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1. INTRODUCTION

Borel’s normal number theorem states that for Lebesgue almost every real number
the limiting frequency of each digit of its decimal expansion is 1/10. On the other hand,
there exist plenty of real numbers with other limiting frequencies. In the 1930s and 1940s,
Besicovitch [3] and Eggleston [4] have investigated these exceptional sets of numbers in
terms of their Hausdorff dimension. Eggleston showed that for any o = (ayg,...,a9) €
(0,1)” such that >3,_, oz = 1 the set

1
E(a):{xzo.x1x2-~€[0,1]| lim g#{1§i§n|xi:k}:ak0§k§9}
n—o0

has Hausdorfl dimension

. - 22:0 ay log(ay,)
(1.1) dimg F(a) = log 10 .

Note that the Hausdorff dimension coincides with the dimension dim(u) of the Bernoulli
measure 4 on decimal expansions of real numbers 0.1 ... such that u({z; = k}) = ay.
Here, dim(u) = h(p)/x(n) is the quotient of the Kolmogorov-Sinai entropy h(p) and
the Lyapunov exponent x(u) = [log|f’'|du of the measure-preserving transformation f :
[0,1] — [0,1], f(z) = 102 mod 1 with respect to p.

The above formula (1.1) is a special case of a variational description of the Hausdorff
dimension of Birkhoff spectra in terms of invariant probability measures. In this article we
outline a generalization of this formalism for mixed Birkhoff spectra of countably many
observables in the context of non-uniformly expanding one-dimensional Markov maps. As
an application, we discuss the arithmetic mean spectrum and digit frequencies of backward
continued fraction expansions of real numbers. A more detailed exposition of our results,
together with their proofs, will appear elsewhere [11]. For related recent results we refer
to [12], [5] and the references therein. For a general introduction to dimension theory in
dynamical systems and multifractal analysis we refer to [16].

2. STATEMENT OF MAIN RESULTS

A C' Markov map f: A — [0,1] is given by a countable family {A,}.cs of connected
subsets of [0, 1] with pairwise disjoint interiors such that A = |J,.q A, and f|4, extends

to a C' diffeomorphism f, from A, onto its image, for each a € S. Moreover, f has the
Markov property, i.e., if a,b € S and fA, N A, has non-empty interior, then fA, D A,.
We note that, in the case f(z) = 10z mod 1 the Markov partition is given by the first
digit of the decimal expansion, and each branch of f is full.

Throughout, we will assume a strong transitivity assumption on f called finitely irre-

ducibility [14] which is well known for Markov maps with countably many branches.
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A C' Markov map f: A — [0,1] is non-uniformly expanding if | f/ ()| > 1 for all but
finitely many (a,z) € S x [0,1] with z € A,.

We say that f has uniform decay of cylinders if the length of any interval ﬂ;:& fA,,,
with wp - - -w,_1 € 5™, tends to zero uniformly as n — oo. We assume that the maximal
invariant set

J = ﬁ FA
n=0

is non-empty. Denote by M(f) the set of f-invariant Borel probability measures on J
with x(u) < co. We say that f is saturated if

dimy J = sup{dim(p) : p € M(f)}.
The finiteness parameter of f is denoted by

Boo = inf{B € R: sup{h(n) — Bx(p): p € M(f)} <oo}.

We introduce the class F of observables ¢: A — R admitting a mild distortion bound
see [11, Section 3.3] for the details). We say f has mild distortion if log|f’| € F. For
é = (Pr)reny € F and a0 = (i )en € RY we define

n—1
o1
B(¢, ) = {x e J: JLHC}OEE%%(:C) =ay Yk > 1}.
J:

Theorem 2.1 (Conditional variational formula for mixed Birkhoff spectra). Let f: A —
[0,1] be a finitely irreducible non-uniformly expanding Markov map which has mild distor-
tion and uniform decay of cylinders. Further, assume that f is saturated. Then for every
¢ € FY and a € RY such that B(¢, ) # 0 we have

dimg B(¢, @) = lim lim sup {dim(,u): pwe M(f), '/gbjd,u —

k—o0 e—=0

<6Vj§k:}.

If moreover each ¢; is bounded, then dimy B(¢p, ) > [

By a frequency vector we mean an element o« € RY such that a; > 0 holds for every i > 1
and Y °, «; < 1. For each frequency vector v we introduce the Besicovitch-Eggleston set

1 .
BE(a):{xGJ: lim E#{Ogjgn—lzfjxeAi}:ai ‘v’iZl}.

Corollary 2.2 (Dimension of Besicovitch-Eggleston sets). Under the assumptions of The-
orem 2.1 we have for each frequency vector o € RY such that BE(cx) # 0,

dimy BE(a) = lim limsup {dim(u): p e M(f), max |u(4;) —a;| < e} > Boo-

k—o0 €0 1<i<k

3. APPLICATION TO BACKWARD CONTINUED FRACTIONS

Recall that each irrational number x € (0,1) \ Q has a unique Backward Continued
Fraction (BCF) expansion

(3.1) r=1- :
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where each digit b;(x) is an integer greater than or equal to 2. The behavior of the
arithmetic mean of the BCF digits is peculiar. Aaronson [1] proved that the arithmetic
mean convergences to 3 in measure as n — oco. Aaronson and Nakada [2] proved that

S
h,{i&}fg;bj< )=2 and limsup— Zb =00
j:

n—oo

for Lebesgue a.e. z € (0,1) \ Q.
The digits in this expansion are generated by iterating the Rényi map [17]

R:a:e[o,l)alix— LixJ €1[0,1).

This means that for all z € (0,1) \ Q,

1 .

The graph of the Rényi map can be obtained from that of the Gauss map by reflecting
the latter in the line x = 1/2. For this reason, (3.1) is called the Backward Continued
Fraction expansion of the irrational number z. It is not difficult to verify that the Rényi
map is a fully branched non-uniformly expanding Markov map having x = 0 as a unique
parabolic fixed point. )

To prove that R is saturated, we consider the induced C! Markov map R : (1/2,1) —
(1/2,1) given by R(z) = R"®(x), where n(z) = inf{n > 1| R"(z) € (1/2,1)} denotes
the first return time to (1/2,1). One then verifies that R is uniformly expanding, that is,
inf |R’| > 1 and that R satisfies Rényi’s condition. It is then standard to verify that R is
saturated. Finally, invoking the Kac-formula, we obtain that R is saturated.

Combining Theorem 2.1 with direct computations, we are able to establish the following.

Proposition 3.1 (Completely flat arithmetic mean spectrum of BCF expansion). For
any a € [2, 00| we have

dimy {x €(0,1)\Q: nh_)lgo%(bl(x) +-+by(2)) = a} =1

We conjecture the following dichotomy for the complete flatness of the spectrum.

Conjecture. Let 1 :{2,3,...} = R. Then we have

dimy {x €(0,1)\ Q: lim l(1&(1)1(58)) + - 4+ (b)) = a} =1

n—oo N,

for all a € [1(2), 00| if and only if limsup,,_,.. 1 (n)/log(n) = co.

We also discuss the Besicovitch-Eggleston sets for the BCF expansions. For the Rényi
map we have for any frequency vector a of RY,

BE(a) = {x €(0,1)\Q: nh_{g %#{1 <j<n:bj(x)=i} =0, Yi> 2}.

Note that, for the Rényi map as well as the Gauss map, the finiteness parameter (5., is
equal to 1/2. The following theorem is then a consequence of Corollary 2.2.
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Proposition 3.2 (Dimension of Besicovitch-Eggleston sets). For every frequency vector
a we have

1
dimy BE(a) = lim lim max {sup {dim(u): pw e M(R), max |u(4;) — a4 < e} } :

k=00 e—0 1<i<k 9

4. DISCUSSION OF MAIN THEOREM AND RELATED RESULTS

Recently, conditional variational formulas have been presented in [5] for mixed Birkhoff
spectra assuming that the Markov map is uniformly expanding and full-branched. For
finitely generated parabolic iterated function systems, similar formulas have been estab-
lished in [12]. Our framework of non-uniformly expanding Markov maps contains both
these settings, and moreover, allows us to deal with infinitely branched Markov maps with
parabolic fixed points. Such an example is given by the Rényi map.

Let us point out that infinitely branched Markov maps with parabolic fixed points may
behave rather different from finitely branched ones. Namely, the set of points with zero
Lyapunov exponent

1
L(0) := {x € J | liminf —log | f™(z)| = 0}
n—oo N

may intersect many level sets of the Birkhoff level sets B(¢, ). In fact, Proposition 3.1
may be strengthened as follows: For every a > 2 we have

dimy (L(O) " {93 €(0.1)\ Q: 71113;0% (b(2) + - -+ bo(2)) = a}) _1

This indicates that a careful analysis of the set L(0) is necessary.

On the other hand, for finitely branched Markov maps with one parabolic fixed point,
the set L(0) has non-empty intersection with only one of the Birkhoff level sets.

Let us finally comment on the two limits € — 0 and £ — oo in Theorem 2.1. It is shown
in [5] (see also [6]) that, for uniformly expanding Markov maps, if the potentials ®; are
bounded, Theorem 2.1 can be stated as follows:

(1) dimy B(, o) = max {sup {dimm): peMif), [ @du=a, vj} ,500} |

We remark that, in contrast to the uniformly expanding setting, the formula in (4.1) may
fail for non-uniformly expanding Markov maps, even if the number of branches is finite.
An example is given by the Lyapunov spectrum of a finitely generated non-elementary,
free Fuchsian group with parabolic elements.
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