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Abstract

The elastic Neumann—Poincaré (eNP) operator is a boundary integral operator that ap-
pears naturally when we solve classical boundary value problems for the Lamé system using
layer potentials, and there is rapidly growing interest in its spectral properties recently in
relation to cloaking by anomalous localized resonance (CALR). In this workshop, the speaker
reported two results on the spectrum of the eNP operator. The first one is the polynomial com-
pactness of the three-dimensional eNP operator on a C*® surface for o > 0, which describes a
distribution of eigenvalues. The second one is on the essential spectrum of the two-dimensional
eNP operator on a curve which is smooth except at a corner.
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1 Introduction

The elastic Neumann—Poincaré (eNP) operator is a boundary integral operator that appears natu-
rally when we solve classical boundary value problems for the Lamé system using layer potentials.
Recently, there is rapidly growing interest in the spectral properties of the eNP operator in relation
to cloaking by anomalous localized resonance (CALR). Anomalous localized resonance occurs at
the accumulation point of eigenvalues, which motivates us to investigate the spectral structure of
the eNP operator.

The Lamé system, a system of equations of linear elasticity, is described by

Lypu:=pAu+ AN+ p)VV - -u=f,

where v = (u1,...,uq) (d = 2,3) is the displacement, (A, ) are the Lamé constants, and f is
the body force. In what follows, we assume that the pair of constants (A, ) satisfies the strong
convexity condition:

w>0, dx+2u>0.

The Lamé operator has the divergence form as follows. Let C = (C,-jkl)ﬁ j.k,i=1 be the isotropic
elasticity tensor corresponding to (A, u), namely,

Cijkl = /\5”'5]@1 + /l((sik(sjl + 6zl6jk)

Here, 6;; denotes the Kronecker delta. Also, let Vu be the symmetric gradient of a vector-valued
function u, namely,

~ 1
Vu = 3 (Vu+ (Vu)T),
where (Vu)? is the transpose of the matrix Vu. Then, the Lamé system is also described as

Ly,u="V-(CVu) = f.
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Let us describe CALR. Let © be a bounded Lipschitz domain in R? (d = 2,3). Let a(z) be a
function in R¥\ O such that
k, € Q,
a(z) = { ‘

1, ze€RN\NQ,
where k is a complex number. We assume that k = ko 4+ ¢d in (1.1) for § > 0, where

i .__/\+3/J,
0T T N¥

We consider the following transmission problem:

{V : (a(a;)(C@u) = fin R%,
u(z)] = O(|z]'~7) as |z] — o0,

where f is a function compactly supported in R?\Q and satisfies

fdx=0.
Rd

For the transmission problem (1.1), let us define an energy F of the function u by
E(u) = / Vu: CVudr = / AV - uf? + (d— 1)Vl da.
Q Q

Here, A: B = Zij a;b;; for two matrices A = (a;;) and B = (b;;). Let us be the solution to the
problem (1.1). Then, CALR is characterized by two conditions:

1. limsup 0E(us) = oo,
510

2. There exist positive constants C' and R such that |us(z)| < C for all |z| > R.

Let vs := us/\/0F(us). Then, we have §FE(vs) = 1 and |vs(z)] = 0 as § L 0 for |z| > R. In
other words, we cannot observe the displacement outside a ball.

In the two dimension case, Ando et al. showed that CALR occurs when the domain € is a ball
or an ellipse, and when the support of f locates in a suitable area [2]. Also, in the three dimension
case, Deng et al. showed that CALR occurs when the domain 2 is a ball and when the support
of f locates in a suitable area [9]. Moreover, they showed the same result for the elastic wave case
[10]. All of the above results are shown by the spectral analysis of the eNP operator, or by the
layer potential technique.

Motivated by these previous works, we are going to work on the spectral analysis of the eNP
operator.

2 Potential Theory

Let us introduce two operators originating from the potential theory. Let I'(z) = (F(at))fyj:1 be
the fundamental solution to the Lamé system associated with the Lamé constants (A, 1), namely,

S logla| - 2T, d=2,
Piy(a) =4 7 T o] 0
ij : o dij 0 X d—3 )
A |w| 4w |z N

where

aq =

L1, 1 1/1 1
P ayi=—-|—— .
2\p A+2p) P 2\ A+2u



Also, let Q be a bounded Lipschitz domain in R? (d = 2,3). Then, the single layer potential S is
defined by

S[el(z) := /BQ I'(z —y)p(y)do,, ae z€R%

For a vector-valued function u, the conormal derivative d,u corresponding to the Lamé system
is defined by N N
Oyu = (CVu)n = A(V - u)n + 2u(Vu)n,

where n is the outward unit normal to 9Q. Then, the eNP operator K* is defined by

K*[p](z) := p.v. /m 0y, T(x —y)p(y)doy, ae. x €O

Here, we consider the conormal derivative 9, I'(z — y) of the matrix columnwise and p.v. stands
for the Cauchy principal value.
We will show some properties of these operators. For details, see [1].

Proposition 2.1 (Jump Formula). Let Q be a bounded Lipschitz domain in R, For ¢ € L*(09)¢,
we have

9,8[¢l|x = (%1 + K) [

where the subscript + and — in the left hand side implies the limit from outside and inside €2,
respectively.

Proposition 2.2. For any ¢ € L?(0Q)?, we have (S, ©)r2(00)e < 0. Moreover, if S[p] = 0,
then ¢ = 0.

Remark 2.1. To be precise, we need a slight modification in Proposition 2.2 when d = 2. For the
detail, see [2].

From Proposition 2.2, we can see that the sesquilinear form
(1) = (=S[p],¥) L2 (504

is indeed an inner product on L?(9Q)%. Let |- ||« == (-, -),15/2. Since S : L2(0Q)? — L?(0Q)¢ is
bounded, we have
lell« < ISlllellzeo0)
for all p € L?(0Q)%.
Let H be the completion of the space L?(99)¢ with respect to the norm | - ||.. Then, we can
show that H = H~/2(092)? equipped with the inner product

<<P7¢>* = _<§07 SWJDH—UZ,HIN

for all p,v € H~/2(99)? by regarding the single layer potential S as the operator S : H—/2(99)?¢ —
HY2(5Q)4.

By introducing the inner product (¢, %), the eNP operator K* becomes a self-adjoint operator
on H, which follows from Plemelj’s symmetrization principle

SK* = K8,

where K is the L2-adjoint of the eNP operator K*. Thus, the spectrum o(K*) of the eNP operator
on H should be real. By further discussion on solvability of a transmission problem, we can show
that

o(K*) C (-1/2,1/2).

In what follows, we investigate the spectral structure of the eNP operator K* on H more deeply.



3 Polynomial Compactness

So far, we obtain two results on the spectral structure of the eNP operator K* on the space H.
The first one is polynomial compactness of the three-dimensional eNP operator. This result
was obtained by a joint work with Hyeonbae Kang (Inha University, Korea).

Theorem 3.1. Let Q be a bounded domain in R® with the CY*-smooth boundary for some o > 0.
Let K* be the eNP operator on 92 corresponding to the pair of Lamé constants (A, p). Let p3(t) :=
t(t 4+ Ko)(t — ko), where Ko is given by

ko+1 v

RO S —1) 200+ 20)

Then, ps(K*) is compact on H=1/2(0Q)3. Moreover, K*(K*+rol), K*(K* —roI) and (K*)?—k2T
are not compact on H=/2(9Q)3.

From Theorem 3.1 and the spectral mapping theorem, we obtain the following result on an
asymptotic behavior of eigenvalues.

Corollary 3.1. The spectrum of K* on H=Y2(0Q)> consists of three non-empty sequences of
eigenvalues which converge to 0, kg and —rg, respectively.

In the two-dimensional case, the counterpart of Theorem 3.1 is proved by replacing the poly-
nomial p3 by pa(t) := (¢t + ko)(t — ko) [2]. Also, Theorem 3.1 was once proved by assuming
C*°-smoothness on the boundary 9 [3]. Theorem 3.1 is an extension of these two results.

The key idea to a proof is to localize the eNP operator and to approximate it by surface Riesz
transforms, which is also the main idea in [3].

Let G(u) = (gij)i,j=1,2 be a positive-definite symmetric matrix valued function on R? such that
G(u) = I (the identity matrix) for u outside a compact set. We assume that G is C®-smooth
for some a > 0. In fact, G is a metric tensor corresponding to a C'*®-smooth boundary 02 of a
certain bounded domain © in R? (see (3.8) and (3.9)). Let

L{u,u—v) = (u—v,G(u)(u—v)) "3/ (3.1)

The surface Riesz transform is defined by

RI[f)(u) = %p.v. /]R (uy — 0)) L, u — o) f(0)dv, j = 1.2. (3.2)
Here, p.v. stands for the Cauchy principal value and u; is the j-th component of the point u. The
operator R? is a singular integral operator of non-convolution type and bounded on L?(R?).

The surface Riesz transforms R? satisfies the following relations, where A = B for two operators
A and B bounded on L?(R?) (or L?(R?)3) means that A — B is compact on L2(U) (resp. L2(U)3)
for any bounded open set U C R2.

Theorem 3.2. Let R;?, j = 1,2, be surface Riesz transforms defined by the metric tensor G.
Suppose that G is C*-smooth for some o > 0. Then, following identities hold:

RIRS — RIRI =0 (3.3)

and
det(G)(g11(RY)* + 2912 RI RS + g22(R9)?) = —1. (3.4)

Remark 3.1. Theorem 3.2 could be shown by the pseudodifferential calculus with rough coefficients
(for example, see [15]).

In order to show Theorem 3.2, we introduce an auxiliary operator R;;. In what follows, we use
the notation:
ri(u,v) == v;L(u,v), j=1,2, (3.5)



where L(u,v) is defined by (3.1). Observe that
1
RIRI[f](u) = lim —/ r-(u,u—v)/ ri(v,v —w)f(w)dwdv
vy 61,8240 472 [u—v|>681 ’ [v—w|>62 !
for a.e. u, where the limit exists either in the point-wise sense or L?-sense. Define the operator
Ri; by

i 1
m —-
51,6210 472

Rij[fl(u) = / ri(u,u— ) 7 (u, v — w) f(w) dw dv
Ju—v]>d1 [v—w|>d2

for a.e. u. We emphasize that the difference between R RY[f](u) and Rij[f](u) lies in the r;
appeared in the formulas: the first one is r;(v, v — w) while the second one is ri(u,v —w).
The following proposition is the key ingredient in proving Theorem 3.2.

Proposition 3.1. If the metric tensor G(u) is C* for some o > 0, then
fori,j=1,2.

It is shown in [3] that the eNP operator can expressed in terms of surface Riesz transforms.
We review it and prove Theorem 3.1 using Theorem 3.2.

Let - -
ne(r —y)' —(z—y)n,
2m|x —y|3

Kl(l;ay) =

where n, is the outward unit normal at z, and let

T[f](x) := p.v. /an Ki(z,y)f(y)do(y), =z € Q.
It is proved in [2, 3] that
K* = koT. (3.7)

Here (3.7) means that the difference K* — ko'T is compact on L?(9€2)3. We emphasize that T is a
singular integral operator and bounded on L?(9Q)3 (see [0]).

Denoting n, = (n1(x), na(x),n3(x))T, we have
0 Kiz(z,y)  Kis(w,y)
Ki(z,y) = DT p— —Kia(z,y) 0 Kas(z.y) |,
TN —Kis(zy)  —Kos(z,y) 0
where
Kia(x,y) = ni(x)(re — y2) — na(x)(x1 — 1),
Kis(z,y) = ni(z)(z3 — y3) — na(@)(z1 — v1),
Koz(x,y) = na(z)(x3 — y3) — n3(x)(v2 — y2).
Let K )
i :L' )
T = p.v. / ik At P fy)do(y),
o 2T —y[3 fy)do(y)
so that
0 T2 Ti3
T=|-T 0 To3
T3 —Tp3 O

Let U be a coordinate chart in 9 so that there is an open set D in R? and a parametrization
® : D — U, namely,

@ =0(u) = (p1(uw), p2(u),p3(u)), U, ueD.



Then the metric tensor of the surface, denoted by G(u) = (gi;(u))7 j—;, is given by

dJ;f + dxl:g + dm% = gllduf + 2g12duq dus + gggdu%,

where
gi1 = |31

P2, gio=go1 = NP 0D, g =03

Here and afterwards, d; denotes the j-th partial derivative. In short, we have

G(u) = D®(u)" D®(u),

(3.8)

(3.9)

where D® is the 3 x 2 Jacobian matrix of ®. We then extend G(u) to R? in such a way that
G(u) = I for u outside a compact set. With this metric tensor, the surface Riesz transform is

defined by (3.2).

Choose open sets U; (j = 1,2) in 0Q so that U; C Uy and Uy C U. Let x; (j = 1,2) be
Ct*_smooth functions such that xy; = 1 in Uy, supp(x1) C Uz, x2 = 1 in Uz, and supp(x2) C U.
We denote by M; the multiplication operator by y;, i.e.,

M;[f)(z) = x;(2)f (2),

and by ]\AJ/] the multiplication operator by x;(®(w)) for j = 1,2. Let ®* be a pull back operator,

namely,

For ease of notation, we set

and denote by M;; the multiplication operator by m;;. We emphasize that m,; are C*.

Let

and let

O [f)(u) := f(2(u))[01® x D@ (u)].

mi1 = (9110203 — g120193),
miz = (92152<,03 - 92231903)7
ma1 = — (9110202 — g120192),
Mag 1= —(g2102p2 — g2201p2),
ma1 = (9110201 — g120101),
m3z = (9210201 — g220101),

Xig = 1\72(M11R‘(1] + 11'11235)1\71,
Xi3:= MQ(MglR‘({ + ﬂfggRg)Ml,
Xo3 = J\E(MmRﬁ] + 111323‘5’)%,

0 X2 X3
R = —X12 0 X23
—X13 —Xo3 O

Then it is proved in [3] that the following relation holds:

O*MyTM, = RO*.

Note that the crux of the matter in Theorem 3.1 is that

ps(K*) = K*((K*)? — k31) = 0.

In view of (3.7) this fact follows once we have

™_-T=0,

which in turn follows from the following proposition:

(3.16)



Proposition 3.2. It holds that .
R? - MR =0. (3.17)

Since Theorem 3.2 proves Proposition 3.2, we see that the operator p3(K*) is compact on
L2 (06)3.

In order to push the polynomial compactness of K* on L?(9Q)% up to that on H, we borrow a
result on function spaces with two norms [14]. Let us review the idea briefly. Let L be a pre-Hilbert
space with an inner product (-,-). We introduce two norms on L; || - ||z and || - |z = (-,-)"/2.
Denote L with ||-||p and || - || by Lp and Ly, respectively. We assume that Lp is a Banach space
and that there exists a constant C' such that || f||zr < C| f||g for all f € L. Let A be a self-adjoint
(or a Hermittian) operator on L, that is,

(Af.9) = (f, Ag)

for all f, g € L. Furthermore, let # be the completion of L with respect to || - |z and A be the
extension of A to H. Under these settings, we have the following proposition.

Proposition 3.3. Let A be a self-adjoint operator on L and suppose that A is compact on Lp.
Then, A is compact on H.

Theorem 3.1 follows from Proposition 3.3 by setting Ly = L?(00Q)3, H = H~/?(99)% and
A = p3(K").

4 Essential Spectrum

The second one is a characterization of the essential spectrum of the eNP operator when 2 is
a planar domain with a corner. This result was obtained by a joint work with Eric Bonnetier
(Université Grenoble—Alpes), Charles Dapogny (Université Grenoble—Alpes) and Hyeonbae Kang.

We consider a bounded domain €2 in R? such that 012 is smooth except at a single corner point,
of angle o, 0 < o < 27, @ # 7 (our results extend quite straightforwardly to the case of domains
showing multiple corners). By translation and rotation, we may assume that the corner is located
at the origin, and that for some Ry > 0,

QN Br, ={x = (rcosf,rsinf)|0 <r < Ry, 0 <0 < a}, (4.1)

where B, denotes the ball of radius p > 0 centered at the origin. Here and in the sequel, an
arbitrary point z € R? is indifferently identified with its Cartesian coordinates (z1,z2) or its polar
coordinates (r,6) centered at the origin.

We define a set Y(kg, ) by

Y (ko, ) :=={p € (0,1 — ko)|d(p,&) = 0 for some £ > 0}, (4.2)
where

d(p, &) =16d. (p,§)d_(p,¢),
d+(p, &) =f1,£(p, ) f2,£(p,§) + 9(p, €),
fr,4(p,§) =sinh(ag)(p — 1) £ &sina,
f2,(p. &) =sinh((2m — a)&)(p + ko) = {sina,
9(p, &) =p(p — 1+ ko) sinh®((m — @)¢).

Then, we have the following relation.

Theorem 4.1. Let 0 < o < 2. Then, we have

— ;E(ko,u).

1
O R



Remark 4.1. In the workshop, the speaker presented that the equality holds, namely

1 1
== — % .
0ess(K*) = 5 = =35 (ho,)

However, we found a mistake in our proof. So, we excluded the opposite inclusion in the report.

A proof of Theorem 4.1 is based on the idea of Bonnetier and Zhang [4], where they discussed
the essential spectrum of the NP operator for the Laplace equation. It is worth mentioning that
Perfekt and Putinar also discussed it with the complex analysis [17]. However, we do not think
that their idea works in the case of Lamé system because it is not invariant under a conformal
mapping.

Let us briefly review some relative works on the essential spectrum of K* on different function
spaces from the energy space H~1/2(9Q)2. Mitrea [16] investigated the essential spectrum of K*
on LP(99)? for 1 < p < oo by applying the Mellin transform to the eNP operator directly, which
originates from Cotabel and Stephan [7]. Also, based on the idea of [7], Diomeda and Lisena [11]
discussed the well-posedness of a transmission problem on the Sobolev space H%/2(R?). Compared
with these works, we discuss the essential spectrum of K* on H 1/ 2(09)2, which is related to the
well-posedness of the transmission problem on H*!(R?).

The definition of the essential spectrum is as the following.

Definition 4.1. Let T : H — H be a bounded self-adjoint operator on a Hilbert space H. An
element 8 € R belongs to the essential spectrum cess(T) of T if (B1 —T') fails to be Fredholm.

From the physical point of view, the essential spectrum is of particular interest since it is a reso-
nance effect characterized by values of the properties inside the inclusion associated to ‘generalized
eigenfunctions’ which are highly concentrated; see for instance [12] in the context of electrostatics.

From Theorem 4.1 and by analyzing structures of the set X (kg,a), we obtain the following
three theorems on bounds of the essential spectrum of the eNP operator K*. Here, we use the
notation ko appearing in Theorem 3.1.

Theorem 4.2. Let 0 < o < 27w. If

— ko > 1+max{_|smu|’_|smu| }, (4.3)
21T — «
then,
| sin ¢ | sin o]
—Kg—————————, — u 0+ ——— ess (K¥).
Ko (27T — Oé)(l — kO)’ %] Ko, Ko + a(l — kO) Co ( )

Theorem 4.3. For 0 < o < 4w /3 (« # 7), there exists a positive number 01 depending only on
ko and o such that
[Ko — (51,;‘&'0] C Uess(K*)-

Theorem 4.4. For 27/3 < a < 27 (a0 # 7), there exists a positive number 02 depending only on
ko and o such that
[—Ho, —Ko + (52] C Uess(K*)~

Roughly speaking, Theorem 4.2 states that, provided the relation (4.3) holds, there are two
disjoint closed intervals containing —ro and ko as endpoints belonging to gess(K*). The next
two theorems, Theorem 4.3 and Theorem 4.4, hold without the assumption (4.3); together with
Theorem 4.2, they show that there are two closed intervals inside oess(K*) containing —kg and g
as interior points. Notice that, strictly speaking, the essential spectrum could very well lie only on
one side of either kg or —kg.

Our proof relies on construction of a singular Weyl sequence.



Proposition 4.1. Let A be a self-adjoint operator on a separable Hilbert space H. One real value
K belongs to oess(A) if and only if there exists a singular Weyl sequence, that is, a sequence of
vectors () C H such that

H‘Pn” =1,
(kI — A)[pn] — 0 strongly in H,
wn — 0 weakly in H.

Let O be a bounded smooth domain in R? such that Q C O, and let us consider the following
transmission problem.

Lyu=f in O\Q,
Lyu=f in 0,
uly = ul_ on 09, (4.4)
Opul+ = kdyu|—  on 99,
u=20 on 00.
The space H}(O)? of functions in H'(0)? with null trace on O is equipped with the inner
product (-, ). and the associated norm || - || defined by:

(u,v)e ::/Cﬁu:%dw:/ ()\(V-u)(v~v)+2u§u:%> dz,
o 0

where A : B = Z?,j:l a;i;b;; is the Frobenius inner product of two matrices A = (aij)ij:l and
B = (bij)} j=1, and where the function 7 represents the complex conjugate of the function u. Let
us recall that (-,). is indeed an inner product on H}(0)? and that the norm || - |, is a norm
equivalent to the classical norm

||u|\§{[;(9)2 = /QVU:Wd:r,

as follows from the classical Korn inequality and the strong convexity assumption; see for instance
[5] Chap. 6 and the references therein about this point.

We now come to the definition of the Poincaré variational operator Tq, : Hi (0)? — HE(O)? for
the Lamé system: for u € H} ()2, Tqu is the unique element in H}(0O)? such that

(Tow, v). = /S | (MY - 0)(T0) + 215 : V) dn

for all v € H}(O)?. The existence of Tu is guaranteed by the Riesz representation theorem.
It readily stems from its definition that Tq is self-adjoint on H}(O)? (with respect to the inner
product (+,).). Also, Tq is a positive operator with operator norm ||Tq|| = 1.

The Poincaré variational operator has the following spectral structure.

Lemma 4.1. The spectrum o(Tq) of Tq is contained in the interval [0,1]. Moreover, the space
H}(2)? has the following orthogonal decomposition:

H5(Q)? = Ker(Tq) @ Ker(I — To) @ H,
where:
o Ker(To) = {u € H}(Q)?, ulp € V};
e Ker(I — Tg) = {u € H{(Q)?, u=0 on Q\D} ~ H}(D)?;
o H is defined by:

H= {u € HY(Q)? | Ly,u=0in DU(Q\D), / out pjds =0, j= 1,2,3} . (4.5)
oD



There is a relation between the essential spectrum of T, and that of the eNP operator K*.

Proposition 4.2.
1 *
Uess(TQ)\{O, 1} = 5 — Uess(K )

In what follows, we discuss the essential spectrum of the Poincaré variational operator instead
of that of the eNP operator.
We consider the following transmission problem

V- (a(x)(C@u) =0in R?, (4.6)
where
T
with the polar coordinates x = (rcos#,rsinf). We also write the displacement vector using the

polar coordinates as
u = up(r,0)e, + ug(r,d)eq,

where e, = (cosf,sinf) and ey = (—sin b, cos#), and we seek a formal solution of the form
up(r,0) = rop(0),  up(r,0) =r"py(0), (4.7)

with a complex number 7.
The pair (¢, g) in (4.7) should satisfy

)+ (X + ) — (A +3p))ph + (A +2u)(n* — 1), = 0,
A+ 2006 + (A + )+ (A4 3p)g; + p(n* = 1)pe = 0

in (0, @) U (a,2m) with the transmission conditions

SDT(O) = (PT(QTF)v

©0(0) = py(27),

k{1 (0) + p(n — 1)ipe(0)} = ppy.(2m) + p(n — 1) e (27),

F{A +20)05(0) + (A + A+ 20)0,-(0)} = (A + 2u) 5 (2m) + (A + A + 2p) 0 (27),
or(a-) = pr(ay),

po(a—) = po(ag),

k{ppr(a-) + p(n — pe(a-)} = pel(ay) + p(n — 1)pe(ay),

R{A+ 2u)pp(a-) + (An + A+ 2p)er(a-)} = (A + 2u)pp (o) + (An + A+ 2p)pr(ay), wo)
49

where ot = lim.jga +e.
We rewrite the system (4.8) as a system of first order ordinary differential equations. To achieve
this, let w1 = ¢y, Y2 = o, Y3 = @), s = ¢); then, we have:

Y1 Y1
d Y2 P2
— =A s 4.10
do |3 ©3 ( )
P4 P4

where A is the matrix with constant entries:

0 0 1 0
0 0 0 1
Ao A+ 2u)(1 —n?) 0 0 A +3u) — (A4 pw)n
2 I
0 p(l—=n) A+ pn+ (A +3p) 0
A+2p A+2p

10



The characteristic polynomial of this matrix reads: for all v € C,
det(vI — A) =~+* +2(1 +n*)y* + (n* — 1)2
Another calculation reveals that A has four distinct eigenvalues, which are given by;
=040, =040, =0 —n)i, ya=—(1-n)i

and the corresponding eigenvectors are respectively given by

1 1 n + k’o n + k’o
@ —1 —(n— ko)t and (n— ko)i
(It |7 | —A4ni |7 | A=n)n+ko)i |’ =1 =n)(n+ ko)i

—(1+mn) —(1+mn) (1 =n)(n — ko) (1 =n)(n — ko)

It is worth noticing that all four eigenvalues v;, j = 1,...,4 are independent of the Lamé constants
(A, i), while the associated eigenvectors actually depends on them through the parameter k. Now
defining the change of basis matrix

1 1 1+ ko 1+ ko

i —i —(n — ko)i (n — ko)i
(I+n)i —(A+n)i (L=n)n+ko)i —(1—n)(n+koil’
—(I+n) —T+n) Q-nn—k) (Q—=n)n— ko)

it follows that A rewrites

P =

A = Pdiag[”/l?“/?vﬁ/?)?’yll] P_17

and so the general solution to (4.10) is given by
(%17%275037994)71 :PD(H)(Z, (4-11)
where a is an arbitrary constant vector in C*, and

en? 0 0 0
0 €2 0 0
0 0 en? 0
0 0 0 enf

D(0) =

Let ap and aq be constant vectors in (4.11) in intervals (0, «) and (a, 27), respectively. With
the above notations, the transmission conditions (4.9) can be written as

I(E)MPD(0) —MPD(2r)] fap] _ (4.12)
I(k)MPD(a) —MPD(a) | |aq| = '
where
) o 0 o 100 0
0 T o0 o0 01 0 0
M = 0 pn—1) 0 , 1(k) = 0 0 k£ O
A+ A+ 24 0 0 A+2u 0.0 0k

In order for (4.12) to have a non-trivial solution, the matrix in the above system has to be
degenerate, that is:

(4.13)

det [I(k)MPD(O) —MPD(ZW)} ol

I(k)MPD(a) —MPD(c)

Our task is now to find 7 and k satisfying this equation for given values of the Lamé constants
A, it and the aperture angle o. To achieve this goal, assuming that 7 is neither 0 nor 1, P and M
are invertible. Therefore, we may factorize (4.13) as:

et [I(k)MPD(o) —MPD(ZW)}
I(k)MPD(c) —MPD(c)

11



— det {MP 0 ] [P P'M-I(K)MP  —D(2r)

0 MP||P'M-'I(k)MPD(a) —D(a)
= p~*(det M P)*det (D(a — 27)B(p,n) — B(p,n)D(cx)),

where we have introduced the reduced variable:

b= IZOT_ll (4.14)
and the 4 x 4 complex-valued matrix:
B(p,n) = pP M~ I(k)MP.
Notice that since k£ < 0 and kg < 0, the reduced variable p satisfies:
pe (0,1 ko). (4.15)

Note also that the entries of B(p,n) depend on the Lamé coefficients (A, i), although the depen-
dence is not made explicit in the notations. The condition that (4.13) is now reduced to the
following equation:

d(p,n) := det(D(a — 2m)B(p,n) — B(p,n)D(e)) = 0. (4.16)
Through straightforward but tedious calculations, one can see that

ko+p 7 ko+n*  n(ko+1)

0 -1 -n p—1
Expanding (4.16), we obtain:
d(p,n) = 4(cos(2mn) — 1)*(p — 1)*(p + ko)?
+ 4n (1 cos(20)) (cos((47 — 20)n) — 1)(p + ko)
+ 4n*(1 — cos(2a))(cos(2an) — 1)(p — 1)?
( )

+ 8ko(cos(2mn) — 1) (cos((2m — 2a)n) — 1)(p — 1)(p + ko)
— 8n%(1 — cos(2a))(cos(2am) — 1)(p — 1)(p + ko)
+ 4{ko(cos((27 — 2a)) — 1) — (1 — cos(2a))p}. (017)

We should emphasize that the same formula as (4.17) was also derived by Diomeda and Lisena
[11]. It is also worth mentioning that the function d(p,n) is even with respect to 7, namely,

d(p,—n) = d(p,n).

Let us presently seek the pure imaginary zeros nn = i (£ € R) of the determinant d(p,n). For
simplicity, we let d(p, &) := d(p,i£). It then follows from (4.17) that:

d(p,€) = 4(cosh(2m) — 12(p — 12(p + o)
—4€2(1 — cos(2a))(cosh((47 — 20)€) — 1)(p + ko)?
—4€%(1 — cos(2a))(cosh(2a¢) — 1)(p — 1)?
8k (cosh(2mE) — 1)(cosh (2 — 20)€) — 1)(p — 1)(p + ko)
+ 8¢%(1 — cos(2a)) (cosh((2m — 2a)¢) — 1) (p — 1)(p + ko)
+ 4{ko(cosh((2m — 2a)¢&) — 1) + (1 — cos(2a))E2}2.
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Elementary computations based on the elementary identity

s+t
cosh s — cosht = 2sinh s+

s—1
sinhsT, s,t € C,

show that J(p, ) admits the following factorization:

C?(p,f) = 16d+(p,§) d- (pvg)v where d:l:(p7 5) = fl,:l:(p7 5) f2,:|:(p7 f) + g(p7 5)7 (418)
and
f1.1(p,€) :=sinh(a)(p — 1) £&sina, (4.19)
fo.+(p,€) :=sinh((2m — a)&)(p + ko) £ {sina, (4.20)
9(p,€) = p(p — 1+ ko) sinh*((m — @)¢). (4.21)

Let us remark that, owing to the estimate (4.15) for p, one has p(p — 1 + ko) < 0.

Summarizing the above argument, the condition p € X (ko,«) holds if and only if there is
a formal solution to the transmission problem (4.6) of the form (4.7) with the pure imaginary
exponent 7 = €.

Now we are ready to prove the following inclusion.

Proposition 4.3. For any kg < —1 and 0 < a < 27, a # w, one has:

1
1—ko

Z(ko,a) C Uess(TQ)'

Since 0ess (1) is closed, it suffices to show that all of the interior points in (1/(1 — ko)) X(ko, o)
belong to oess(Tq). For such a number p, there exists a nontrivial solution to the transmission
problem (4.6) of the form (4.7) with the pure imaginary exponent 7 = i¢.

Straight computations show that if v and v are of the form u = w.(r,0)e, + up(r,6)ey and
v = v.(r,0)e, + vg(r,f)eg, then

Vu =0, +r tu, +1r 'dguy, (4.22)
and
(@u) : (@v) = 0,y Opvy + 1772 (U, + Ogug) (v + Dpg)
+ % (Orug + 1 10gur — 7 ug) (Orve + 1 9pv, — 1 ) (4.23)

where 0, and 9y denotes the partial derivative with respect to r and 6, respectively. Thus, we see
that the solution u given in (4.7) with n = i€ and £ > 0 satisfies:

|V -ul?<Cr=? and |§u|2 < Cr~?in Bg,. (4.24)
Let x1 : RT — [0,1] be smooth a cut-off function such that:
xi(s) =0, s <1 xals) =1 522 |a(s)l <G

choosing ro < Rp/2, let x2 : RT — [0, 1] be another smooth cut-off function such that:

x2(s) =0, s> 2rg; x2(s) =1, s <ro;  [xa(s)| < C.

In the above equation, and throughout the proof, C' > 0 is a positive constant which may change
from one line to the next, but is in any case independent of e. We set x{(r) := x1(r/¢) for e > 0,
and define

ue(r) = sexi(r)xa(r)u(z), @ € Bry, (4.25)

where the constant s, is chosen so that ||uc|e = 1. We can show that (u.) is the desired singular
Weyl sequence, which proves Proposition 4.3.
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