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Definition 1.

(1) Let C := C U {oo} = S2 be the Riemann sphere endowed with the
spherical distance d.

(2) Let Rat := {f : C — C | f is non-constant and holomorphic}
endowed with the distance 1, where n(f, g) = sup, ¢ d(f(2),g9(2))-
Note that (Rat,n) is a complete separable metric space.

(3) For a metric space Y, we denote by 9% (Y) the space of all Borel
probability measures on Y.

(4) For a subset Y of Rat, we set

My (V) = {7 €M (Y) | suppr is a compact subset of Y }.



(5) For a 7 € My .(Rat), we set
Gr:={mo---om|neN,y €supp7(Vj)}.
Note that this is a semigroup whose product is the composition of maps.

(6) We say that an element 7 € 9 .(Rat) is weakly mean stable if there
exist an n € N, an m € N, non-empty open subsets Uy, ..., U, of C,

a non-empty compact subset K of C with K ¢ UL, Uj, and a constant
c with 0 < ¢ < 1 such that the following (a) (b) (c) hold.

(a) For each (v1,...,7,) € (supp 7)™, we have
Yo om(UiLUj) C K.

Moreover, for each j =1,...,m, for all z,y € U; and
for each (v1,...,7,) € (supp7)", we have

d(ypo---om(z),mo---om(y)) < cd(z,y).

(b) Let Dy := peq, B~ H(C\ U™, U;). Then :D, < oc.

(c) For each minimal set L of 7 with L C D,, there exist a z € L
and an « € G, such that a(z) = z and |&/(z)| > 1(if z = oo then
we consider the condition |[(¢ o @ o ¢~ 1) (0)] > 1 instead of the
condition |&/(z)| > 1, where ¢(z) =1/z).

Here, a non-empty compact subset L of C is said to be a
minimal set of 7 if for each z € L, Upeq, {h(2)} = L.

(7) For each Y C Rat, we endow 9 .(Y') with the topology such that
a sequence {7, tnen in My (V) tends to an element 7 € My (V)
if and only if

(%) for each bounded continuous function ¢ : Y — R, we have

/99(1’,7'”—>/90d7'asn—>oo,
Y Y

and



(%%) supp T, — suppT as n — oo with respect to the Hausdorff metric
in the space of all non-empty compact subsets of Y.

Theorem 2 ([4]). Let Y be one of the following (1)—(4).
(1) {f € Rat | f is a polynomial with deg(f) > 2}.

(2) {“— A2(1—2)" € Rat | A € C\ {0}}.

(3) {2 2-ME 7 cRat | AeC A -1 <1}

where f is a polynomial with deg(f) > 2.
Remark: This family is related to “random relaxed Newton’s methods

for f7 in which we can find roots of any polynomial f more easily than
deterministic Newton’s method ([4]).

(4) {2 z+ Af(z)”€ Rat | A € C\ {0}}
where [ is a polynomial with deg(f) > 2

such that for each zy € C with f(zy) =0, we have f'(zy) # 0.

Then, there exists an open and dense subset A of My (Y)
such that for each T € A, we have the following (I)(II)(III).

(I) 7 is weakly mean stable.

(II) There exists ¢, < 0 s.t.
for all but countably many z € C, for (52,7)-a.e. (71,72,...) € YN,
we have lim sup — log ID(yn 0+ 0m):lI< ¢ <0
n—oo T
(III) For all but countably many z € C,
for (@35 m)-0.. 7 = (w2, ) € YT,
there exists a minimal set L = L(z,v) of T
which is either
(a) “attracting for T”, or
(b) included in D, with x(7, L) <0,
where x (7, L) denotes the Lyapunov exponent of (7, L),
such that
d(ypo---0ov(2),L) = 0 as n = oo.
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Theorem 3. Let f be a polynomial with deg(f) > 2 and

let Q:={x € C| f(x) =0}. Suppose that f'(x) #0 (Vz € Q).

Suppose also that for each a,b € Q with a # b, we have f'(a) # f'(b). Let
Y={“%—z+Af(z)”€Rat | \ € C\ {0}}.

For each 7 € My (Y) and x € Q, let x(7,z) := [, log |W(x)| dr(h).

Let A be the set of elements 7 € My (Y) satisfying that

e 7 is weakly mean stable with D, C @),
e for each x € Q, we have x(1,z) # 0, and

e ifx €@ and x(1,x) > 0, then for each h € supp T, we have h'(x) # 0.
Then, we have the following (1)(ii).

(i) A is open and dense in My (Y') and
statements (1) and (I11) in Theorem 2 hold for each T € A.

(ii) For any two subsets Q1,Q2 of Q, let
Agio, = {7 € A| x(r,2) > 0(Vz € Q1) and x(7,z) < 0(Vz € Q2)}.
Then Agq, g, s a non-empty open subset of A.
Moreover, we have A =[], o, Aq..q. (disjoint union).

Theorem 4. Let a,x,, x5 € C with x1 # x».

Let f(z) = a(z — x1)(z — x3).

Let Y ={“2— z+ Af(z)” € Rat | A € C\ {0}}.

Let A be the set of elements T € My (Y') satisfying that

o 7 is weakly mean stable with D, C {1, x5},
e for each i =1,2, we have x(1,x;) # 0, and

e ifi € {1,2} and x(1,z;) > 0,
then for each h € supp T, we have W' (x;) # 0.
Then, we have the following (1)—(iii).
(i) A is open and dense in My (Y') and
statements (I11) and (I11) in Theorem 2 hold for each T € A.

(ii) For any 7 € A, we have D, # ().



(iii) For each v = (1,72,...,) € YN, let F, be the set of pointz z € C
satisfying that there exists a neighborhood U of z in C such that
{no oy}, is equicontinuous on U. Then for (R0 ,7)-a.e. v,
we have Leby(C\ F,) = 0 (Leby denotes the Lebesgue meas. on C).

Theorem 5. Let f,Y, A, F, be as in Theorem 4.

For each T € My (Y), let Min(7) be the set of all minimal sets of T,
and we set x(7,1;) := [, log |l (z;)] dr(h) (i =1,2).

Then, there exist non-empty open subsets Ay, As, ..., As of A with
A=11_, A (disjoint union) such that all of the following (1)~(5) hold.

(1) Let 7 € Ay. Then we have the following (1)—(iv).

(i) Min(7) = {{x1}, {22}, {o0}, L, }, where L, is an “attracting min-
imal set” of T with L, C C\ {x1,z5}.

(ii) For each i =1,2 and each h € suppT,
we have |h'(z;)| > 1 and D, = {x1,x5}.

(iii) For all but countably many z € C,
for (22°,7) -a.e. v= (71,72,...) € YN, we have

d(ypo---ov(z),L; U{oo}) — 0 as n — oo.

(iv) For each v = (71,72 -..) € (supp7)™, we have
L.U{oo} C F, and {z1,22} C C\ F,.

(2) Let T € As. Then we have the following (i)—(v) .
(i) Min(7) = {{a:1}, {2}, {o0}}.
(ii) For each i = 1,2, we have \(7,x;) > 0.
(lll) D—r = {.1’1./.’1'2}.
)

(iv) For all but countably many z € @,
Jor (®2,7) ~a.e. v = (71,72, --.) € YN, we have

Yn 00 (2) = 00 as m— 0.
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(v) For (2% 7)-a.e. v= (71,7%2,...) €YY,
we have A
oo € F, and {x,z} CC\F,.

(3) Let 7 € As. Then we have the following (1)—(v).

(i) Min(7) = {{z1}, {2}, {o0}}.
(ii) x(7,21) < 0 and x(7,29) > 0.

(iii) Let Az, = {7 € A3 | D; = {x2}} and
AB,I) = {7’ < Ag | DT = {1’1,1’2}}.
Then As,, Asp are non-empty open subsets of As and

As = Az, H Az, (disjoint union).

(iv) For all but countably many z € C,
for (22°,7) -a.e. v= (71,72,...) € YN, we have

d(yn 0 -0y (2),{x1,00}) = 0 as n — oo.

(v) For (252 ,7)-a.e. v € YN, we have {x,,00} C F, and x5 € C\ F,.

(4) Let T € Ay. Then we have the following (i)—(v).

(i) Min(r) = {{1}, {2}, {oo}}.
(i) x(7,21) >0 and x(7,25) < 0.

(ili) Let Ay, :={r€ Ay | D, ={x1}} and
A47b = {T S A4 ’ DT = {wl,xg}}.

Then Ayq, Asp are non-empty open subsets of Ay and
Ay = Ay, H Ay (disjoint union).

(iv) For all but countably many z € @,
Jor (R2,7) ~a.e. v = (1,72, -..) € YN, we have

d(yn 0+ o7 (2),{xe,00}) = 0 as n — oo.
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(v) For(

Bz

7)-a.e. v € YN, we have {xy,00} C F, andz, € C\ F,.

(5) Let 7 € As. Then we have the following (i)—(vi).

(i

(ii

(iv

Min(7) = {{z1}, {z2}, {o0}}.

)

(ii) For each i = 1,2, we have \(7,x;) < 0.
)
)

For each z € C,

Jor (®2°:17') -a.e. 7y = (’h,’yg, .. ) S YN, we have

d(yn 0 0v(2),{x1,29,00}) = 0 as n — .

(v) For (®,7)-a.c. v € YN, we have that {x, 15,00} C F,.

(vi) For (®2°,7)-a.e. v € YN, for each i = 1,2, for each point z in
the connected component U; of F., with x; € U;, we have

Yp O 0oy (z) = x; asn — oo.

Remark. For any deterministic iteration dynamics of a single
quadratic map f, we CANNOT have a phenomenon such as (vi).

In fact, we CANNOT have two attracting minimal sets of f in C.

Remark 6. Statements of Theorems 2, 3, 4, 5 cannot hold for deterministic

dynamics of a single f € Rat with deg(f) > 2.

In fact, in the Julia set J(f) of f, we have a chaotic phenomenon.

See Mané’s paper (1988)[1] etc.

Thus Theorems 2, 3, 4, 5 describe randomness-induced phenomena
(new phenomena in random dynamical systems which cannot hold for deter-

ministic dynamical systems).

Idea of Proofs of Theorems 2, 3, 4, 5.



(1) We use complex analysis, Montel’s theorem (a family of uniformly
bounded holomorphic functions on a domain is equicontinuous on the
domain), hyperbolic metric.

(2) We classify minimal sets and analyze the bifurcation of minimal sets.
etc. By using these, enlarging the support of the original 7 a little bit,
we destroy non-attracting minimal sets which do not meet D, .

Summary

(1) We introduce the notion of weak mean stability in i.i.d. random (holo-
morphic) 1-dimensional dynamical systems.

(2) If a random holomorphic dynamical system on C is weakly mean stable
and satisfies some mild assumtions, then for all but countably many
z € @, for a.e. orbit starting with z, the Lyapunov exponent is negative.
Note that this statement cannot hold for deterministic dynamics of a
single holo. map f on C with deg(f) > 2.

(3) Given an analytic family Y of rational maps (with some mild condi-
tions), generic random holomorphic dynamical systems (with multi-
plicative noise) of elements of Y are weakly mean stable. Also, we
can classify such generic random holomorphic dynamical systems of
elements of Y in terms of averaged behavior and quenched dynamics.
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