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1 Introduction

1.1 Polygonal Tiling Frames

The image processing is related to two-dimensional multiresolution analy-
sis. Two-dimensional orthonormal or biorthogonal wavelets have been con-
structed from suitable two-scale equations or partitions of the frequency do-
main (see [10], [14], etc.). 12 tapered frame wavelets can provide a refined
partition of the frequency domain and are efficient for geometric features with
line and curve singularities (see [1]). The curvelets pioneered by Candes and
Donoho [3] are multidirectional methods, where the degree of localization in
orientation varies with scale (see also [7] and [12]).

We consider concentric regular 2V-sided polygons (N > 2) and present
multidirectional methods with polygonal tiling frames (PTFs) in the simplest
possible manner. Let N > 2 and

1 1 1
p2:—’ p3:—’ ...’ pN: .

T 1
We see that cosjxr = Ty
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Theorem 1.1 Let N > 2, J € Z, k' = (k:l cot QLN,kQ) and the real-valued
functions \IIEZZ) and CID;JX) be defined as
o™ () 3 { cos(2mpn X (x)) — cos(2H mpy X7 (l“))}
() = :
it 2127 2p (4p% — DVAXF(2)Re - (1,0) 1

+
in*(Pmpy X, (2))
M (1) — T S (P o Xy
oy (z) Zi:{ 2+ w2 pn (4p3, — 1)1/4X5t({2§')Rgl" (1,0)}’

where X (x) = x; sin 25507 ei T 1 2y cos (2&1)”. Then, f € L*(R2) is expanded
by PTFs as

f@) = ¥ Y Y autV (e —27RK)

J>J+11<0<2N -1 keZ?

+ > Y Bua® ) (=2 R, (1)

1<¢<2N-1 keZ?

where
e = / DU (2279 Rk )dz, Byon = /R f@@) (e-27 Rk )da,
and Ry is the operator of anticlockwise rotation by angle 21~ (.

Remark 1.2 \i/ﬁ[) (&) satisfies the partition of unity in the following sense:

tan— Z Z 22j|\i1§fz)(€)|2 =1. (2)

JEZ 1<e<2N -1

It holds that
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Remark 1.3 From the construction, we see that lIfg-fZ) has an infinite num-
ber of vanishing moments as the Shannon wavelet. But we remark that the
Fourier transform of the Shannon wavelet has the support [—2m, —m|U[r, 27],

while the support in & of \ilé{\é) is [—m, —m/2) U [r/2,7].



1.2 Wavelet-type Transform

We may rewrite Theorem 1.1 in terms of the generating functions:

| | pyv X5 (x)) — cos(2mpn X (2))
I (z) = 2779 (27ig) = + cos(mpaXs . )
() j0 (27%) ;{ Ar2py (4p3 — DVAX G (2) 1 }
, A in®(mpn X (2))
dM(z) = 271 (277g) = + Sin” (mpw X :
(v) w0 @70 =3 * e i )

Then, \IJ(N)(:): — 277R_4k') and (IJ(N (r — 277R_4k') in Theorem 1.1 can be
replaced by 20U (27 Ry — k') and 200N (2 Ry — k') respectively.

Remark 1.4 The definitions of V™) and @) include removable singulari-

ties. For the computer simulations, it will be convenient to rewrite V) and
W) gs follows:

cot 5% { cos{—ﬂ(mﬁx;tam 2_N)} — cos{m(zy + 1 tan 55 ) }
2121, Ty + 21 tan QLN
cos{—ﬂ(m_x;tanz_w} — cos{m(zy — z1 tan QLN)}}
To — 1 tan Jx
T
N when x1 # 0, x9 # +x;tan N
2cos{7r$2}+1) sin? 122 7
\/tan — 2 when x1 #0, ry = +x; tan —
) 27T2 1 % 9 2 1 2N’
7T.LQ
?/ NF’ when x1 =0, x5 # 0,
§’/ 7T when 1 =0, x5 =0,
\/@{siﬁ{—w(xﬁm;tanw)} Sin2{—ﬂ(r2_m12tan2_N)}
21, Ty + xp tan g Ty — 71 tan gy
T
when x1 # 0, xo # +x;tan o
.2
eI — 7 sin“{mxy} 0
tan ————— when x; # 0, x9 = +x;tan —,
1\/ N on2y2 170, N
Y , (TTL2 .
% tan 2—NG (7) when x1 =0, x5 # 0,
T
—y/tan — when xy =0, 5 =0,
5 N 1 2

2

where F(7) = Zeos2rtl)sin 7 27;’1)3111% and G(7) = 2T
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Similarly, as curvelets based on concentric circles, if the translation part
277 R_,k" is replaced by a continuous parameter b € R?, then we can consider
the semidiscrete transform

T f(b) / W (@ = b) f(w)da = ?@WKR@Wx—wﬂ@Mm
Hence, we also reduce this to the following two-dimensional continuous wavelet-

type transform:

Wy f(b,a, A) ::/R lq;(N)(A—l(

2 a

z—0b
a

))f(x)d:v

for (b,a, A) € R?* x Rt x SO(2). It holds that

Wan F(bsa, )= 5 | e ED @A ) f(€)ds =aF ! [F00(aA 1O F(E)] 1)
Putting
PN (¢
= Rz| g

we also obtain Parseval’s identity in the following sense:

/%/ /‘W@mfbaAﬂ% do

[ 7 B eama o) ef ) Ca
= [T A fo) )
J

([ g (a |§|)‘—d0}|f &)
= (), [ |f(@)de,

T

where for all £ € RZ we used

I

0 S - [ [ 0]

Iél

rdrdf = cy.



1.3 Simpler PTFs
If we do not expect less redundancy, it is possible to get simpler PTFs with
a small modification. We do not need (4p% — 1)*/* in the definitions of \Il%)

and (IDS-{Z). Although £ (instead of %) is not optimal for our case from the
point of view of the sampling theorem, we can obtain the following simpler
results with ¥ and ® :

Theorem 1.5 Let N > 2, J € Z and the real-valued functions \IJEJZ) and
@gfz) be defined as

\I’(]Z)(x) _ ¥ { N cos(QijNXf(x)) ; cos(2 mpn X (1)) }’
I T 2202pn X7 () Ry - (1,0)

in®(2mpn X, (x))
5 _ L sin( NAg
gt ($) g{ 2]+177'2pNX2:($)R€x : (1> 0) }’

where X (x) = x1sin BS54+ 2y cos BT, Then, f € L*(R2) is expanded

by PTFs as

o) = ¥ 33wt (s -2 7R k)

J2J+11<e<2N~1 keZ2

+ Z Z ﬁj,e,kq)g{p (x — 2_JR_gk}>,

1<0<2N -1 keZ2

ok = /R f@) O (=27 R k) dx, Bk = /R (@)@ (e=27 R k) dx.

T T

Remark 1.6 Similarly as Remark 1.2, we have

N 3 ™
157 (@)|* = ¢ tan o5 (< 1),

As N increases, they become smaller. The frame expansion has more redun-
dancy.

More details and results of frames having Lipschitz continuous Fourier
transforms will be reported in our forthcoming paper [9].



2 Applications

2.1 Application to Radon transform

Computed tomography (CT) is a medical imaging technique for clinical use.
During the CT process, X-rays are transmitted through an object. As a
mathematical model, the X-ray transform (two-dimensional Radon trans-
form) is defined as

where L, , denotes a line with the normal direction v = (71, 72) = (cos,siné)
St and the signed distance from the origin r € R. For ¢(r,v) € L}(R x S!)
the dual Radon transform R* is given as

21
R*(p)(x) = /ql o(x - v,y)do(y) = /0 @(I1 cos f + 4 sin 6, (cos 0, sin 0)>d6.

In particular, in the two-dimensional case, the following inversion formula
holds for some suitable f (see [13]):

1

f(@) = (AR (R()) (@), (3)
It would be convenient if a; .5 of the expansion of f are derived directly
from R(f) without use of the reconstruction formula including the nonlocal
operator (—A)"2. Berenstein and Walnut [2] used the theory of the continu-
ous wavelet transform to derive inversion formulas for the Radon transform.
Candes and Donoho [4] applied the curvelets to consider the problem of noisy
Radon inversion (see also [8]). Colonna, Easley, Guo, and Labate [5] gave
the Radon transform inversion via the shearlet representation (see also [6]).
For this purpose, we shall utilize the simplest frame in Theorem 1.1.

Considering (3), we suppose that f satisfies

Aok 2—/ f (N) $—2 IR_ g/{il)d
1

= E/RQ(—A)1/2R*(R(f)>(x)q,%)(x_ 2R )

- ﬁfozﬁ/ RN R((=A) U5 (2 =27 R k) ) (r,7)drdf, (4)




Biew = [ J@O (@ — 2 R_ok)da
1 .
e /R (A PRAR(S)) (2) D5 (x — 279 R_k')dee
1 27 :
— E/(; /TR(f)(rv’Y)R((_A)I/Q(I)gfz)(I—2_]R—£k',))(I, ’y)drd(i (5)

Now, we put

1 1 !/
U2 (r7) = - R((-A) P05 (@ — 27 R_K)) (1),

Jt

By the Fourier slice theorem R(g)(r,7) = 5= Jr, €77 Fz[g](py)dp, we obtain

(k) _ 1 ipr (V) ip

U = g [, R ED @~ 27 B (1)
1 . 1 o

- / e Fo [ F |67, 150 (v — 27 Rk (0)dp

2
814 JR,

1 ipr —jy- (N) o ,
= 8?/Rpem|pfy|/e ym\I’j,e (y_2 JR_zk)dydp
]' 3 -J ’ A~
= — ip(r—279R_¢k'-y) (N)/ .
T /R PR o W (py)dp
N L/ 2K B (p Ry dp
8712 Jr, I,
1

= ip(r=27IR_¢k' )| .
27 +372(4p2, — 1)1/4 /Rpe |P|XS§,N) (pRyy)dp,

where

N m T
Sg- ) = [— |§2|tan2—N, |&o| tan —

2N] x {[-2/, -2 u [, 27},

Thus, we get the following:
Lemma 2.1 Let N > 2, k' = (k:l(4p%v — 1)_1/2,k2) and v = (cosf,sinf).
For f € S(R2) satisfying (4) and (5), Uﬁ) (r,7) such that

2 —
Qopi= [ F@O) @ =29 e = [ [ R(@AUL () dras,

1s represented as

1

(k) _
Uj,e (r,7) = 2372 (4p2, — 1)1/4

/ eip(r—Q_ijikl"Y)|p|XS(N) (pR[‘)/)dp7
R, !
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where

N T . . . .
S — [ - |§2|tan2N,|£2|tan 2N] x -2, —2 U, 2]},

Furthermore, in order to compute the coefficients a; 45, from a given func-
tion R(f)(r,7), by changes of variables we have

2 7" r+k-y k" r+ K
ek = / / L R y)2iUf) (2—7 R )drdf

- ¥ /_ . / ,« ”kl T Ry T 0)drde,

with the following function U such that supp U C R, X [~5x + 5, 7x +

» 9N

Ju

vl

- -5 & — 1]

27 i9—J
Rey) = 20372 (4p3, — 1)1/4 /R e "lebes (p)dp

U(r,0) := 277U} (———

92— o0 )
—j
SR (4 — 1) /0 cos(2 pr)pxs§w) (py)dp

2 J % —j 1 Ialn@
T 2itr2(4p? — 1)U/A /23'717, cos(27 pr)pdp = (4p% — 1)1/4(27r)2 / . cos(p)pdp

| sin 6] 25in9|
— |sm6|81n|sm(9| +COS|sm0 |251n9|81n|25m() _COS|251116

(4piy — DM4(2mr)? ’

for € [ +75, & +5U[—5% — 5, 7v — 5], otherwise U(r,6) = 0. Therefore,
noting that R(f)(£552, —R_¢y) = R(f)(EEE2, R_yv), we obtain

Q5 0k
— / / |sm0|81n|sm9| +COS|sm9 |2sm0ls 2sm9 _COS|251119
27;\]:‘:77 - (4p 1)1/4(2777)
k!
RN Ry ) drdo
2
_ Z/QLN:‘:% & \si171T€| SN ey |sm0\ + cos |sm0\ 2\51n9| sin 2|5171;9| cos 2|sm0\
L sz (i, — )1/ (2rr)?
r+k -y r+ k'
{R() (5 Roy) + R (——5— R hdrdd (6)
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I o 0o s __rm : rm
— / N T2 / sin 9 sin sin @ + cos sin 0 2sin 0 sin 2sin 6 cos 2 51116
— 0

o+ (4p3 — 1)/4(27r)?

N

N

< {2R(1) (5 P R )+ 2R(f)(%f/'7,}%_m)}drd9
[N TE Ts1n7'+cos7'——sm——cos—
B /_LN +z 27 (4p3% — 1)V/47125in 0
AX RO £ T R Yards.
=

Replacing —3 sin § — cos 5 by —1, we can obtain 3; of the scaling function
(I)ﬁ” (m —27TR_ /K ) Consequently, we get the following:

Proposition 2.2 Let N>2and J€Z. For f € S(R2) satisfying (4) and (5),
the coefficients oo and Bj,r of the expansion

f@) = X Y Y et (e - 27 RK)

J2J+11<e<2N -1 [eZ2

+ > Y 5.],@,1«‘1)%) (93 - 2_JR_gk‘,)

1<¢<2N-1 k72

are given by

/2N+ /00 TsInT 4 cosT — —sm— — cos—
Yotk = 27 ( 4p —1)1/47'281n«9
Tsin«9
{zijn ( o JR_) bdrdf,

E/ Tsm7'+cos7'—1

+z — 1)Y/4725in @

{Z ( yiTsm@
+

2

2|='

2

ﬁj,f,k = /_

2|='

R_yy) }drdo.

Remark 2.3 7 = 0 in the kernel functions is a removable singularity, be-
cause

TSIN T+COS T—Z8in £ —Cos 5 T T 1 ooTy2/1 T 1
= :81n02(cos§—1)—{81ncz} (Z COSs §+8)
TsinT4cosT— 1 . 1{ . 7'}2
=sincr — —<sinc— ¢ .
T2 2 2



A full-discretization of the inversion formula (3) which includes a sum with
respect to coprime numbers, is known (see [11]). Proposition 2.2 gives a frame
expansion of f directly from R(f)(r,~) without the use of the Fourier-based
inversion formula

f@) = o [ [ F RN lsldsds g

Remark 2.4 Let Hf = Lf«r~' =L [ f(r —p)p~tdp. The solution of the

Cauchy problem 0fu— (02 + 0z, )u = 0 with u(0,z) = f(x) and dyu(0,z) =0
15 given by

ult2) = o [ HOR() )

47

do() = = (~ AV 2R (R(f)(r+4,7)) (@),

r=ttay 4t

This just corresponds to (3) with R(f)(r +t,) instead of R(f)(r,7). In the
same way, we arrive at the formula (6) with R(f)(r+t,~). Finally, replacing
R(f) of Proposition 2.2 with

Rulf) = S{RU+67) + RO — 1)}

we can also represent the solution u(t,z) as follows (see §2.4):

u(t,x): Z Z Z Oéj,&k\ljgfzf) ($—2_jR_g]€,)+ Z Z B]y&]gq)f]{\? (%—Q_JR_HC,).

J>J4+11<e<2N -1 keZ?2 1<e<2N -1 geZ2

2.2 Function of Pyramid Form

For the later simulation in §2.3 we derive the Fourier transform of the function
of a pyramid form.

Proposition 2.5 Let
flxy,20) = max{l — x| — |x2|,0}.
Then, we have
R(f)(r,7)

()2 =l I = byl | (7= Fal) = [l ()24 [l I = 1l | (= [ ])
2712l (Jy2l* = [nl?)
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Proof. Define the triangular function tri(t) by
tri(t) = max{1 — |¢|,0}.

This function satisfies

atri(é) :amax{l— 2,0}:max{a—|t|,0} for a > 0.

Let us rewrite f(x,z2) = max {(1 — |xa|) — |21, 0}. Suppose that xs is given
first and fixed in |z5| < 1. Then, x; is forced to satisfy |z1| < 1—|xg| =: a(>
0). Define sinct = 2t By the formula tri(%) |la|sinc? (a&) it holds that

6y _ 4 e (- I

Falfl(6r,a2) = 7 o ()] (60, m2) = a?sine? (1) = 2

for |zo| <1, and otherwise equals 0. Therefore, we also obtain

Forasf1(61,€2) = 5 /1 cos(z282) sin” %dﬁza
i

since

/0 e—ix2§2 sin2 (1 - |2I2|)§1 dl‘g _ /1 eixg&z Sin2 (1 - |2I2|)§1 de’
0

-1

and e282 4 17282 = 9 cos(z,€,). Moreover, we can compute the following:

1112 [f] (Elv §2>

= & /01 cos(x2&;) sin? ﬂ_—;?)gld@ = %/01 cos(ngg){l — cos ((1 - 932)51) }dxz
1 1
= é/o cos(x9&s)dxy — é/o cos (ngg +(1— xg)fl)dxg
i 1

_5_2% /01 coS (:Ugfg —(1- xg)gl)dl’g
4 rsin(ze&s)1 2 Sin(22& + (1 —22)&1 )1 2 (sin (226 — (1 — 12)&1 ) 11
ety 2pent - 3 }

f_% &2 f_% & —& O_f_% S +& 0
4 2 ¢ sin& B sin &; _3 sin & sin &;
- asme@ e 6 a-6) Gare are)

§18inéy — E28in &y .

- Yiaa-g
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Note that 4%%%1 is an analytic function by the Maclaurin expansion.
1 2

By the Fourier slice theorem, the formulas F, {sinc(ap)} = TIX(-1/2,1/2) (2_;) _
X (lal o (1) and Fplp~?] = —m|r| yield

R(f)(r:7)

1 . 2 o V18I0 (pY2) — Y2 sin(p)
- 1pr - ; dp = _/ pr d

5 /Rpe Faraalf1(p11: pr2)dp = — R (17— 72) P

9 / i ,
= ——— sinc(pyz) — sinc(py1) pdp
(3 —3) Jr, p? { ? 0}

N m /R , }—p[e;;] (7"/)]:/) {sinc(pny) — Sinc(pfyl)} (r")dr’

1 / / 1 / 1 / /

= —— T =18 T X (= |al, ") = —X(=|nl, r') rdr

e RT,| |{|72| (~halzn () o hlin () }

1 / n 1 n 1 " "

= r X(=|va|=7,|v2|-)\T" ) — 7 X(=|n|-r,|n|-r)\T dr”.
EEEEE RT”| |{|72| (—hal=r, 2l —r) (1) Xl (")}

We also see that for p=1,2

/R ) " IX (=gl =) (7 )T

o

e’} 0
= /0 X (Al ol =) () = / T X (=gl (r)dr”

max{0,|yp|—r} min{0,|vp|—7}
_ / 'y’ — / " dr”

max{0,—|vp|—7} min{0,—|yp|—-7}
_ (max{0, |y —r})*— max{0,—[| —r})*— min{0, || —r})*+ min{0,— || —r}?
2
2r|y,| for r > |y,
2lr for |r| >
= |’Yp|2 +7? for — Yl <7 < vl = { |,|y ||2|7i|r2 fo1|r ||7"| |<7p||,y |
—2r|y,| for r < —|y| p — P

(7] + 1) = Il = Il [(1r] = 1))
5 .

Thus, we have

R(f)(r,7)
[l ()2 =l I = bl | (7= Ial) = bl ()24 ol = [l | (= [ ])
2712l (Jy2l* = [nl?) '
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2.3 Inversion Formula of the Radon Transform

In Proposition 2.2, the coefficients o ¢, are computed using a kernel and the
Radon transform R(f)(r,~) instead of taking the inner product. This yields
a reconstruction of f directly from its Radon transform without the use of the
Fourier-based inversion formula (7). In order to demonstrate the performance
for the proposed Radon inversion formula, we compared its reconstruction
quality with that of (7). The results for both normal and contour plots
are shown in Figure 1. Here, we denote the step width of the projection
angles of the Radon transform by Ay [deg]. We considered three projection
angles of the Radon transform R(f)(r,v), which are Ay = 10°,5°, 1° because
the integration with respect to angle 6 has an influence on the reconstruction
quality. We set N =2 for our frame expansion to make the comparison simple.
[ (@1, 29) =max{1—|z;|—|z2|, 0} does not satisfy the assumption of f€S(R2)
in Proposition 2.2. But, the formula of R(max{l—|zi|—|z2|,0})(r,7) in
Proposition 2.5 can be used for the simulation. Figure 1(a) shows the results
of the reconstructions using the Fourier-based inversion formula. Obviously,
the reconstruction quality depends on Ay, and the reconstructed f seems to
be well represented, especially when Ay = 1°. These results are also true for
our PTF-based inversion formula shown in Figure 1(b).

Let us now compare edge components of the graphs shown in their contour
plots. For the case of Ay = 10°, serious distortions appear at some edges for
both cases. However, when we have finer projection steps, such as Ay = 5° or
Ay = 1°, the sharp edge components of a pyramid shape are well represented
for both cases. To describe the pyramid (inside of the support f), there are
slight differences between the two cases, but no definite statement can be
made as to which is better. On the other hand, when we focus outside the
support of f in the contour plots, the both results are completely different.
The Fourier-based method has some particular noise-like patterns outside the
support of f. Remarkably, this phenomenon is dramatically reduced in our
cases. The Fourier-based inversion formula is sensitive to noise due to the use
of the ramp filter |s| in (7), which amplifies high-frequency components. The
inversion formula considered herein uses the multidirectional frame expansion
and computes the reconstruction of f directly from R(f)(r,~). Furthermore,
we can control the precision of the linear combination of the PTFs with
respect to the scale, shift, and rotation. These results clearly show that
the proposed PTF-based inversion formula of the Radon transform has some
advantages over the conventional Fourier-based method.

13



Ay = 10° Ay = 5° Ay

10

-1

0 1

X X
1 1

(a): Fourier

o o o o
)
o ®

o
[SECEECIS

(b): PTF (N = 2)

Figure 1: Reconstructions of f from R(f)(r,7). (a): Fourier-based inversion
formula by (7); (b): PTF-based inversion formula by Proposition 2.2.
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o o o o

0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 < 0
1 -0.1 -0.1
S 5 N 2 5 . 2 5 v I
oy o1 o, o1 vy o1
%2 X *5 X %, X
(a): t=0 (b): t=10.2 (c):t=04
.4 0.4 0.4
3 0.3 0.3
.2 0.2 0.2
1 0.1 0.1
0 0 0
1 ~0.1 -0.1
’ * 0 1 ’ . 0 1 ’ t 0 1 2
o 1 o o1 o o
%, X, *5 X %, X
(d): t=0.6 (e): t=10.8 (f):t=1

Figure 2: u(t, x) of the Cauchy problem for function of pyramid form.

2.4 Wave Equation

We show an application of our PTF-based Radon inversion formula for the
solution of the Cauchy problem of the wave equation, as mentioned in Remark
2.4. The solution u(t,x) can be represented by using our frame expansion
whose ;x and Bj¢) are computed with R,(f). Here we slightly modify
the function of a pyramid form as f(x1,22) = 27" max {1 — |221] — |222|, 0}
to make the wave propagation easy to see. We set N = 4 for the frame
expansion. Figure 2 shows u(t,z) with t = 0,0.2,0.4,0.6,0.8, and 1, which
demonstrates how the wave propagates to the function that has sharp edge
components. We observe sharp edges at four corners of the wave with t = 0.2.
After that, the largest wave component propagates in the form of a rectangle.
This implies that our frame expansion with the Radon inversion formula can
capture multidirectional information of a function well.
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