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Abstract

We study the asymptotic solution of the equation of the pressure function s — P(s¢.) for a
perturbed potential ¢. defined on a shift space with countable state. We show that if the perturbed
potential ¢. has an asymptotic expansion for a small parameter ¢ and some conditions are satisfied,
then the solution s = s(e) of P(s¢.) = 0 has also an asymptotic behaviour with same order. In
addition, we also give the case where the order of the expansion of the solution s = s(e) is less than
the order of the expansion of the perturbed potential ¢.. Our results can be applied to problems
concerning asymptotic behaviors of Hausdorff dimensions obtained from Bowen formula.

1 Preliminaries

In this section we will recall the notion of thermodynamic formalism and some facts of
Ruelle transfer operators which were manly introduced by Sarig [4, 5, 6].

Let G = (V, E,i(-),t(-)) be a directed multigraph endowed with countable vertex set
V', countable edge set F, and two maps i(-) and #(-) from F to V. For each e € E, i(e)
is called the initial vertex of e and t(e) called the terminal vertex of e. Denoted by E*
the one-sided shift space {w = wow -+ € [[iog E : t(wy) = i(wk41) for any k > 0}. The
shift transformation o : E* — FE* is defined by (ow), = wiy1 for any & > 0. For
0 € (0,1), a metric dy on E* is given by dy(w,v) = #nH{k20:w#vel - The metric space
(E>°,dp) is compact if F is finite. On the other hand, this metric space is complete and
separable and however may be not compact when FE is infinite.

For K=R or C, let C(E*,K) be the set of all K-valued continuous functions on E*,
and Fy(E>,K) the set of all K-valued dp-Lipschitz continuous functions on £*. We define
Cy(E>,K) as the set of all functions f € C(E*,K) with ||f||c < oo and Fp,(E>, K)
as the set of all functions f € Fp(E>,K) with ||f|l¢ < oo, where ||flle = ||f]loc + [f]o;
[ £lloe = supuep= | f(w)] and [f]p = sup{|f(w) = f(v)|/do(w, v) : w,v € E*, w # v, wo =
vo}. It is known that if E is finite then the equalities C(E>*,K) = Cy(E*,K) and
Fy(E>*,K) = Fpu(E>,K) hold. For simplicity, the notation K is omitted from these
definitions when K = C.



The incidence matrix A = (A(ee’)) of E* is an E x E zero-one matrix defined by
Alee') =11if t(e) = i(e') and A(ee’) = 0 if t(e) # i(e’). The matrix A is said to be finitely
irreducible if there exists a finite subset F' of | J;—, E* such that for any e, ¢’ € E, ewe’
is a path on the graph G for some w € F. This matrix A is called finitely primitive if
there exist an integer n > 1 and a finite subset F' of E* for some k > 0 such that for
any e, e’ € E, ewe' is a path on the graph G for some w € F. Note that A is finitely
irreducible if and only if the dynamics (E*, o) is topologically transitive and A has the
big images and pre-images property [5], i.e. there exists a finite set F' of E such that for
any e € E, A(e’e)A(ee”) =1 for some ¢, ¢” € F. Similarity, A is finitely primitive if and
only if (E*, o) is topologically mixing and A has the big images and pre-images property.

Assume that the incidence matrix of £ is finitely irreducible and ¢) : £ — Risin
Fy(E>,R). We recall the topological pressure P(1)) of ¢ defined by

k—1
P()= lim log S exp(sup Y wlol),

weEk : [w]#0D wefw] J=0

where [w] = {w € F® : wy---wp_1 = w} denotes the cylinder of a word w € E*. This
limit exists in (—oo, +00] (see [2]). A o-invariant Borel probability measure p on E* is
said to be a Gibbs measure of a function v : E* — R if there exist constants ¢ > 1 and
P € R such that for any w € E* and k > 1

1< p([wows - - - we—1]) <
~ exp(—kP+ Zf;é P(oiw))

For the existence of this measure, see Theorem 1.1 below (see also [5]).
For a real-valued function ¢ defined on £*°, the Ruelle operator £, associated to 1) is
defined by

Lyflw)y= >,  "f(e-w)
e€E : t(e)=i(wo)
if this series converges in C for a complex-valued function f on E* and for w € E*. Here
e - w is the concatenation of e and w, i.e. ¢-w = ewgw; - -+ € E*°. It is known that if £
is finitely irreducible and v is in Fy(E>°, R) with finite pressure, then £, is a bounded
linear operator both on Fp;,(£>) and on C,(E£*).
The following is a version of Ruelle-Perron-Frobenius Theorem for £,:

Theorem 1.1 ([1, 4]) Let G = (V, E,i(-),t(:)) be a directed multigraph such that A is
finitely irreducible. Assume that 1p € Fy(E> R) with P(¢)) < oco. Then there exists a
unique triplet (A, h,v) € R x Fy(E*®) x Cp(E®)* such that the following are satisfied:



(1) The number X is positive and a simple mazimal eigenvalue of the operator L,
Fg’b(Eoo) — ngb(Eoo).

(2) The operator Ly = Fyp(E>®) — Fpu(E>) has the decomposition
Ly= P +R

with PR = RP = O. Here the operator P is a projection onto the one-dimensional
ergenspace of the eigenvalue X. Moreover, this has the form Pf = ono fhdv for
f € Cy(E>), where h € Fyp(E*,R) is the corresponding eigenfunction of A\ and v
is the corresponding eigenvector of A of the dual L3, with v(h) = 1. In particular, h
satisfies 0 < inf,, h(w) < sup, h(w) < 0o and v is a Borel probability measure on E>.

(3) The spectrum of R : Fyu(E®) — Fpp(E™) is contained in {z € C : |z — A| > p}

for some small p > 0.

Note that the eigenvalue \ is equal to exp(P(¢))) and hv becomes the Gibbs measure of
the potential ¢. For simplicity, we sometimes call i the Perron eigenfunction of £, and

v the Perron eigenvalue of L7,.

2 Known result : the case when F is finite

We give an asymptotic solution of P(sp(e,-)) = 0 for s € R under the finite state space
given in [7]. Recall that if fF < 400, ¢ € Fp(E>®,R) and ¢ < 0 are satisfied, then the
equation P(sy) = 0 has a unique solution s > 0. Then we have the following.

Theorem 2.1 ([7, Theorem 2.6]) Assume that E is finite and the incidence matriz
A of E> is (finitely) irreducible. Assume also that functions g(e,-) : E* — R has
the form g(e,") = g+ qre + -+ + gn€™ + Gn(€, )€™ for some Hélder continuous functions
9= 00:91,92, - - - » Gn, Gn(€, +) from the metric space (E>,dy) to R with 0 < ||g]l < 1 and
lim, _, o ||gn(€,*)||o = 0. Take a unique solution s = so > 0 of the equation P(slog|g|) =
0. Then for any small € > 0, the solution s = s(€) of the equation P(sloglg(e,-)]) =0
exists uniquely. Moreover, there exist numbers sy, Sa, ..., 8, € R such that s(e) has an

n-order asymptotic expansion
s(€) = sp+ s1€+ -+ + spe” + o).
ase — 0.

Corollary 2.2 Under the same conditions of Theorem 2.1, we also assume that the re-
mainder G, (€,-) of g(e,-) is equal to zero. Then the solution s(€) has an m-order asymp-

totic expansion for any m > 1.



Remark 2.3 Each coefficient s in Theorem 2.1 is precisely decided (see the proof of
Theorem 2.6 in [7]). Indeed, this number is given for £k = 1,2,..., n inductively by

k—1
—1
m <Z Vi—i(Lsgl0g19/((10g |g]) R Sz"’ZVk —i(M; h))

Jj=1
where p is the Gibbs measure of sqlog | g| My, ..., M, are coefficients of the expan-
sion Ly(o)toglge)] = Lsotoglgl + 2ojm1 M€ + (s(€) — s0)Lagroglgl((loglgl) - ) + o(e") of
the Ruelle operator L(e)1og|g(e,)|> Vo, ,Vn are coeflicients of the expansion v(e, f) =

w(f) + 30 wi(f)el + o(enY) for f € Fyy(E™) of the Perron eigenvector v(e, ) of the
dual of Ly)10gg(c, ), and h is the Perron eigenfunction of Ly 164 g|-

3 Main results : the case when F is infinite

First we will state one of our main results. Assume that there exist functions g, g1,..., 9, €
Fou(E>,R), g(e,-),gnl€,") € Fyo(E>®,R) and numbers cy,co,c3 > 0, ¢ € (0,1] and
ca(€) > 0 with lim, _, ¢ c4(e) = 0 such that

gle,) =g+ gre+ -+ gn€" + gnle, -)e" (1)

lgllee <1 (2)

either mf g( )>0or supg(w) <0 foreacheec F (3)
wele] wele]

[lg(w)| = |g(V)]] < c1|lg(w)|do(w,v)  for w,v € E* with wy = vy (4)

and the inequalities

lgr(wW)| < colg(w)|? for k=1,2,... ,nand w e E* (5)
|95 (w) — gr(v)] < csg(W)|*dp(w, v)  for w,v € B with wy = vy (6)
|9n (€, w)| < cale)|g(w)]? for w e £ (7)

hold for any w € E*, k=1,2,...,n and any small € > 0. Let

=inf{s >0 : P(sloglg|) < +oo}

and put S(n) := max(s + (1 — ¢)n,s/q). We also assume that
there exists so > S(n) such that P(sqlog|g]) = 0. (8)

Then we have the following:

Theorem 3.1 ([8]) Fiz a nonnegative integer n. Let G = (V,E,i(-),t(-)) be a graph
multigraph satisfying that V, E are countable and the incidence matriz of E* is finitely

4



irreducible. Assume that the conditions (1)-(8) are satisfied. Then exists a unique solution
s = s(€) of the equation P(slog|g(e,-)|) =0 for any small € > 0, and there exist numbers

S1,---, 8y € R such that s(€) has an n-order asymptotic expansion
s(€) = sg+ s1€+ -+ spe” + 5, (€)€”
with 5,(¢) — 0 ase — 0.

Note that each coefficient s;, is decided as well as in Remark 2.3.
Next we give a sufficient condition for a case that s(¢) does not have an (n + 1)-order
asymptotic expansion under the conditions the conditions (1)-(8). We introduce the

following conditions:

E is infinitely countable 9)

gn(e,) =0 (10)

q<l1 (11)

lg(w)] < |g(e,w)| for any w € E* and for any small € > 0 (12)
1 o

there exist qo € [q, T;q i ) and ¢; > 0 such that ¢;(w) > C5M (13)

+1 sign(g(w))
so< g+ (1—qo)(n+1). (14)

Proposition 3.2 ([8]) Under the same conditions of Theorem 3.1, we also assume the
conditions (9)-(14) are satisfied. Then the remainder of the expansion s(€) = so + s1€ +
ot €+ Sp(€)€n satisfies lime —, o |Sp(€)]/€ = +o00. (Compare with Corollary 2.2).

4 Exmaples
4.1 Nussbaum-Priyadarshi-Lunel’s infinite iterative function systems

We refer to [3]. We assume the following (i)-(ix):
(i) G = ({v},E={1,2,---}) is an infinitely directed graph with singleton vertex.
(ii) (J,d) is a compact metric space. Moreover, J is perfect set, namely for any =z € J
there exists a sequence xy € J with z # = (k > 1) such that limy, , o d(xy,z) =0.
(iii) For any e € E, T, : J — J is a Lipschitz map satisfying sup,., Lip(T,) =: r < 1.

(iv) Each T, is an infinitesimal similitude on J, i.e. for each z € J, for any sequences (zy)
and (y) on J with zy # y, for each £ > 1 and z, — x and y, — x, the limit

i L) T )

=: DT (x
k — oo d(zk, yi) (=)

exists in R and is independent of the particular sequences () and (yy).
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(v) DT,(x) > 0 For any e € E and z € J.
(vi) There exist constants ¢ > 0 and § > 0 such that for any =,y € J, |DT.(x)— DT.(y)| <
c| DT, (x)|d(x, y)".
(vii) There exist ¢ > 0 and = € J such that Y _,(DT.(z))" < 4o0.
(viil) For any n > 0 there exists ¢(n) > 1 with lim,, ., 4o c() = 1 such that for each e € F
and z.y € J with 0 < d(z,y) <,
d(Te(x), Te(y))
d(z,y)

(ix) For each k > 1, the limit set K} of the finite iterated function system (11,75, ..., 7))
satisfies that the restricted map T.(Ky) N Tw(Ky) = 0 for each 1 < e < ¢’ < k with
e# ¢, and T.|g, : K — Jis one to one for 1 <e <k.

e(n)”' DT.(x) < < ¢(n) DT, (x).

Such a system is firstly introduced by Nussbaum, Priyadarshi and Lunel in [3]. For
convenience, we call such a system (J, (1;)) an NPL system.

The coding map 7 : E* — J is defined as {nw} = {(NyegLw, © - - © T, (J)}.
Let K be the limit set of the system (G, .J, (O.)) which is given by K = n(£*). Put
p(w) = log DT,,,(mow). Then a version of Bowen’s formula is described as follows:

Theorem 4.1 Assume that (J,(1¢)) is an NPL system and K is its limit set. Then we
have dimy K = inf{s > 0 : P(sp) < 0}. Moreover, if (J, (1)) is strongly reqular, i.e.
0 < P(sp) < 400 for some s > 0, then dimy K = s if and only if P(sp) = 0.

Fix n > 0. To formulate asymptotic perturbation of NPL systems, we consider the

following conditions:

(I) A pair (J,(T,)) is a strongly regular NPL system satisfying that .J is a compact
subset of a Banach space (X, || - ||). Moreover, there exists an open connected subset
O of X containing J such that 7, is extended to a map of C"(O, X) and DT, is
extended to a map of C"*#(O,R).

(IT) A pair (J, (Te(e,-))) is an NPL system with a small parameter € > 0 satisfying that
there exists a number s € (s/dimy K, 1] if n =0o0r s € (1 — (dimyg K — s)/n, 1] if
n > 1 such that the following conditions (a)-(d) are satisfied:

(a) For each e € E, T,(e, -) has the n-asymptotic expansion:
T.(e,) =T+ > Tore® + T&n(e, )" on J

for some mappings T, € C**1(0,X) (k=1,2,...,n) and T, (¢, ) € C*(O, X)
with sup,cp sup,c, ||Ten(e,$)|| — 0.
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(b) For each e € E, DT,(¢,-) has an n-order asymptotic expansion:
DT,(¢,-) =DT, + 327, Sere® + S.n(e, ) on J

for some mappings S,z € C" *4(O,R) (k=1,2,...,n) and S. (¢, ) € C*(O,R)
with sup,p sup,c; [Sen(e,2)] — 0 with 8(e) > 0 for € > 0.

(¢) There exist ¢ € (max( 1 — (dimy K —s)/n, s/ dim; K ), 1] and a constant ¢ > 0
such that foranye € E, [ =0,1,...,n,x € J,ye Oand k=1,2,...,n—1+1,

TG (@) = TV ()| <e(DT(2)l — ]|,
|75 (2)|| <e(DT.(x))".

(d) There exists a map c(¢) > 0 with lim, _, gc(e) = 0 such that for any e € F,
rcJande>0

|Sen(e, 2)]l < cle)(DTe(z))".

By applying Theorem 3.1 to the function g(e,w) := log DT, (¢, 7(€, ow)), we obtain the
following, where 7 (e, -) denotes the coding map of (J, (T¢(e,-))).

Theorem 4.2 ([8]) Under the above conditions (I) and (II) for NPL systems (J, (T.(€,-)))
with small parameter € > 0, the Hausdorff dimension of the limit set K(€) of (J, (Te(e,)))
has the form dimy K(e) = dimpy K+ s1e+- -+ 5," +0(€") for some numbers sy, ..., s, €
R.

4.2 Linear countable IFS

Let a > 1. Let E be the set of all positive integers. We take an infinite graph G =
({v}, E), J, = 10,1 and O, = (—n,1 + n) for a small n > 0. For e € E and ¢ > 0, we
define a function T,(¢,-) : O, — O, by

T.(e,x) = (i + iE)L + b(e),
5¢  af

where we choose b(e) = 1 —1/2¢71. Put g(e,w) = (1/5*°) + 1/a“?¢. Denoted by K (¢) the
limit set of the IFS (T.(¢,-))ccr which is defined as K(€) = J,cpee (1o Lio(€:5) 0+ 0
1., (€, -)(Jy). It is not hard to check that the function g(e, -) satisfies all conditions (1)-(8)
by putting g(w) = 1/5“°, g1(w) = 1/a“*, go = -+ = g, = 0, and g, (¢,-) = 0. Moreover
the topological pressure of slog|g| has the equation P(slog|g|) = log> .., (1/5%)" for
s > 0. Therefore, a Bowen formula [2] implies that P(s(0)logl|g|) = 0 if and only if
> e (1/59)°©@ = 1 if and only if dimy K(0) = s(0) = log2/log 5. Moreover, s = inf{s :
P(slog|g|) < +oo} is equal to 0.



Theorem 4.3 ([8]) Assume the above conditions for T,(e,-). Then we have the following:

(1) If a > 5 then the Hausdorff dimension s(e¢) = dimy K(€) has an n-order asymptotic
expansion s(€) = s(0) + sy€ + -+ + sp€” + 0(€") for any n > 0. FEach coefficient sy,
(k=1,2,...,n) is decided as

min(v,q)

5 — Z Z Sy vavj_so 10g5 q Jzeq j (25;))6, (15)

Svsu,Usqs

(v,q)#(0, 1)

where squ—y and a, jso) are defined by

(s(0) — s())t = 10T EET e o) B=1 i
Sko + Sk1€+ + Spn1€" 4 spne” +o(e") (k> 2)
5
1 (k=1i=0)
S{l . SJz 1
Z —11' (k>1andk <i<n)
Skyi = J1sdi—120: 2 Ji-1!

J1+Fii—1=k
J1t2i2++(E-1)g; 1 =i

0 (otherwise),

and

j=0
(((0)
=0
( v ) (j=0)
1 v—j
Z _'H(S(O>_ip> ((>1and0<j<w)
Ay, 5,5(0) = Ogiill’;..’,iizjgfkl v! o
v—j
v (v>1and j =)
0 (v <),

\

where (f}) 18 the binomial coefficient. In particular,

~ log?2 )
"1 (log5)2 4a — 10
. ~ 25log?2 < 1 B alog 2 log(2/5) )
> (log5)? \2(2a —5)2  (2a—5)(4a2 —5)2 ' 8a2—100/"

(2) If 1 < a < 5 then take the largest integer k > 0 satisfying a < 5/2Y/*+D " In this case,



s(€) has the form

s(0) + spe+ -+ spe® + 3(e)Floge  (a =5/2Y¢FV for some k > 0)
s(0) 4+ s1e4 - - + spe® + é(e)elozg/i) (otherwise)

s(€) =

with [3(e)] <1 ase — 0, i.e. ¢t <|5(e)| < ¢ for any € > 0 for some ¢ > 1, where
each s; is defined by (15).

References

[1] J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov
shifts and multidimensional piecewise expanding maps. Erg. Th. Dynam. Sys., 23,
1383-1400 (2003).

[2] R. D. Mauldin and M. Urbaiiski, Graph Directed Markov Systems : Geometry and
dynamics of limit sets, Cambridge (2003).

[3] R. D. Nussbaum, A. Priyadarshi, and S. V. Lunel, Positive operators and Hausdorff
dimension of invariant sets. Trans. Amer. Math. Soc. 364, no. 2, 1029-1066 (2012).

[4] O. M. Sarig, Thermodynamic formalism for countable Markov shifts, Erg. Th. Dy-
nam. Sys. 19, no. 6, 1565-1593 (1999).

[5] O. M. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer.
Math. Soc. 131, no. 6, 1751-1758 (2003).

[6] O. M. Sarig, Lecture Notes on Thermodynamic Formalism for Topological Markov
Shifts, Penn State (2009).

[7] H. Tanaka, An asymptotic analysis in thermodynamic formalism, Monatsh. Math.
164, 467-486 (2011).

[8] H. Tanaka, Asymptotic solution of Bowen equation for perturbed potentials defined
on shift spaces, preprint (2019).

Department of Mathematics and Statistics
Wakayama Medical University
580, Mikazura, Wakayama-city, Wakayama, 641-0011, Japan

htanaka@wakayama-med.ac. jp

RIS PR PO Pt « PROFATTRGE T WG ef



