(= X 1)

It is elementary to show that for any fixed constant ¢ > 0,
exp (—ctﬁ) _0 (t*iﬂfiw) (t = 00). (2.18)

Hence the lemma follows. O

Proof of Proposition 4. In the proof, constants in big O notation do not depend on x. We
set X =t~y Since ¢(z,t) = kt+log(I(X,t)+ I(—X,t)), the proof is completed
by showing that

(X, t) + I(~X, 1) = (1 40 (t_iﬂﬁa))) (U(X,1) + U(=X,1)) (t— o0). (2.19)
In the case | X| < 1, this is immediately verified by applying Lemma 5 to (X, ¢) and
I(-X,t).

Assume now that X < —1. In this case we use Lemma 5 for /(—X,¢) and Lemma 6
for I(X,t) to obtain
[(X,8) + I(—X, 1) = (1 4O (t‘fz‘iw)) U(=X,1) (t — o0).

Since (2.11) and (2.18) show that

U(X,t) < exp (—tﬁ(M(l) - M(—l))) U(-X,1)
< Ot e U(-X,t)

for some constant C' > 0, we obtain (2.19). The case X > 1 can be handled in the same
way as in the case X < —1, and therefore the proof is complete. O



2.3 Proof of (1.6)

Finally we show that the solution u constructed above satisfies (1.6). We easily see that
as X — 0,

M(X) = My, + O(X), K(X)=Ky,+ 0(X),
My=(2- a)Q*%aﬁAﬁ7 Ko:=(2—a)2.

From this we see that for each x € R,

(U (t‘ﬁx,t) U (—t‘ﬁx,t)) exp (—tﬁM())
=K <t*ﬁx) exp (tﬁ <M (t*ﬁx) - Mo)>
+K (—t—ﬁx) exp (tﬁ (M (—t‘ﬁx) ~ M0>)

— 2K, (t— o0).
Therefore, by Proposition 4,

lim <gz5(x,t) —kt— Motﬁ) = log(2K,).

t—o00

This together with Lemma 3 implies that for (x,n) € R?,

hmsuP“(%U =+ hO(t)at) S thm u+ (%77 + hO(t)at) = (I)(n - 771)7
—00

t=o0 (2.20)
litrn inf u(z,n+ ho(t),t) > tlim u” (z,n+ ho(t),t) = ®(n+m),
— 00 — 00

where ho(t) = kt + Mytz= + log(2Ky) and n; = Kpotgvﬂ.
Now we discuss the convergence of the function w(z,n,t) := u(z,n + ho(t),t). Itis
seen that w satisfies

« 2(1—a)

)y fw)

wt:Aw—f—(k‘—i—Q

—

The fact that u_ < u < wuy shows that w(-,t) is uniformly bounded. By the regularity
theory for parabolic partial differential equations and compact embeddings for Sobolev
and Holder spaces, we can take a sequence {t;}, t; < ty < --- — oo such that w(-,t;)
converges locally uniformly to a solution W = W (z, n) of the equation

AW + kW, + f(W) =0 (2.21)
as ¢ — oo. From (2.20), we have

d(n+m) < W(z,n) < O(n—mn). (2.22)



[2, Theorem 3.1] shows that the function W satisfying (2.21) and (2.22) coincides with
®(n — ny) for some 7, € R. Thus we conclude that (1.6) holds with

(67

B= L b=My=(2—a)2 TaarwAva,  h(t) = ho(t) + na.

2—«
The restriction 5 < 1/2 comes from the condition (2.4), and b > 0 can be chosen arbi-
trarily since A > 0 is arbitrary.

References

[1] D. G. Aronson and H. F Weinberger, Multidimensional nonlinear diffusion arising
in population genetics, Adv. in Math. 30 (1978), no. 1, 33-76.

[2] H. Berestycki and F Hamel, Generalized travelling waves for reaction-diffusion
equations, Perspectives in nonlinear partial differential equations, 101-123, Con-
temp. Math., 446, Amer. Math. Soc., Providence, RI, 2007.

[3] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in non-
local evolution equations, Adv. Differential Equations 2 (1997), no. 1, 125-160.

[4] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equa-
tions to travelling front solutions, Arch. Rational Mech. Anal. 65 (1977), no. 4,
335-361.

[5] C. K. R. T. Jones, Asymptotic behaviour of a reaction-diffusion equation in higher
space dimensions, Rocky Mountain J. Math. 13 (1983), no. 2, 355-364.

[6] C. K. R. T. Jones, Spherically symmetric solutions of a reaction-diffusion equation,
J. Differential Equations 49 (1983), no. 1, 142—-169.

[7] H. Matano, Y. Mori and M. Nara, Asymptotic behavior of spreading fronts in the
anisotropic Allen-Cahn equation on R™, Ann. Inst. H. Poincaré Anal. Non Linéaire
36 (2019), no. 3, 585-626.

[8] H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn
equation, Comm. Partial Differential Equations 34 (2009), no. 7-9, 976-1002.

[9] H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved
fronts in the Allen-Cahn equations, J. Differential Equations 213 (2005), no. 1, 204—
233.

[10] V. Roussier, Stability of radially symmetric travelling waves in reaction-diffusion
equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 3, 341-379.



[11] K. Uchiyama, Asymptotic behavior of solutions of reaction-diffusion equations with
varying drift coefficients, Arch. Rational Mech. Anal. 90 (1985), no. 4, 291-311.

[12] H. Yagisita, Nearly spherically symmetric expanding fronts in a bistable reaction-
diffusion equation, J. Dynam. Differential Equations 13 (2001), no. 2, 323-353.



