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Abstract

We show that a local existence and uniqueness condition implies the global solution on drift-less
one-dimensional forward and high dimensional backward stochastic differential equations with Lipschitz
coefficients.

1 Introduction

A global solution of Forward Backward Stochastic Differential Equations (FBSDEs for short) has a rich
mathematical structure and there exists a lot of various contributions, we refer an excellent book [6]. For
an application to Neural Ordinary Differential Equations [1], it plays an important role to develop to Neural
Stochastic Differential Equations via a stochastic flow approach [5]. However, the solvability have been not
disclosed for the following fundamental system, ;

X(r)y=X(#)+ />O' (s,X(5),Y(s),Z(s))dW (s)
S (1)
Y(r)=¢(X(T)) - / Z(s)dW(s), re€l[t,T].

Thanks to Delarue in [2]: If the diffusion coeflicient satisfies a non-degenerated condition and it is independent
of Z, the smoothness of the coefficients is sufficient to obtain the global unique solution. For Z-dependent
diffusion coefficients, the smoothness does not imply the well-definedness of the solution. To be more precise,
the local solution exists if the Lipschitz continuous coefficient and terminal function satisfy

LyyLs. <1, (2)

where L, and L, . are defined by the infimum of the collection of the Lipschitz constants. This is a local
property close to the maturity 7. To extend the solution, we need to estimate the Lipschitz continuity of a
so called decoupling field,
sup Lu(t,-),z < L%I, (3)
t€[0,T]

which is formalized by Fromm's contradiction method [3, Lemma 2.5.12]. Recently, a unified approach have
been proposed in [6]. Their approach relies on the well-posedness of a one dimensional ordinary differential
equation. As it is strong tool to solve one-dimensional linear FBSDE, it is not clear the following degenerate
case; for an instance o(s,z,y,z) = sinz and p(x) = (x/2) + cosz in (1). Fromm et. al. solved a specific
FBSDE that is related to a stochastic utility maximization problem in [4]. They considered that the terminal
function is uniformly bounded to tame a quadratic structure with respect to Z. Moreover, we note that the
assumption allows us to tame the singular term of so called characteristic BSDEs.

In this paper, we consider a different approach. We work on a framework such that the forward process
takes one dimensional value but the backward process may be high dimensional system:



Theorem 1. We suppose that o and ¢ are Lipschitz continuous satisfying (2). Then, we have (3) holds.
Moreover, we obtain that there exists the unique global solution of (1).

The paper is organized as follows. Section 2 is to prepare notion and assumptions. The main result is
provided in Section 3. In Section 4, we show the key estimate using an argument of stochastic flow.

2 Preliminaries

Let W be a standard Brownian motion with values in R? defined on some complete probability space (2, .7, P).
{Z:}1>0 is an argument of natural filtration of W which satisfies usual condition. R™*4 is identified with
the space of ream matrices with m rows and d columns. If z € R™*< we have |z|? = trace (z2*) where | - |
stands for the Frobenius norm.

For any real [ €¢ Nand T > 0, .% (RZ), denotes the set of Rl-valued, adapted and cadlag process

{X(t)}e0,7) such that [[X| = E [SUPogtST |X(t)|2} < 400, A collection 72 (R™*4) denotes the set of

1
2

equivalent classes of) predictable processes { Z (¢ with values in R"™*¢ such that || Z|| = E r Z,|*dr <
te[0,T] 0

+00. We write a Banach space #2(R!) x .#2(R™) x 72 (R™*?) = 92 x .2 x H#? if there is no risk to
confuse. For (X,Y,Z) € .2 x #? x #?, we note that

(X,Y,Z,W): [0,T] x Q@ — R x R™ x R™*? x R,

Assumption 1. We say that the functions o and ¢ satisfy (Al) if

(AL.1) Vt € [0,T), Y(x,y,2) € Rl x R™ x R™¥4 the functions (z,y,2) v o(t,x,y,z) and x — p(x) are
infinitely differentiable with uniformly bounded derivatives.

(A1.2) There exists a constant A such that ¥t € [0,T], ¥(z,y,2) € Rl x R™ x R™*4,
lo(t,z,y,2)| < AQ+ 2|+ [yl + [2]), l|e(@)] < AT+ |z]).

Assumption 2. We say that the function o and ¢ satisfy (A2) if it holds
(A2.1) The forward SDEs takes a one dimensional process: | = 1.
(A2.2) Ly L, <1,

where we set
L, £ inf{L >0:Vy; e R (1=1,2), |p(z1)—p(z2)| < L|zy — :cg|}

Lo, %2inf {L>0:Vt€[0,T], ¥(2;,yi,z1) € R' x R™ x R™*? (j = 1,2),
lo(t,x1,y1,21) — 0(t, 22,2, 22)| < L|z1 — 22| + |y1 — y2| + |21 — 22|)} .
If Vt € [0,7T], V(x,y, z) € R x R™ x R™*4_ the function x ~ u(t, ) is differentiable, we denote
6ui . . Ixm
Veu(s,z) = ¢ =—(s,z):j=1,...,0, i=1,...,mp € R™™.
61‘j
Similarly, when o satisfies the condition (Al.1), we write

0
Vz0(57513»y7z) = {%(S7I7y,2) : i>p: 17"':m: j7q: 177d} ER"LXd(X)R"LXd'
Pq



3 Drift-less coupled FBSDESs

It is known that it does not follow existence and uniqueness of the solution of FBSDEs only from smoothness
like (A1). In spite of constructing a local solution, we need an additional condition such that (A2). The
purpose of this section is to show that the local solution's condition (A2) becomes the condition to construct
the global solution of FBSDEs when it is drift-less type (1).

3.1 An iterated scheme via implicit function theorem

In order to prove Theorem 1, we shall introduce the following iteration scheme.

Lemma 2. Suppose that (A1) and (A2) hold. Denote
Xptt) =¢, (€ €0,T] xR

Then, for alln € N, there exists a pair of smooth functions (un_1,v,_1) and a unique weak solution X,, € 7>

such that
Un—1(s,2) = Elp (XJ5(T))], (s,z)€[0,T] xR,

(vxun—l) (s,x)a(s,un_l(s,x),vn_l(s,x)) = vn—1(8a$)7 (571) € [OaT] X Rl7
o) =2+ [0 (51 X(5) a5, X)) tna 5 X (8)) . 7€ [T
t
Proof. When n = 1, we have and denote
uo(s, ) £ Elp (X5"(T))] = ¢(x), (s,2) € [0,T] xR,
Fo(s,x,2) 2 2 — Vaue(s, )0 (s,z,u0(s, x),2), (s,2,2) € [0,T] x R x R™*%,
For all (sg,70) € [0,T] x R!, we consider the map from (|- |;,R™*%) to (|- |2, R™*?) such that
Go : z — Vuo(so, 2o)o (S0, Zo, o (S0, o), 2) -
As we have

|GO(21) - G0(22)|2 < ch,:tLo,z|21 - 22|1, 21,%9 € Rde.

It shows that Gy is contraction from (A2). Therefore, we have Fy(sg, o, z0) = 0 for some zg € R™*?. Again
by the assumption (A2), applying the implicit function theorem, we obtain a unique smooth function vy on
a neighborhood By, 4,) such that
Vauo(s,z)o(s,uo(s,r),2) =2, z=wvo(s,x), (5,2) € B(sy,uy) C [0,T] x R
As we have Ly, ; Ly . = Ly, 5L, ., the construction of vy is independent of the selection (sg,xo). Thus, vg
can be extended to [0, 7] x R!. As we have o(s,uo(s,x),vo(s,x)) is Lipschitz continuous, we have a unique
solution in .#? such that .
Xi(r)== +/ o (s, X1(s),uo(s, X1(8), Xn),vo(s, X1(s))) dW(s).
t

Now, let us assume that there exists desired (u,_1(s,z),v,_1(s,2)) and X,, € .#2. Tt defines u,,. For all
(s0,70) € [0,T] x R!, we consider the map from (| - |1, R™*%) to (| - |2, R™*?) such that

Gn : 2 — Vgun(so, 0)o (S0, To, Un (50, o), 2)

and we have
|Gn(zl) - Gn(z2)|2 S Lun,mLU7z|21 - 22|17 21,22 S Rde~

It follows from Lemma 8 and (A2) that it is contraction. Thus, we obtain v, via the implicit function theorem.
The continuity of the coeflicients o (s, u,(s, x), v, (s, z)) implies that there exists a weak unique solution in

.#? such that i,
Xpti1(r) =z +/t 0 (8, Xnt1(8), uo(8; Xn+1(5)), vo(s; Xn+1(s))) dW(s).

For the weak existence and uniqueness via the continuity, see [9]. O



Remark 3 (Loss of derivatives). To relax the smooth condition (A1l.1), we may face a problem, so called
loss of derivatives;
ueC*=>veCl=u, et ™, n<k.

As it may overcome using an argument of Nash-Moser theorem, we do not go this direction in this paper.

For any t < T, let us define
Yo (r) 2 tp_1(r, Xn (),  Zn(r) 2 v,_1(r, X, (1)), rel[t,T].
and we write (X, Y n, Zn) = (Xnt1 — Xo, Yoot — Yo, Zna1 — Zy) for n € N,

Lemma 4. Suppose that (A1) and (A2) hold. There exists a constant 6 > 0 determined by o, ¢ and 1 such

that
PSP T—6,T)

VT >0, (Xn,Yn Zyn) (X,Y,2),

n—oo

where (X,Y, Z) is a local solution to (1) on [T —6,T].
Proof. Applying Lemma 8, we have for all r € [¢,T],

E (V)] ds] < Lo [|Kun)[],

/TT Zo(s)[* ds

and

E <E[|[Va(D)] < Lo B [[Ku(@)[] -

Since we have,
7'n(r) = / 0'(8, X’n+1(8)7 Yn+1(5)7 Zn+1(s)) - 0'(8, Xn(8)7 Yn(s)a Zn(S)) dW(S)
t
we obtain a constant C' > 0 such that .
— 2 - 2 = 2
E[[Xa(r)|’] gc/t E[[Xu(s)"] +E[[Xn(T)[] ds.
It follows from the Gronwall inequality that
E[[Xa(n)[] < CeCT/ E |[Xu(D)]’] ds.
t

Therefore, taking & € (0,1) such that Ce“"§ < 1 and T — ¢ < 6, we obtain that X,,(t) =0 for T—t < § and
— 2 1 — 2
E|[Xn(0)*] < 3E[Xa@)].

Therefore, by the Burkholder-Davis-Gundy inequality shows that X,, — X in .#? on the local interval
[T — 4, T). Tt induces the convergence (Y, Z,) — (Y, Z) in .#2? x #?. Moreover, from the continuous of the
coefficients, this is the desired solution. O

Remark 5. Generally, the above constant § is depends on time ¢ or T. On the drift-less case, this can be
selected by the small length and it is independent of the time.

Lemma 6 (Stability problem). Suppose that for any m € N, o, and ., satisfy (Al) and (A2) and the
Lipschitz constants is uniformly bounded,

sup (chmﬂﬂ + Lo o+ Lo,y + LU'an) < 0.
meN

Let (X, Yo, Z) € 2 x 92 x 22 be the corresponding solution with initial condition X,,(0) = n for an
integrable random variable n. Then, there exists C > 0 such that

E [ sup | Xpmt1(s) — Xm(s)|2} +E [ sup |Yi41(s) — Ym(s)ﬂ +E
0<s<T 0<s<T

/0 | Zi(s) Zm<s>|2ds]

< CE

T
[om1 — @ml” (X1 (1)) +/o lomt1 — oml|® (8, Xing1(5), Yig1(8), Zim41(s)) dS]



Proof. Note that for all m € N it holds that
|Pm+1(Xm+1(T)) — om(Xin(T))| € Lo,z | Xm1(T) = Xins1 (T)] + [omt1 — @m| (X (T)).

It follows from the same argument of Lemma 4. O

Proof of Theorem 1. For a given Lipschitz continuous coefficients, it can be uniformly approximated by the
smooth function satisfying (Al). Thus, it follow from Lemma 6 and the completeness of the Banach space
F? x % x ##? that it is sufficient to prove the existence and uniqueness when o and ¢ satisfy (A1) and

(A2).
Now, let us consider the following FBSDEsS,

X(r) = z+/tTJ(S,X(s)7Y(s)7Z(S)) dW(s),

Y(r) :u(T—d,X(T—(S))—/T_SZ(s)dW(s), relt,T—dl.

It follows from Lemma 4 that (X,Y,Z) can be constructed on [T — 26,7 — 0]. By the uniqueness of the
forward SDEs, (X,Y, Z) can be constructed uniquely on [T'— 2§, T]. Applying the same argument, we obtain
that X can be constructed by the patched forward processes on the whole interval,

X(r)=X(0)+ ATU(8,X(S)7U(S,X(S)),U(S,X(S))) dW(s), r€][0,T].

We note that u,, converges uniformly to a function denoted by u and it satisfies
Y(t) =u(t,X (1)), te€l0,T].

It shows Y € %2, Finally, it concludes that (X,Y, Z) is a desired result. O

3.2 Applications

A unified approach in [6] showed the equivalent condition, Ly oL, # 1 to get the global solution to the
following one dimensional FBSDE,

X(r) :I+/OTLU7ZZ(S) dW(s)

T
Y(r) =L,.X(T)— / Z(s)dW(s), r€][0,T].
The condition can be extended to dimensional FBSDEs under a non-degenerate condition.

Assumption 3. We say o and ¢ satisfies Assumption (A3) if there exist positive constants l, o and
ls,» such that

(A3.1) lpols>1 andm=1

(A3.2) Y(s,z,y) € [t,T] x RE x R™ and V 21, 22 € R™*4,
l¢7z|I1—I2| < |(P(:U1)_(P($2)|, Ty, T2 6R17
lU7Z|Zl - Z2| < |O'(S,SU,y, Zl) - U(S7xuy7z2)|’

Corollary 7. Suppose that the assumptions (A1) and (A3) are in force. Then, it admits a unique existence
of the solution to (2).

Proof. Tt is sufficient to prove the existence and uniqueness of (1) when I, zl, . > 1. The lower Lipschitz
condition implies that the functions z — ¢(z) and z — o(s, z,y, z) for any fixed (s, z,y) are bijection maps,
see [8, Section 4]. Thus, consider the inverse functions and we have

lo™!(Z1) — o~ NE2)| <15 L1E — o,

|O-71(8’ z,y, 21) - 071(57 LY, 22)| < l;,i|51 - 22|7

j1a'f2 € Rla (8,1‘, y) € [taT] X Rm7 21322 S Rde-



Then, we obtain Lw—l):CLo,;l L < l;’lzl;wl’z < 1. Thus, let us consider the following FBSDE,
Y0) =¥+ [ o (s X6V (6 26)) AW (o)
t
T

X(r) = @) - [ 2w,

T

It follows from Theorem 1 that the uniqueness and existence of the solution. Moreover, we have
Z(s) = 07 (5.X(5), Y (5), Z(5) ) .
Z(s)=0(s,X(s),Y(s),Z(s)), sel[tT].
This implies the existence and uniqueness of the desired FBSDE (1). O

4 Appendix

Roughly, on drift-less and smooth coefficient SDEs, the spatial derivative of the decoupling field is given by

the stochastic flow. Moreover, it is a non-negative exponential martingale {V,X"*(r)},c[, 1) such that
Vzu(t7 1’) = ]E[vz@ (Xt’z(T)) : Vth’z(T)}'

Formally, we show the following lemma.

Lemma 8 (Key lemma). Suppose that o and ¢ satisfy (Al) and o(x,y,2z) = o(s,x) and X takes one

dimensional value; | = 1. Let X"® = {Xt’z(r)}re[t 7] be a solution to the equation,

X(r) :I+/tTO'(S,X(S)) dW(s), t<r<T.

Then, for all0 <t <r and xz,h € R,
[E [0 (X070 (1) = (X27()]] < Loo [P
In particular, denoting u(t,z) = E[lp(XH*(T))], it shows that

sup Ly,y,e < Ly -
t€[0,T]

Proof. From the mean-value theorem that it holds that for all t < r < T,
o (XUHh(r)) = (X07(r) = H(r) (X551 (r) = X"2(r))
where H(s)(w) is a linear map from R! to R™ such that

H(r)U = /01 Ve (1= 0) X" (r) +0X5"(r)) Ud), U eRL

Thus, we have
|H(r) (XDt (r) = X5 (r))| € Lpo |(XP7H(r) = X57(r))|, 1€ [t,T]
Applying Jensen's inequality, we have

[E [0 (X" (r)) = (X5(r))]] < LB [[ X" (r) — X5(r)]] -
Again, it follows from the mean-value theorem that it holds that for all t <r < T and

d r
Xt,m+h(r) — Xtﬂﬂ(r) =h+ Z/t o (S,Xt’$+h(s)) — oy (S7Xt7x(8)) AW (s)
kdl )
=h+ Z/ Gk(s) (Xt,m+h(8) _ Xt,z(s)) de(S)
k=171

s d s
— hexp [—% / (G(s), Gls))mads + 3 / Gk<s)dwk<s>],
t 1t



where G (s) is a functions,
1
Gi(s) = / (Vuor) (s, (1 — 0)X""Hh(s) + 0X57(s)) df.
0
Note that the exponential term is a scalar under [ = 1, cf. [7, Lemma 3.2.3]. Thus, we obtain that

| XEER () — X0 ()]
1 T d T
= |h|ex [—— (G(s),G(s))ra ds + G(s)dW(s)]
p 2/t R ;/t k k

As we have |G(s)| < Ly 5, the exponential local martingale is non-negative martingale. Then, we obtain that
E [|X5 " (r) — XP"(r)[] = |Al.

In short, we obtain

E [@ (X" (r)) — ¢ (X5 (r)]| < Lo |l

Acknowledgements

I would like to express my sincere gratitude to Dr. Hamaguchi at Kyoto University for useful comments on
the thesis. This work was supported by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center located in Kyoto University.

References

[1] Ricky T Q Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud, Neural Ordinary Differen-
tial Equations, Advances in Neural Information Processing Systems (S Bengio, H Wallach, H Larochelle,
K Grauman, N Cesa-Bianchi, and R Garnett, eds.), vol. 31, Curran Associates, Inc., 2018, pp. 6571--6583.

[2] Frangois Delarue, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case,
Stochastic Processes and their Applications 99 (2002), no. 2, 209--286.

[3] Alexander Fromm, Theory and applications of decoupling fields for forward-backward stochastic differential
equations, Ph.D. thesis, Humboldt-Universitidt zu Berlin, Mathematisch-Naturwissenschaftliche Fakultit
11, 2015.

[4] Alexander Fromm and Peter Imkeller, Utility mazimization via decoupling fields, 2017.

[5] Hiroshi Kunita, Stochastic Flows and Jump-Diffusions, Probability Theory and Stochastic Modelling,
vol. 92, Springer Singapore, Singapore, 2019.

[6] Jin Ma, Zhen Wu, Detao Zhang, and Jianfeng Zhang, On well-posedness of forward-backward SDEs -- a
unified approach., Ann. Appl. Probab. 25 (2015), no. 4, 2168--2214.

[7] Xuerong. Mao, Stochastic differential equations and applications. 2nd ed., 2nd ed. ed., Chichester: Hor-
wood Publishing, 2007.

[8] Etienne Pardoux and Shige Peng, Adapted solution of a backward stochastic differential equation, Systems
& Control Letters 14 (1990), no. 1, 55--61.

[9] Anatoli Vladimirovich Skorokhod, Studies in the theory of random processes, Courier Dover Publications,
1965.



