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1 Introduction

We study numerical feasibility and properties of a Cauchy-type boundary integration
formula in x-ray Computerized Tomography (CT). The integration formula has been
developed by Bukhgeim et. al. [1, 2, 3] based on mainly the theory of A-analytic functions
by converting the mathematical model of x-ray CT into the inverse source problem
for the transport equation. However, to the best of the our knowledge, its numerical
treatments have not been realized so far. It is also worthy of notice that the method
has a possibility in application to the radiative transport equation [4], while the inverse
Radon transform is unavailable due to its crucial dependence on straightness of x-ray
propagation.

This report is based on collaborations with Professor Alexandru Tamasan (Depart-
ment of Mathematics, University of Central Florida).

2 X-ray CT by the Radon Transform

Let D be a bounded and strictly convex domain with C' boundary in R? and p € L>(D)
be its absorption coefficient. Without loss of generality, we assume that D = {z €
R?; |z| < p} is the disk with radius p by letting u(z) = 0 outside of the domain of
interest.

The standard mathematical model of the x-ray CT [8] is to find u satisfying the
integral equation
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from measurement of Ru(w,s) for all w € S' = {€ € R?; |¢| = 1} and s € R, which
is called the Radon transform of p. Figure 1 depicts a typical measurement manner,
where Rp(w,s) = Ru(éL, ¢ - €1) is the intensity of x-ray with velocity € emitted from
¢ € 0D. The filtered back projection (FBP) with the inverse Radon transform [9] has
been well established in reconstruction of p(x), which is given as
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Figure 1: Mathematical Model of Measurement in X-ray Tomography

where Q = argw, P,(s) = Ru(w, s), and h(s) is a filter function whose Fourier transform
approximates |r|.

3 Inverse Source Identification for the Transport
Equation as a Mathematical Model of X-ray To-
mography

In this section we summarize a mathematical model of x-ray tomography with the
transport equation and its numerical algorithm developed in [2, 3, 6, 7]. Hereinafter
r = (v1,22) € R? is identified with z = z; + iz, € C with ¢ = Vv—1. Also, £ =
(cosf,sinf) € St is identified with 0 < 6 < 27x. We also assume that z denotes an
interior point in €2, while ¢ indicate a boundary point on 0f2.

Let I(x,€), (r,€) € DxS', be the intensity of x-ray at # € D directing to ¢ direction,
which is induced by the incidental x-ray at z* € 9D with intensity I(z*,&). Since the
boundary point z* € 9D is uniquely determined from (z,€) € D x S' by the law of
straightness of x-ray, we introduce

I(x,€)
I(z*, &)

Under the notations, the mathematical model of x-ray tomography (1) is equivalent to
the inverse source problem for the transport equation

u(z, &) = —log (2)

¢ Vu(z, §) = u(), (z,6) € D x S,
u(z, &) =0, (x,&) e T,
U(lf,f) = RM(é.J_wT ' €L>7 (:L’,f) € F+7

where I'y = {(2,§); v € 9D, § € S*,n(z) - £ =2 0}.



For the source identification problem, Arbuzov, Bukhgeim and Kazantsev have pro-
posed a novel inversion algorithm based on A- analytic theory [1, 2]. The Fourier ex-

pansion of u with respect to @ is u z,&(0 Z U (2)e”™. As the first step of the

meZ
reconstruction procedure, the coefficients w,,(¢) on the boundary 9D are calculated from

measurement data as

1
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It has been proved in [2] that u1(z) in D is obtained by the boundary integral of uyqq(¢) =
(u1(¢), us(¢), us(¢),...) on 0D as
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where R(A) = (M — S*)71, X € C, is the resolvent of the left translation operator
S*(uy, us, us,...) = (us,us,ur,...). Particularly, the first Fourier mode is explicitly
given in [3] as
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Finally, the attenuation p is reconstructed as
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a—xz(:c), xeD. (6)

In numerical reconsruction, measurement Ry is assumed to be given at (Ck, & (Qn)) €
[y, where {(}; 0 < k < K} C 0D is K equally-spaced points on 9D, and {6,,; 0 <n <
N} C [0,27) corresponds to N equally-spaced directions. We also introduce a positive
integer M in order to truncate the Neumann series in (5) originated from the resolvent
R. The composite trapezoidal rule derives discretizations
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and
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1 Cr 2 Cp — Z
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k=0 k=0 3<2p 1< M

Since Uj(z) is recovered for any z € D, we can reconstruct u(x) in D with (6) by
numerical differentiations [6, 7).

4 Optimal Choice of the Truncation Parameter

In various ill-posed problems, it has been reported that “higher frequency modes” cause
numerical instability and prevent reliable numerical reconstruction, whereas they are



inevitable for accurate reconstruction because they deliver information of precise struc-
tures of the system. In the present study, the Neumann series in (5) is explicitly asso-
ciated with the Fourier modes. Therefore the truncation parameter M in (5) works as
a regularization parameter to stabilize its numerical procedure and to control accuracy.

In order to investigate the role of M quantitatively, we demonstrate numerical ex-
amples using the modified Shepp-Logan model [10] with K = N = 360 and p = 1.1 [6].
Figure 2 shows the profile of the exact measurement data, where the gray region is the
ellipse occupied by the Shepp-Logan model
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and the gray circle is 0D with p = 1.1. The red curve shows measurement u(C N3 («9)) on
0D in the polar coordinate with respect to 6 centered with ( € 9D indicated by e, and
the right graph shows the magnification of that at ¢ = (1.1,0). From this measurement,
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Figure 2: Exact Boundary Value u((,€) on ¢ € 0D of Radius p = 1.1 (left), and one at
¢ =(1.1,0) (right)

we obtain numerical reconstruction of p(z) shown in Figure 3 by (a) the conventional
FBP, and the proposed scheme with (b) M = 30, (¢) M = 180, and (d) M = 340. In
the proposed method, the parameter M = 180 in Figure 3(c) exhibits similar accuracy
as FBP in Figure 3(a), although smaller M = 30 gives a blurred result in Figure 3(b).
In contrast, larger M = 340 gives exceptional values out of the legend 0 < o < 1.2 in
Figure 3(d), which means numerical instability of the procedure.

In the present study, we propose the optimal choice of M. In a similar way as u;, it
is shown that
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which is discretized as
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Figure 3: Numerical Reconstructions for Modified Shepp-Logan Phantom [10] from
Exact Measurement



From definition (2), w is real-valued, and hence so is ug from (3). Therefore, the imag-
inary part Im U, obtained by numerical computation is presumed to be error which
comes from discretization, rounding, and measurement.

Based on the observation, we propose the following criterion for the choice of M:
Criterion. Choose M in the reconstruction so as to minimize ||Im Up]|.

Note that The proposed criterion is practical because U, is computable from the mea-
surement with fixed discretization parameters K and N.
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Figure 4: Choice of the Truncation Parameter M for Exact Measurement

In order to perform the criterion, we calculate |[ImUp|, for 1 < M < 360. In
Figure 4, the symbols + show ||ImUp||, in £, while the symbols x show the relative
error of reconstructed . The horizontal axis is 1 < M < 360 and the vertical one is the
relative L?-norm in the logarithmic scale. In the figure, arrows indicate each minimum,
M = 195 and M = 207. The proposed criterion chooses M = 195, and it is close to
M = 207 which is optimal in the sense of realizing the minimal error. Furthermore,
the relative errors in M = 180 (Figure3(c)), M = 195, M = 207 are 18.48%, 18.22%,

18.12% respectively, and significant differences cannot be observed.

5 Reconstruction from Noisy Data

In this section we show that the proposed criterion is also valid in numerical reconstruc-
tion under the presence of measurement error.

We generate the noisy data by the pseudo-random generator normal distribution()
in the programming language C++ with the mean 3 and 5% relative error in L?-norm,
which is depicted in Figure 5. Figure 6 shows ||Im Up||, (symbols +) and relative errors
in reconstructed g (symbols x). The former and latter are minimum at M = 117 and
M =113 in 1 < M < 360 respectively. The proposed criterion gives M = 117, with
which p(z) is reconstructed shown in Figure 7. Their relative errors are 24.06% for
M = 117 and 24.03% for M = 113, and the differences are insignificant. This indicate
validity of the proposed parameter choice strategy.



Figure 5: Measurement Data u((, ) on ¢ € D of Radius p = 1.1 with 5% Noise

6 Concluding Remarks

We have reported a numerical feasibility of x-ray tomography algorithm based on the
boundary integral. In particular, parameter choice strategy has been proposed, and we
demonstrate a reasonable numerical reconstruction from measurement data with errors.

Finally we announce the validity of the proposed criterion in the scattering case
discussed in [4, 5], where the same boundary integral (4) plays an essential role in
reconstruction. In this case, Two regularization parameters (truncation of the scattering
kernel and truncation of Neumann series) are involved in the algorithm, and ||Im Up||
also depends on them. In [5], the choice of the truncation number of the scattering kernel
has been proposed for a fixed truncation number of Neumann series. On the other hand,
the choice is completely compatible with the choice of the other parameter (truncation
of Neumann series), and thus both can be chosen so as to minimize ||Im Uy||. Under this
strategy, they gives reasonable reconstruction images similarly as this research even for
the presence of measurement error.
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Figure 6: Regularization by the Truncation Parameter M for Measurement Data with
5% Measurement, Error
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Figure 7: Numerical Examples of Reconstruction with M = 117, p = 1.1, and 5%
Measurement, Error
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