On Possible Limit Functions on a Fatou Component in
non-Autonomous Iteration

Mark Comerford Christopher Staniszewski
University of Rhode Island Framingham State University

Abstract

The possibilities for limit functions on a Fatou component for the iteration of a single poly-
nomial or rational function are well understood and quite restricted. In non-autonomous
iteration, where one considers compositions of arbitrary polynomials with suitably bounded
degrees and coefficients, one ought to observe a far greater range of behaviour. We show this
is indeed the case and we exhibit a sequence of quadratic polynomials which has a bounded
Fatou component on which one obtains as limit functions every member of the classical
Schlicht family of suitably normalized univalent functions on the unit disc. The main idea
behind this is to make use of dynamics on Siegel discs where high iterates of a single poly-
nomial with a Siegel disc approximate the identity arbitrarily closely on compact subsets of
the Siegel disc.

1 Introduction

1.1 Non-Autonomous Iteration

We are concerned with non-autonomous iteration of bounded sequences of polynomials, a
relatively new field in complex dynamics. In classical complex dynamics, one studies the
iteration of a (fixed) rational function on the Riemann sphere. Often in applications of dy-
namical systems, noise is introduced, and thus it is natural to consider iteration where the
function at each stage is allowed to vary. Here, we study the situation where the functions
being applied are polynomials with appropriate bounds on the coefficients and degrees.

Let d>2, M >0, K > 1, and let {P,,}>°_; be a sequence of polynomials where each

Pm(z) = adm’mzdm + dem_Lmde_l B R + a1.m?2 + aom
is a polynomial of degree 2 < d,, < d whose coefficients satisfy
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ES lag, m| <K, m>1 J|agm| <M, m>1, 0<k<d,—1.

Such sequences are called bounded sequences of polynomials or simply bounded sequences. For
each 0 < m, we let (),, be the composition P, o------ o % o I’} and, for each 0 < m < n,



we let @), be the composition P, o------ o P90 Ppyq. For each m > 0 define the mth
iterated Fatou set or simply the Fatou set at time m, F,,, by

Fn={2€C:{Qmn}>,, is a normal family on some neighborhood of z}

where we take our neighborhoods with respect to the spherical topology on C and let the
mth iterated Julia set or simply the Julia set at time m, J,,, to be the complement C \ F,,.

1.2 The Schlicht Class

The Schlicht class of functions, commonly denoted by S, is the set of univalent functions
defined on the unit disk such that, for all f € S, we have f(0) = 0 and f/(0) = 1. This
is a well-studied class of functions for which many useful results are known (see [2, 7]). By
rescaling, one can often apply these results to an arbitrary univalent function, making the
knowledge of this class quite useful in practice.

1.3 Statement of the Main Theorem

Our main goal is to prove the following result:

Theorem 1.1 There exists a bounded sequence of quadratic polynomials {Pp,}0°_; and a
bounded Fatou component V' for this sequence such that, for all f € S, there exists a subse-
quence { P, 132, of {Pn}oo_y such that {Qm, }3>, converges locally uniformly to f on V.

The strength of this statement is that every member of S is a limit function on the same
Fatou component for the same polynomial sequence.
. . . 2mi(v/5-1)

The proof relies on a scaled version of the polynomial P\(z) = Az(1—z2) where A =e~ =z .
As P, is conjugate to an irrational rotation on its Siegel disk about 0, which we denote by U,
we may find a subsequence of iterates which converges uniformly to the identity on compact
subsets of Uy. We will rescale Py so that IC, the filled Julia set for the scaled version P of
P), is contained in a small disc about 0. This is done so that, for any f € S, we can use the
distortion theorems to control |f’| on a relatively large hyperbolic disk inside U, the scaled
version of U.

The initial inspiration for this proof came from Lowner chains (see e.g. [3, 7]), particularly
the idea that a univalent function can be expressed as a composition of many univalent func-
tions which are close to the identity. Given our remarks above about iterates of Py which
converge to the identity locally uniformly on U,, this encouraged us to think we might be
able to approximate these univalent functions which are close to the identity in some way
with polynomials and then compose these polynomials to get an approximation of the desired
univalent function on some suitable subset of Uy, a principle which we like to summarize as
‘Do almost nothing and you can do almost anything’.



Figure 1: The filled Julia Set for Py with Siegel Disc highlighted.

The proof of Theorem 1.1 will follow from an inductive argument, and each step in the
induction will be broken up into two phases:

e Phase I: Construct a bounded polynomial composition which approximates given func-
tions from S on a subset of the unit disk, with arbitrarily small error.

e Phase II: Construct a bounded polynomial composition which corrects the error of the
previous sequence to arbitrary accuracy on a slightly smaller subset.

Great care is needed to control the error in the approximations and to ensure that the domain
loss that necessarily occurs in each Phase II eventually stabilizes, and that we are left with
a non-empty region upon which the desired approximations hold.

To create our polynomial approximations, we use what we call the Polynomial Implementa-
tion Lemma. Suppose we want to approximate a given univalent function f with a polynomial
composition. Let v and I' be two analytic Jordan curves outside I such that v is inside I’
while f(7) is still inside I". We construct a homeomorphism of the sphere as follows: define
it to be f inside 7, the identity outside I' and extend by interpolation to the region between
v and I'. The homeomophism can be made quasiconformal, with non-zero dilation (possibly)
only on the region between v and I'. If we then pull back with a high iterate of P, the sup-
port of the dilation becomes small, which will eventually allow us to conclude, that when we
straighten, we get a polynomial composition that approximates f closely on a large compact
subset of U.



In Phase I, we use the Polynomial Implementation Lemma to create a polynomial compo-
sition which approximates a finite set of functions from §. In Phase II, we wish to correct
the error from the Phase I composition. This error is defined on a subset of the Siegel disk,
but in order to apply the Polynomial Implementation Lemma to create a composition which
corrects the error, we need the error to be defined on a region which contains K.

To get around this, we conjugate so that the conjugated error is defined on a region which
contains . This introduces a further problem, namely that we must now cancel the con-
jugacy with polynomial compositions. A key element of the proof is viewing the expanding
map, that is the part of the conjugacy which maps a suitably chosen (and relatively large)
subset of U to a set containing I, as a dilation in the correct conformal coordinates. An
inevitable loss of domain occurs in using these conformal coordinates, but we are, in the
end, able to create a Phase II composition which corrects the error of the Phase I approx-
imation on a (slightly smaller) compact subset of /. What allows us to control the loss
of domain, is that, while the loss of domain is unavoidable, the accuracy of the Phase II
correction is completely at our disposal. This ultimately allows us to control loss of domain.
We then implement a fairly lengthly inductive argument to prove the theorem, getting bet-
ter approximations to more functions in the Schlicht class with each stage in the induction,
and ensuring that the region upon which the approximation holds does not shrink to nothing.

2 Useful Tools

Two of the more well-known tools we use are distortion theorems for univalent mappings
[2, 7] and the Carathéodory topology for pointed domains [1, 4, 5, 8]. A lesser known tool is
the hyperbolic derivative (see [9]). Ordinary derivatives are useful for estimating how points
move apart under iteration when using the Euclidean metric. In our case, we need a notion
of a derivative taken with respect to the hyperbolic metric.

Let R, S be hyperbolic Riemann surfaces with metrics

dpr = or(2)|dz],
dpS = 0'5(2)’(312’7

respectively, and let f: W C R — S be analytic. Define the hyperbolic derivative:
os(/f(2))

z€R
or(2)

frs(z) = f(2)

Note that the hyperbolic derivative satisfies the chain rule, i.e. if R, S, T, are hyperbolic
Riemann surfaces with [ defined on a set W C R and g defined on a set X C f(W) C S and
mapping X into 7', then

(go f)E%,T = (9hs,T of): fzh%,s



Let K C W be a relatively compact subset of R. Define the hyperbolic Lipschitz bound as

/5.5

| == sup | f7 (2)]-
zeK

3 The Polynomial Implementation Lemma

Let £ > 1 be a scaling factor and set P(z) = £ P\(k2). Let U be the Siegel Disc for P. Let
Q,Q C Cbe the Jordan domains with the analytic boundary curves 7 and I' (defined earlier),
respectively, and such that K C  C Q C €. Suppose f is univalent on a neighborhood of

Q and recall that f(v) is still inside T

Lemma 3.1 (The Polynomial Implementation Lemma) Let Py, Uy, k, P, U, {ni}2,, €,
Q' v, T, and f be as above. Suppose A C U is open and relatively compact. Then for all M,
¢, 8 positive, if A is a 6-neighborhood of A with respect to py as above and /54 < M, there
exists ko > 1 (depending on M, €, A, and §) such that for each ky > ko there exists a (17+k )-
bounded finite sequence of quadratic polynomials {P:Lkl}zil such that QZ:i s univalent on
A and

1. Qi (2), f(2)) < € for all = € A,
2. QR < M(1+0),

3. Qny'(0) = 0.

The idea of the proof is as follows: suppose we want to approximate [ with a polynomial
composition. Define

[ () 2cD
F<Z)_{z 2eC\Q

and extend F to a quasiconformal homeomorphism of C using interpolation (e.g., using
conformal coordinates). If we precompose this with a high iterate of P and pull back, the
area of the region between the preimage of v and I" becomes small, while the support of the
pullback of the dilatation is contained in the preimage of the conformal annulus Q\ €, as the
figure below illustrates:




When we straighten, this allows us to conclude that the solution to the Beltrami equation at
time 0, 1§, converges locally uniformly to the identity on C (as does (¢))™!) as N — oo.
Further, as P is conjugate to an irrational rotation on the Siegel disc, denoted U, we have that
there exists a subsequence of iterates { P°™* } which converges locally uniformly to the identity
on UU. This eventually allows us to approximate the map f with a polynomial composition
on a (large) compact subset of the Siegel disc, along the lines of the diagram below:

P = Id

Yot ~ Id F=fonU

Qur = J

The Polynomial Implementation Lemma approximates a single univalent function on a com-
pact subset of the Siegel disc U, and can thus be seen as a weak version of our main result
(Theorem 1.1).

4 Phasel

For any R > 0, define Ur := {2z € C : py(0,2) < R}. Choose 0 < 1y < Ry < § and restrict
ourselves to R € [r,, Ro]. The upper bound 7 is chosen so that the disc Ug as well as its

image under any conformal mapping whose domain of definition contains U is star-shaped
(see [6] Lemma 2.10 for details).

Lemma 4.1 (Phase I) Let Py, Uy, r, P, and U be as above. Let Ry > 0 be given and let
Ugr, also be as above. Then, for all ¢ >0, and N € N, if { f;}N41 is a collection of mappings
with f; € S fori =0,1,2,--- N + 1 with fo = fny1 = 1d, there exists kg = ko(Ry) > 0,
My = Mn(e, N) € N, such that for all k > kg, there ezists a (17+ k)-bounded finite sequence
of quadratic polynomials { P, (NFDMN cuch that forall1<i< N +1,

m=1
. QiMN (O) =0,

. Qiny 15 univalent on Usp,,

- Qiny (Uar,) C Usry,
cpu(fi(2), Qiney (2)) < € on Uspg,,

N@iary lvm, < 7-

~

[ T RS



Using the Polynomial Implementation Lemma multiple times, we construct a single polyno-
mial composition that approximates each f; at a prescribed iterative time on Ug,.

We remark that one can view Phase I as a weak form of our main theorem in that it allows to
to approximate finitely many elements of & with arbitrary accuracy using a finite composition
of quadratic polynomials. Phase I is thus intermediate in strength between the Polynomial
Implementation Lemma and our main result.

5 Phase 11

Let G(z) be the Green’s function for P, and fix hy € (0, 00), where in practice hg is an upper
bound on the values of the Green’s function G (again, see [6] Lemma 2.10 for details).

Lemma 5.1 (Phase II) There exist an upper bound €, > 0 and a function ¢ : (0,&] — (0,72),
with 6(x) — 04 as x — 04, both of which depend on the choice of k, hg, and the bounds ry,
Ry for R, such that, for all e; € (0, €], there exists an upper bound é; > 0, depending on €y,
K, ho, and 1o, Ry, such that, for all e; € (0,&], R € [ro, Ro|, and all functions £ univalent
on Ug with £(0) = 0 and py(E(2),2) < € for z € Ug, there exists a (17 + k)-bounded
composition Q of quadratic polynomials such that

1. Q is univalent on a neighborhood of Ur_sc,),

2.
pU(Q(z),S(z)) < €2, fOT all =z € UR—5(61)7
3. Q(0) = 0.

Because we will be using the Polynomial Implementation Lemma repeatedly to construct our
polynomial composition, we need to interpolate functions outside of K. However, £ is only
defined on a subset of U and hence we will need to map a suitable subset of U on which £ is
defined to a domain which contains K, and correct the conjugated error using the Polynomial
Implementation Lemma. The trick to doing this is that we choose our subset of U such that
the mapping to blow this subset up to U can be expressed as a high iterate of a map which
is defined on the whole of the Green’s domain Vj,, where V,, := {z € C : G(z) < h}, not
just on this subset. This will allow us to interpolate outside K. Further, we will then use
the Polynomial Implementation Lemma once more to ‘undo’ the conjugating map and its
inverse. The two key considerations in the proof are as follows:

e Controlling loss of domain (measured by the function ¢ in the statement above).

e Showing that the error in our polynomial approximation to the function £ (measured
by the quantity €5 above) is mild.



In controlling loss of domain, one main difficulty will arise in converting between the hyper-
bolic metrics of different domains, U and Vap,, where Vo, :== {z € C : G(z2) < 2h}. The
techniques for controlling loss of domain will be the so-called Target and Fitting Lemmas
(see [6] for full details), and the fact that (Va;,,0) — (U,0) in the Carathéodory topology
as h — 0,. To approximate & itself rather than this conjugated version, we then wish to
‘cancel’ the conjugacy, so ‘During’ is bookended by ‘Up’ and ‘Down’ portions, in which we
apply the Polynomial Implementation Lemma to get polynomial compositions which are ar-
bitrarily close to the conjugating map and its inverse.

One of the most crucial features of the proof is viewing the expanding portion (in ‘Up’) of
the conjugacy as a dilation in the correct conformal coordinates. Define 1), to be the unique
conformal map o, : Vo, — D, normalized so that 14;,(0) = 0 and ¥4, (0) > 0. We let Vy;, be
the largest conformal disc (measured using the hyperbolic metric of Va;,) about 0 such that
Vap C Ug. The expanding map in the conjugacy is then defined to be the unique conformal
map Qo : Vop, — Vo, normalized so that ¢o,(0) = 0 and ¢5,(0) > 0. As Vs, is round in
the conformal coordinates of Vs, i.e., wgh(%h) is a disc (about 0), we may view o, as a
composition of many smaller dilations. These (conjugated) dilations can be chosen so small
so that they are defined on (a neighbourhood of) Vj,, which in particular contains the filled
Julia set K, while the dilated V), is still inside Vi,. This is what allows us to approximate
a small dilation using the Polynomial Implementation Lemma (Lemma 3.1) and eventually
approximate g,. The ‘Down’ portion of the conjugacy turns out to be easier. See [6] for full
details.

6 Proof of Main Result

We use an inductive argument to prove the following lemma, from which our main result
(Theorem 1.1) follows quickly:

Lemma 6.1 There exists a sequence of quadratic polynomials { P,,}o_, such that the follow-
ing hold:

1. P} is (17+kg)-bounded,
2. Qm(Uz%) C UTIO for infinitely many m,

3. For all [ € S, there exists a subsequence {Qm, }7>, such that Qn, = [ on U%O as
k — o0.

As S is a normal family, we can approximate it locally on I with a finite net of functions
{fi}¥t € S, with fo = fy11 = Id. The base case of the induction begins with an application
of Phase I (Lemma 4.1) (which we can view as preceded by a trivial application of Phase II
since there is as yet no error to correct) in which we approximate a finite net of functions from
S on a reasonably large relatively compact subset of the Siegel disc U. In the induction step,



we then apply Phase II to correct the error in the previous approximation to arbitrary (finer)
accuracy (i.e., the accuracy of this correction does not depend on the error in the Phase I
step preceding it) on a slightly smaller subset of U. As the process is repeated ad infinitum,
we must ensure that this loss of domain eventually stabilizes. Crucial to controlling the loss
of domain is the fact that as the size of the incoming error (¢; in the statement of Phase II)
goes to zero, so too does the loss of domain (measured by the quantity d(¢;) in the statement)
that occurs in a Phase IT application. The error in our new polynomial approximation (e in
the statement of Phase II) must then pass through the subsequent Phase I in the course of
which we also pick up a new error. However, due to the estimate on the hyperbolic derivative
in Part 5. of the statement of Phase I (Lemma 4.1) and the fact that the error bound € in
Phase I is as small as desired, the total error and thus the loss of domain in the Phase II for
the next step can be made as small as we wish. Continuing in this way, we are eventually
able to prove our main result.
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