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Abstract

For the cake-cutting problem, Alijani, et al. [2, 30] and Asano and Umeda [3, 4]
gave envy-free and truthful mechanisms with a small number of cuts, where the desired
part of each player’s valuation function is a single interval on the given cake. In this
paper, based on parametric flows, we give efficient envy-free and truthful mechanisms
with a small number of cuts, which are much simpler than those proposed by Alijani,
et al. [2, 30] and Asano and Umeda [3, 4]. Furthermore, we show that this approach
can be applied to the envy-free and truthful mechanism proposed by Chen, et al.
[16], where the valuation function of each player is piecewise uniform. Thus, we can
obtain an envy-free and truthful mechanism with a small number of cuts, even if the
valuation function of each player is piecewise uniform.

1 Introduction

The problem of dividing a cake among players in a fair manner has attracted the attention
of mathematicians, economists, political scientists and computer scientists [6, 7, 14, 16, 17,
18, 19, 27, 28, 29] since it was first considered by Banach and Knaster [14] and Steinhaus
[32, 33]. The cake-cutting problem is often used as a metaphor for prominent real-world
problems that involve the division of a heterogeneous divisible good [12]. Some of examples
include allocating staff to time-intensive tasks such as scheduling police patrol operations
and allocating of cleaning tasks to maintenance crews [17, 37]. Territory-splitting applica-
tions are also discussed by Thomson and Sherstyuk based on fair cake-cutting approaches
[31, 37].

Slightly more formally, the cake-cutting problem is stated as follows [16]: Given a
divisible heterogeneous cake C' represented by an interval [0,1) and n strategic players
N ={1,2,...,n}, where each player i has a valuation function v; over the cake C, divide
the cake C and find an allocation of the cake C' to the players that satisfies one or several
fairness criteria. In the cake cutting literature, the most important criteria are enwvy-
freeness and proportionality [6]. In an envy-free allocation, each player considers her/his
allocation at least as good as any other player’s allocation. In a proportional allocation,
each player gets at least % of the value she/he assigns to the cake C. An envy-free
allocation is a proportional allocation when every portion of the cake that is desired at
least one player is allocated to some player.

*The author would like to thank Professor Shigeo Tsujii of Research and Development Initiative, Chuo
University. This work was supported by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center located in Kyoto University. E-mail: asano@ise.chuo-u.ac.jp



A piece A of cake C' is a finite union of disjoint subintervals X of C. A piece A can
also be viewed as a set of disjoint subintervals X of C. For a general valuation function
v; of player i which is integrable or piecewise continuous, the value V;(A) of a piece A of
cake C for player i can be written by [ _, vi(z)dz. Thus, the value V;(A) of the piece A
of disjoint subintervals X of C' for player i is Vi(A) = > x4 Vi(X).

Since general valuation functions may not have a finite discrete representation as an
input to the cake-cutting problem, most algorithms and computational complexity anal-
yses are based on oracle computation models. Among them a most popular computation
model for general integrable valuation functions is the Robertson-Webb model based on
two types of queries: evaluation and cut [29].

In the Roberson-Webb model, Even and Paz proposed a proportional cake cutting
algorithm with O(nlogn) queries that outputs a contiguous interval (a piece with a single
interval) allocation to each player [20] and Edmonds and Pruhs proved that any propor-
tional cake cutting algorithm, even if it is allowed to output an allocation consisting of
several disjoint intervals to each player, requires Q2(nlogn) queries [18].

For envy-freeness, Stromquist showed that there is no finite envy-free cake cutting algo-
rithm that outputs a contiguous allocation to each player for any n > 3 [28, 35|, although
an envy-free allocation with a contiguous interval allocation to each player is guaranteed
to exist [34, 36]. Note that any cake cutting algorithm that outputs a contiguous allo-
cation to each player uses n — 1 cuts on the cake C'. If a contiguous allocation to each
player is not required, Anziz and Mackenzie showed that there is an envy-free cake cutting

algorithm with O(n”nn ) queries [7]. Procaccia showed that any envy-free cake cutting
algorithm requires 2(n?) queries in the Roberson-Webb model [26]. Furthermore, Deng,
Qi and Saberi showed that finding an envy-free allocation using n — 1 cuts on cake C is
PPAD-complete when valuation functions are given explicitly by polynomial-time algo-
rithms [17], although their result requires very general (e.g., non-additive, non monotone)
valuation functions [22].

In recent papers, some restricted classes of valuation functions have been studied [6,
9, 12, 15, 16, 25]. Piecewise uniform and piecewise constant valuation functions are two
special classes of valuation functions [2, 6, 16, 30]. For a nonnegative valuation function
v on cake C, let D(v) = {x € C | v(x) > 0}. Thus, we can consider that D(v) consists
of several disjoint maximal contiguous intervals. Then v is called piecewise uniform if
v(xz) = v(y) holds for all z,y € D(v). Similarly, v is called piecewise constant if, for each
contiguous interval I in D(v), v(z’) = v(2”) holds for all 2/, 2" € I. Note that v(z) # v(y)
may hold for x € I and y € J when I, J are two distinct maximal contiguous intervals
in D(v) of piecewise constant valuation v. Thus, a piecewise uniform valuation is always
a piecewise constant valuation. One of the most important properties of these valuation
functions is that they can be described concisely. Kurokawa, Lai, and Procaccia proved
that finding an envy-free allocation in the Robertson-Webb model when the valuation
functions are piecewise uniform is as hard as solving the problem without any restriction
on the valuation functions [24].

The cake-cutting problem has been studied not only from the viewpoint of computa-
tional complexity but also from the game theoretical point of view [2, 6, 9, 16, 25, 30].
Chen, Lai, Parkes, and Procaccia considered a strong notion of truthfulness (denoted by
strategy-proofness), in which the players’ dominant strategies are to reveal their true val-
uations over the cake [16]. They presented an envy-free and truthful mechanism for the
cake-cutting problem based on maximum flow and minimum cut techniques [39] when



the valuation functions are piecewise uniform. Aziz and Ye considered the problem when
valuation functions are piecewise constant and piecewise uniform [6]. Based on para-
metric network flows [21], random assignments and probabilistic serial algorithms [5, 11],
they designed three algorithms called CCEA (Controlled Cake Eating Algorithm), MEA
(Market Equilibrium Algorithm) and CSD (Constrained Serial Dictatorship Algorithm)
with nice properties for piecewise constant valuations, which partially solve an open prob-
lem for piecewise constant valuations posed by Chen et al. in [16]. They showed that
CCEA runs in O(n®M? log(”MZ)), where (n is the number of players and) M is the num-
ber of subintervals defined by the union of discontinuity points of the players’ piecewise
constant valuations (M < 2% . m; where m; is the number of maximal contiguous
intervals in D(v;) = {& € C | vi(x) > 0} of piecewise constant valuation v;). They
also showed that, when CCEA and MEA are restricted for piecewise uniform valuations,
CCEA and MEA become essentially the same as the mechanism in [16] (as mentioned
above, a piecewise uniform valuation is always a piecewise constant valuation). Note that,
however, CCEA, MEA and the mechanism in [16] for dividing the cake use Q(nM) cuts
(2, 30], where M < 23, m; and m; is the number of maximal contiguous intervals in
D(v;) = {xz € C | vi(x) > 0} of piecewise uniform valuation v; as mentioned above.

Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [2, 30] considered that the number of
cuts is important and considered the following cake-cutting problem by requiring D(v;) =
{x € C | vi(x) > 0} of piecewise uniform valuation v; of each player i to be a single
contiguous interval C; in cake C': Given a divisible heterogeneous cake C', n strategic
players N = {1,2,...,n} with valuation interval C; C C of each player i € N, find a
mechanism for dividing C' into pieces and allocating pieces of C' to n players N to meet
the following conditions: (i) the mechanism is envy-free; (ii) the mechanism is truthful;
and (iii) the number of cuts made on cake C' is small. And they gave an envy-free and
truthful mechanism with at most 2n — 2 cuts [2, 30]. Asano and Umeda (3, 4] also gave an
alternative envy-free and truthful mechanism with at most 2n — 2 cuts, by pointing out
that their original mechanism in [2, 30] is not actually envy free.

In this paper, based on parametric flows, we give efficient envy-free and truthful mech-
anisms with a small number of cuts, which lead to a much simpler mechanism than those
proposed by Alijani, et al. [2, 30] and Asano and Umeda [3, 4]. Thus, we can obtain
a much simpler envy-free and truthful mechanism with at most 2n — 2 cuts which runs
in O(n?logn) time for the above cake-cutting problem. Furthermore, we show that this
approach can be applied to the envy-free and truthful mechanism proposed by Chen, et al.
for the more general cake-cutting problem where the valuation function of each player is
piecewise uniform [16]. Thus, this approach can make their envy-free and truthful mecha-
nism use 2M — 2 cuts, where M < 2 Zie N m; and m; is the number of maximal contiguous
intervals in D(v;) = {z € C | v;(z) > 0} of piecewise uniform valuation v; as mentioned
above.

2 Preliminaries

We are given a divisible heterogeneous cake C' = [0,1) = {z | 0 < = < 1} 1, n players
N ={1,2,...,n} with valuation interval C; = [o;, ;) = {z |0 < o, <z < ; <1} CC

! We assume, C = [0,1) = {z | 0 < = < 1}, and, if a subinterval X = [2/,2") = {z |2’ <z < 2"
of C =[0,1) is cut at y € X with 2’ < y < 2’ then X is divided into two subintervals X' = [z’,y) an
X' =2,



of each player i € N. We denote by Cy the (multi-) set of valuation intervals of all the
players N, i.e., Cy = (C1,Cy,...,Cy). We also write Cy = (C; : i« € N). Valuation
intervals Cpy is called solid, if, for every x € C, there is a player i € N whose valuation
interval C; € Cun contains . As in [2, 6, 4, 30], we will assume that Cy is solid, i.e.,
Ue,ee, Ci = C, throughout this paper.

A union X of mutual disjoint sets X1, Xs,..., X is denoted by X = X1 + Xs +
e+ X = Zl,f:l Xy. A piece A; of cake C' is a union of mutually disjoint subintervals
Ai Ay, ,Aiki of C. Thus, A; = Ai; + Aiy, + -+ + Aiki = IZLI A;,. A partition Ay =
(A1, Ag, ..., Ay,) of cake C into n disjoint pieces Aj, As, ..., A, is called an allocation of
C to n players N if each piece A; = ]Zizl A;, is allocated to player 7. We also write
Ay = (A; 1 i € N). Thus, in allocation Ay = (A4; : i € N) of C to n players N,
> ieny Ai = C holds and A; = Z?:l A;, is called an allocated piece of C to player 1.

For an interval X = [2/,2") of C, the length of X, denoted by len(X), is defined by
2" — 2/. For a piece A = Z?:l X, of cake C, the length of A, denoted by len(A), is
defined by the total sum of len(X,), i.e., len(A) = ZIZZI len(Xy). For each i € N and
valuation interval C; of player i, the value of piece A = lezl Xy for player i, denoted
by Vi(A), is the total sum of len(X, N C;), ie., Vi(A) = Zl,f:l len(X, N C;). For an
allocation Ay = (A; : i € N) of cake C to n players N, if V;(A;) > V;i(A4;) for all j € N,
then the allocated piece A; to player i is called envy-free for player i. If, for every player
i € N, the allocated piece A; to player i is envy-free for player i, then the allocation
An = (A; i € N) to n players N is called envy-free.

Let M be a mechanism (i.e., a polynomial-time algorithm in this paper) for the cake-
cutting problem. Let Cx = (C; : ¢ € N) be an arbitrary input to M and Ay = (A4;: i € N)
be an allocation of cake C' to n players N obtained by M. If Ay = (4; :i € N) for every
input Cny = (C; : i € N) to M is always envy-free then M is called envy-free.

Now, assume that only player ¢ gives a false valuation interval C; and let Cy (i) = (C’; :
J € N) (all the other players j # i give true valuation intervals C; and thus CJ’- = (j for
each j # i) be an input to M and let an allocation of cake C' to n players N obtained by
M be Ay (i) = (A} : j € N). The values of 4; = E];;l A;, and A} = Zl;il A;, for player i
are

Vi(A;) = Sk len(A;, 1 Ci) and Vi(A]) = Yit, len(4), N C;)

(note that V;(AL) # Z;il len(A;, N CY)). If Vi(A;) > Vi(Ap), then there is no merit for
player i to give false C/ and player i will report true valuation interval C; to M. For each
player i € N, if this holds for every input Cy = (C; : i € N) to M, then M is called
truthful (allocation Ay = (A; : i € N) obtained by M is also called truthful).

For valuation intervals Cy = (C; : @ € N) and an interval X = [2/,2") of cake C, let
N(X) be the set of players i in N with valuation interval C; contained in X and let Cp(x)
be the (multi-) set of valuation intervals in €y which are contained in X. Thus,

N(X):{iGN’CigX,CiEGN} and @N(X):(CiEGN:iGN(X)).

Let nx = |N(X)|. The density of interval X = [z, 2") of C, denoted by p(X), is defined
by
o len(X) a2 —df

p(X) = N~ nx (1)

The density p(X) is the average length of pieces of the players in N(X) when the part X
of cake C is divided among the players in N(X). Let X be the set of all nonempty intervals



in C. Let ppin be the minimum density among the densities of all nonempty intervals in
C,ie., pmin = minxex p(X). Let Xmin = {X € X | p(X) = pmin}- Thus, Xy is the set of
all intervals of minimum density in C'. An interval X € X, is called a mazimal interval
of minimum density if no other interval of X,,;, contains X properly. A minimal interval
of minimum density is similarly defined.

3 Core Mechanism M;

In this section, we give the core mechanism M; which can be applied to the envy-free and
truthful mechanism proposed by Chen, et al. [16] when the valuation function of each
player is piecewise uniform. We are given a cake C' = [0, 1), n players N = {1,2,...,n},
and solid valuation intervals Cny = (C; : i € N) with valuation interval C; = [ay, 3;) C C
of each player i € N. We are also given (s; : ¢ € N) such that there is an allocation
Ay = (A} i € N) to players N with A} C C; and s; = len(A}) > 0 for each i € N and
>ien A; = C (thus > °,cy i = 1). Note that there is no need to have such an allocation
Ay = (A} :i € N) in hand.
Then the core mechanism M; can be written as follows.

ALGORITHM 1: Core Mechanism My

Input: A cake C'=[0,1), n players N = {1,2,...,n} and solid valuation intervals
Cy = (C; : i € N) with valuation interval C; = [y, ;) of each player i € N
(thus Ug,cey Ci = €) and (s; : i € N) such that there is an allocation
Al = (A} i€ N) to players N with A] C C; and len(A)) = s; for each i € N
and ) ..y A7 = C (thus Y-,y s = 1).

Output: Allocation Ay = (4; :i € N) with A; C C; and len(A;) = s; for each

i€ Nand ), yA4i=C.
sort Cy = (C; : i € N) in a lexicographic order with respect to (5;, ;) and assume
C1 <0y <--- < (), in this lexicographic order;
set Ag = (J;
for i =1ton do
set A; = [a;, by) \Zé,_:lo A; with length s; such that [a;,b;) C C; and a; is the

leftmost endpoint in C; \ 22/_:10 Ay

Figure 1 shows an example of solid valuation intervals Cy = (C; : ¢ € N) and (s; : i €
N) with >,y si = 1 and an allocation Ay = (4; : i € N) obtained by M.

We have the following theorem.

Theorem 3.1 M; correctly finds an allocation Ay = (A; : i € N) with A; C C; and
len(A;) = s; for each i € N and ),y A; = C in O(nlogn) time. Furthermore, the
number of cuts made by My on cake C is at most 2n — 2.

Proof: The number of cuts made on cake C is clearly at most 2n — 2, since M; uses at
most two cuts at a; and b; to obtain A; = [a;, b;) \ Z’E’_:l() A, and no cut is required at 0,1
of cake C' = [0, 1). Similalrly, it can be easily shown that M; runs in O(nlogn) time, since
lexicographical sorting of Cx = (C; : i € N) requires O(nlogn) time and a;, b; for each
i € N can be found in O(logn) time based on appropriate data structures, for example,
union-find-split data structures (Figure 1(c)).
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Figure 1: (a) Example of Cy = (C; : i € N) and (s; : i € N) with ..y s; = 1. (b)
Allocation Ay = (A; : i € N) obtained by M;. (c) Maintaining of intervals by union-
find-split data structures (the set of thick dotted intervals is allocated to a player in the
current iteration).



We next give a proof on the proposition that M; correctly finds an allocation Ay =
(Az NS N) with A; C C;, s; = len(Al) and Zz’EN A, =C.

Suppose contrarily that we could not set A; = [a;,b;) \ Z;,_:l oAy C C; with length
s; for some i € N. Let j be the minimum among such is and let J = {1,2,...,5}. Of
course, j > 1, since we assumed that there is an allocation A, = (A4} : i € N) to players
N with A} C C; and len(Aj) = s; for each i € N and ),y A} = C (thus Cy = [ay, f1) is
of length at least s; and A; = [a1,b1) = [a1, 1 + s1) € C1). Now we consider valuation
intervals C; = (C; : ¢ € J). Note that each C; = [a, 5;) € C; satisfies 3; < f;, since
Cy = (C; : i € N) was sorted in the lexicographic order with respect to (53;, ;). Thus, we
could set A; = [a;,b;) \ Y0y Ay € C; = [ai, B;) with length s; for each i € J\ {j} but
could not set A; = [a;,b;) \ Zg;lo Ay C Cj = [ay, fj) with length s;. This implies that

Cj \Zf;lo A, is of length s;. < s

and Cj \ Zf;lo Ay = [aj, B5) \ Zz,_:lo Ay, since B; < f; and if B; = §; then a; < «; for
each i € J. Let

Af=A; (1eJ\{j}), Aj=C; \ZA"— [aj, B5) \ZA

Thus, »,.; A} of allocation (A} : i € J) consists of several maximal contiguous intervals.
Let I = [a,b) be the rightmost maximal contiguous interval among the maximal contiguous
intervals in ), ; A7 (Figure 2). Thus, b = j3;. Define K C J by

K={jyufieJ|AInI#0}.

Now we consider valuation intervals Cx = (C; : i € K). Then each C; € Ck is contained
in I, which can be obtained as follows.

Of course, C; = [aj,3;) is contained in I. Actually, since C; \Z] 1A” = [aj, B5) \
S Ay is of length i < sj and AY = Cj \ 00 AY = aj, 8;) \ UL Aw, we have:
if A7 = 0 then C; C S=5 A” and a single contiguous interval Cj is contained in the
rightmost maximal contiguous interval I in Y7 oAl = Eg;& Al (ie., C; C I); and
otherwise (i.e., if A7 # 0), C; C AY UZJ ! Al = g:o Al and a single contiguous interval
C; is contained in the rightmost mammal contiguous interval I in Zgzo Al

Now suppose that there were ¢ € K\ {j} such that C; € Ck is not contained in I. Thus,
I = [a, b) is a proper subinterval of [0,b) = [0, 8;) (i.e., a > 0) and C; = [, Bi) € Cx \{C}}
contains a point z in [0,b) \ I = [0,a). Let kK € K \ {j} be the minimum among such is
and let x; be a point of Cy = [ag, fr) € Ck contained in [0,a) = [0,b) \ I. Note that
CipNI D AYNI # B since k € K\{j} € J\{j}. Thus, 8 < 8j and o, < 2, < a < a}, < By
for some a) € A} NI # (. Furthermore, since we chose I = [a,b) # [0,b) as the rightmost
maximal contiguous interval among the maximal contiguous intervals in )", ; A7, we have
Yoics A7 #10,b) = [0,5;). Let I' = [d',a) be the rightmost maximal contiguous interval
in [0,b) \ ZzeJ ! (Figure 2).

Since C} = [ak, Br) is a contiguous interval and satisfies oy, < z1, < a < @), < B, we
can assume xj € I'NCy # 0. Thus, 2, ¢ A} by I'NA} C I’ﬂz c; A7 = 0. Then, however,
My would have included xj into A in place of some a IS A” NI # (), because M; sets
Al = Ay = [ag, bi) \ Zf:_ol Al C C’k with length s; such that ay is the leftmost endpoint
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Figure 2: Illustration of I = [a,b) and I' = [d, a).

in Cy \ Ef:_ol A. This is a contradiction. Thus, we have each C; € Ck is contained in I

and | J;cx Ci € 1.
By the argument above, we have

YUa=1=> 47

ieK icK

since Ay NI =0 for h e J\ K and

I=> AInI=> AnICY A/ C> G

icJ icK €K €K

by the definitions of I and K and A C C; for each i € K. Thus,

Zlen(A;'):s;-—i— Z si=len(I)=b—a<s;+ Z S

ieK ieK\{j} icK\{j}

since s;» < s;. However, this is a contradiction, since we assumed that there is an allocation
Ay = (A 1 i € N) to players N with A, C C; and s; = len(A]) for each i € N and
Yien A = C, and thus

55 + Z si = Z len(A%) < len( U C;) =len(I) =b—a.

1€eK\{j} icK €K

Thus, M, correctly finds an allocation Ay = (A; : i € N) with A; C Cy, s; = len(A;)
and ) ;. A =C. O

By Theorem 3.1, in order to obtain an envy-free allocation Ay = (4; : i € N) with
A; € C;j and len(A;) = s; for each i € N and ), A; = C, we only need (s; : i € N)
such that there is an envy-free allocation A%, = (A} : i € N) to players N with A} C C;
and len(Aj) = s; for each i € N and ),y Aj = C.

4 Flow Network on Valuation Intervals

In this section, we consider a flow network arising from the cake-cutting problem with cake
C =10,1), n players N = {1,2,...,n} and solid valuation intervals Cy = (C; : i € N)
with valuation interval C; = [ay, 3;) of each player i € N and UCZEGN C; = C. Similar
flow networks are given by Athanassoglou and Sethuraman [5] and Chen, et al. [16].
Actullay, the flow network in this section is the same as their flow networks when they
are applied to the above cake-cutting problem. By this flow network, we will be able to
obtain (s; : 4 € N) such that there is an envy-free allocation Ay = (4} : i € N) to players
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Figure 3: Example of solid valuation intervals Cy = (C; : 1 € N) (N ={1,2,...,8}), Iny =
(Ip:1<t<m) (¢{=1,2,...,12) and the convex bipartite graph Gny = (Cn,In, En).

N with A; C C; and len(A}) = s; for each i € N and ) .y A} = C, and thus we can
apply Theorem 3.1.

Let X be the set of all endpoints «;, 3; of C; = [y, 5;) of Cx = (C; : i € N) and we
assume the elements in X are sorted

o<1 << Ty (2)

where zg = 0, 2, = 1 and m < 2n — 1. For each ¢ with 1 < ¢ < m, let Iy = [x4_1,2¢)
and let Iy = (I; : 1 < £ <m). Let Gy = (Cn,Jn, En) be a bipartite graph with vertex
set Vy = Cn + Iy and edge set En where (C;, Iy) € En if and only if I, C C; (Figure
3). Gy = (Cn,In, EN) is called a convex bipartite graph since it has a property that if
(CZ‘,I@), (CZ',I(I) € Ey with ¢ < ¢ then (CZ',I(H) € Eyn for each 0" with £ < 0" < 0.

Let Gn(s,t) be the directed graph obtained from Gy = (Cn,JIn, Ex) by adding new
vertices s,t and directed edges (s,C;) (i € N) and (Iy,t) (¢ =1,...,m). We consider each
edge (Cy, Iy) € Ey is directed from C; to I;. Then the flow network H () (s, ) is obtained
from Gn (s, t) by defining the capacity capa(e) of each directed edge e of G (s, t) as follows.
Each directed edge (s, C;) (i € N) has capacity A with parameter 0 < A < 1, each directed
edge (Is,t) (¢ =1,...,m) has capacity len(I;), and each directed edge (C;, I;) € En has
capacity oo (Figure 4). We denote by Vi (s,t) and En(s,t) the set of all vertices and the



Figure 4: Example of network Hy(y(s,t) corresponding to the valuation intervals Cn =
(CizieN)(N=A{12,....,8}) (and Iy =(Lp: 1 <l <m) (¢{=1,2,...,12)) in Figure 3.

set of all directed edges in Hy(y)(s,t), respectively. Thus,

VN('s?t) = VN + {Svt} = GN +jN + {Svt})
En(s,t) = En+{(s,Ci)|Ci€Cn}+{(Ist)]| I € In}.

A function f : En(s,t) — Ry is called an s-t flow in Hy(y(s,t) with parameter 0 <\ <1,
(later f is also called a parametric s-t flow and denoted by fy since it is associated with
parameter \) if (i) and (ii) hold:

(i) 0 < f(s,C;) < capa(s, C;) = A for each edge (s,C;) and 0 < f(Iy,t) < capa(ly,t) =
len(Iy) for each edge (Iy,t), and

(i1) f(s,Ci) = Xemcy1,)es+(cyp) f(€) foreach C; € Cy and f(Ie,t) = 3o (¢, 1,)es- (1) /()
for each I, € I, where 67 (C;) is the set of directed edges in Hy(y)(s,t) leaving from
C; and 0~ (1) is the set of directed edges in Hy(y)(s,t) entering into I.

3)

The value of an s-t flow f in Hy(y)(s,t), denoted by val(f), is defined by
val(f) = > f(s,C). 4)
CiEGN

Clearly, val(f) = > 1,5, f(Le, 1)) by the above condition (ii). An s-t flow f in Hy(y(s,t)
is called mazimum if val(f) > val(f’) for all s-t flows f’ in Hy(x)(s,t). A partition (V,Y)
of vertex set Viv(s,t) = Cn + Iy + {s,t} is called an s-t cut in Hy(y)(s,t) if s € Y and
t €Y. We also call an edge set

EY,Y)={e=(y,y)€En(s,t)| y€Y, y €Y}

the s-t cut in Hyy)(s,t) defined by s-t cut (Y,Y). The capacity of an s-t cut (Y,Y) in
Hp ) (s,t), denoted by capa(Y, Y), is defined by the sum of the capacities capa(e) of all
edges e = (y,9') € En(s,t) withy € Y and 3 € Y. That is,

capa(Y,Y) = Z capa(e) (5)
e=(y,y")EEN(s,t): y€Y, y'€Y

10



(i.e., capa(Y,Y) = > ecp(yy) capa(e)). An s-t cut (Y, Y) in Hy (s, t) is called minimum
if capa(Y,Y) < capa(Y',Y’) for all s-t cuts (Y',Y’) in Hyy(s,t). For any s-t flow f
and any s-t cut (Y,Y) in Hyy)(s,t), val(f) < capa(Y,Y) holds. Furthermore, val(f) =
capa(Y,Y) holds if and only if f is a minimum s-t flow and (Y,Y)) is a minimum s-t cut
in Hy(y)(s,t) (the well-known max-flow min-cut theorem [39]).

For an s-t flow f in Hy(y)(s,t), a residual network with respect to f, denoted by
Hpyx)(s,t)(f), is defined as follows. The vertex set Vi (s,t)(f) of Hy(n(s,t)(f) is the
vertex set Vy(s,t) of Hy(y)(s,t). The edge set En(s,t)(f) of Hy(x)(s,t)(f) is defined as
follows. For an edge e = (u,v) of Hyy)(s,t), let e = (v,u) (i.e., € = (v,u) is the
reverse edge of e = (u,v) € En(s,t)). Let

EN'(s,t) ={e"V | e € En(s,t)}.

The residual capacity capa(a) of an edge a = (u,v) € En(s,t) + Ei"(s,t) is defined as
follows:

_ J capa(a) — f(a) (a € En(s,1))
capaf(a) o { f(e) (a =€ € EV(s,t), e € En(s,1)). (6)

Then the edge set En(s,t)(f) of Hy(x)(s,t)(f) is defined by
En(s,t)(f) = {a € En(s,t) + EN"(s,t) | capag(a) > 0}. (7)

Thus, the capacity capag(a) of each edge a in the residual network Hyy)(s,t)(f) is posi-
tive. It is well known that an s-t flow f in Hpy(y)(s,?) is maximum if and only if there is
no s-t path in the residual network Hyx)(s,)(f) [39].

4.1 Finding a maximum flow f, in Hy(s,t)

A maximum s-t flow f) in Hy(y)(s,t) can be found by Procedure FindMaxFlow(H y(x)(s, 1))
below, which is almost the same as Core Mechanism M; (ALGORITHM 1).

Procedure FindMaxFlow(H y(y)(s, 1))

sort Cy = (Cj :i € N) in a lexicographic order with respect to (5;, ;) and assume
C1 <0y <--- <, in this lexicographic order;
set Ag = 0;
for i =1ton do ‘ ‘
set A; = [ai, b;) \ Y20 Ay of length min{\, len(C; \ Y4} Ay)} such that
[ai, b;) C C; and a; is the leftmost endpoint in C; \ z;,_:lo Ay
f(s,C;) = len(4;);
let A= Z?:l Ai;
for each I; € Iy do  f(I;,t) = len(AN Iy);
// for each edge (Cj, I;) € Ey in Hy(y(s,t) do f(Cy, Ip) = len(A; N I;) implicitly;

Figure 5 shows a maximum s-t flow f = fy found by FindMaxFlow(Hyy)(s,t)) for
the example in Figure 3. Figure 6 shows the the residual network Hy(y)(s,)(fx) with
respect to fy in Figure 5. Figure 7 shows a minimum s-¢ cut (Y, Y)) in Hy(y)(s,t), where
Y) is the set of vertices v such that there is a v-t path in Hy(y)(s,t)(fy) in Figure 6.
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C=[0,1)
0 0.1 02 03 04 05 0.6 0.7 0.8 09 1

€1 =[0.15,0.35) 4,=[0.15,0.275)

C, =[0.25,0.35) e A, =[0.275,0.35)

C; =[0.25,0.45) 4, =[0.35,0.45)

C, =[0.1,0.5) A, =[0.1,0.15)+[0.45,0.5)
C5=[0.65,0.75) As =[0.65,0.75)

C, =[0,0.8) A 5[0,0.1)+[0.5,0.525)
C, =[0.55,0.8) 4; =[0.55,0.65) +[0.75,0.775)
Cy=[0.2,1) Ay =[0.775,0.9)

L Ll Is Is lg Iy Iy 1y I

s
4

A=0.125

Figure 5: Maximum s-t flow f = f\ with A = 0.125 found in FindMaxFlow(Hyy(s,t))
for valuation intervals Cx = (C; :i € N) (and Iy = (I; : 1 < ¢ < m)) in Figure 3.

H 1y (s,0)(f3)

Figure 6: The residual network Hy(x(s,?)(fx) with respect to fy in Figure 5 and Y, is the
set of vertices v (shown by white circle) such that there is a v-t path in Hy () (s,t)(f))-
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Figure 7: A minimum s-t cut (Y),Y)) in Hy(y)(s,t), where Yy is the set of vertices v
(shown by white circle) such that there is a v-t path in Hy(y)(s,t)(fx) in Figure 6.

Thus, the capacity of the s-t cut (Y3, Y)) in Hy(y)(s,t) in Figure 7 is

capa(Yy,Yy) = MY, NCx| + Z capa(v,t) = 3X + 0.5 = 0.875,
veY\NIn

since ?)\ ={Cs,C7,Cs, I, Ig,Ig, 111, [12,t} and A = 0.125.
The following lemma holds.

Lemma 4.1 For cake C = [0, 1), n players N = {1,2,...,n} and solid valuation intervals
Cy = (C; : i € N) with valuation interval C; = [a;, ;) of each player i € N and
Uc,cey Ci = C, Procedure FindMaxFlow(H y(x)(s,t)) correctly finds a maximum s-t flow
[ = fxin Hypy(s,t) in O(nlogn) time and uses at most 2n — 2 cuts, where fy\(s,C;) =
len(A;) = min{\, len(C;\ Y5, Ai)} with A; C C; for each C; € Cn, fr(Is,t) = len(ANI,)
for each Iy € Iy with A =31 | A; and f\(C, 1) = len(A; N I;) implicitly for each edge
(CZ’,Ig) € Ey in HN()\)(S,t).

Before giving a proof, we show one more example which will be of help to understand
the proof more easily.

Figure 8 shows an example of solid valuation intervals Cnx = (C; : i € N), Iy = (Iy :
1 < ¢ < m) and flow network Hpy(y)(s,t). Figure 9 shows an allocation A = (4; : i € N)
found by FindMaxFlow (H y(y(s,t)) with A = 0.1 for valuation intervals Cy = (C; : i € N)
(and Iy = (Iy : 1 <4 < m)) in Figure 8. Figure 10 shows the maximum s-t flow f) with
A = 0.1 found by FindMaxFlow(H y»)(s,t)) corresponding to allocation A = (4;:i € N)
in Figure 9. Figure 11 shows the residual network Hy(x)(s,t)(fx) with respect to f in
Figure 9. Figure 12 shows the minimum s-t cut (Yy,Y)) in Hy(y(s,t), where Y is the
set of vertices v (shown by white circle) such that there is a v-t path in Hyy)(s,t)(f)) in
Figure 11.

13



C=[0,1)
0 0.1 02 03 04 05 0.6 0.7 08 09 1

C, =[0.15,0.35)
C, =[0,0.45)
C, =[0.3,0.45)
C,=[0.2,0.5)
C5=[0.3,0.55)
C, =[0.5,0.75)
C, =[0.75,0.8) -
Cy=[0.2,1)

]1 12 1314 15 ]6 17 18 ]9 ]10 111 112

Figure 8: Example of solid valuation intervals Cx = (C; :i € N), In = (Iy : 1 < £ <'m)
and flow network H y(y)(s,1).

C=[0,1)
0 0.1 02 03 04 05 0.6 0.7 08 09 1

C, =[0.15,0.35) 4,=[0.15,0.25)

C, =[0,0.45) 4, =[0,0.1)

C; =[0.3,0.45) 45 =[0.3,0.4)

C,=[0.2,0.5) 4, 5[0.25,0.3)+[0.4,0.45)

C; =[0.3,0.55) A5 =[0.45,0.55)

C, =[0.5,0.75) A4, =[0.55,0.65)

C, =[0.75,0.8) - 4, =[0.75,0.8)

Cy=[0.2,1) A =[0.65,0.75)

]1 12 1314 15 ]6 17 18 ]9 ]10 111 112

Figure 9: Allocation A = (4; : i € N) found by FindMaxFlow(H y()(s,t)) with A = 0.1
for valuation intervals Cx = (C; :i € N) (and Iy = (I; : 1 < ¢ < m)) in Figure 8.
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Figure 10: Maximum s-t flow f = f\ with A = 0.1 found by FindMaxFlow(H y»)(s,t))
corresponding to allocation A = (A; : i € N) in Figure 9.

Figure 12: Minimum s-¢ cut (Y3, Yy) in Hpy ) (5,1), where Y, is the set of vertices v (shown
by white circle) such that there is a v-t path in Hy(y)(s,2)(f)) in Figure 11.

15



Now we are ready to give our proof.

Proof of Lemma 4.1: It is clear that A; C C; and f)(s, C;) = len(A4;) for each C; € Cy,
(e, t) = len(AN Ip) for each Iy € Iy with A = > | A;, and fr(Cy, 1) = len(A; N Iy)
implicitly for each edge (Cj, Iy) € En in Hy(y(s,t). Thus, fy is an s-t flow in Hy(y) (s, 1)

We only give a proof that fy is a maximum s-t flow in Hyy(s,t), since the time
complexity O(nlogn) and the number of cuts at most 2n — 2 can be obtained by the same
argument as in Proof of Theorem 3.1. Our proof here is almost the same as Proof of
Theorem3.1.

If A = min{), len(C;\ Y202 Ai)} < len(Ci\ Y4 Ay) for each i € N = {1,2,....,n},
then we have f)(s,C;) = len(A;) = XA = capa(s,C;) foralli € N ={1,2,....,n} and there
is no s-t path in the residual network Hy(y)(s,t)(fx), which implies that f is a maximum
s-t flow in Hpy (s, 1).

Thus, we can assume, there is i € N = {1,2,....,n} such that len(C; \ Y0 Ay) =
min{\, len(C; \ 325, Ai)}. Let {j1,j2,...,jp} be the set of i € N = {1,2,....,n} with
len(C; \ 5 Ay) = min{\, len(C; \ 2424, Ay)}. Thus,

i—1 i—1
A=min{), len(Ci\ > Ai)} < len(Ci\ Y Ay) for each i € N\ {j1, 2, Jp}  (8)
/=0 /=0

Without loss of generality, we can assume
1<ji<je<--<jp<nm 9)

We will show that fy is a maximum s-t flow in Hyy)(s,?) by induction on p.

We first consider when p = 1. Let j = j; and let J = {1,2,...,5}. Thus, 4; =
Cj \Zg;& A;, since len(Ci\Zg;& A;) = min{ )\, len(C’i\Eg;é A;)}. We consider valuation
intervals C; = (C; : @ € J). Note that each C; = [a, 5;) € C; satisfies 3; < f;, since
Cny = (C; : i € N) was sorted in the lexicographic order with respect to (3;, «;). Then
> icy Ai of allocation (A; : i € J) consists of several maximal contiguous intervals. Let
I = [a,b) be the rightmost maximal contiguous interval among the maximal contiguous
intervals in ) ;. ; A;. Thus, b= 3;. Define K C J by

K={jlufieJ|AnNI#0}.

Now we consider valuation intervals Cx = (C; : i € K). Then each C; € Cx is contained
in I, which can be obtained as follows.

Of course, C; = [ay, ;) is contained in I. Actually, if A; = C;\ Zg;& A =10
then C; C Zg;& A; and a single contiguous interval C; is contained in the rightmost
maximal contiguous interval I in Zgzo A; = Zf;é A; (ie., C; C I). Otherwise (i.e., if
Aj=Cj\ Zf;& A #10),C; C AjU Zz;& A; = Zzzo A; and a single contiguous interval
C; is contained in the rightmost maximal contiguous interval I in Zgzo A;.

Now suppose that there were ¢ € K\ {j} such that C; € Ck is not contained in I. Thus,
I = [a, b) is a proper subinterval of [0,b) = [0, 8;) (i.e., a > 0) and C; = [, B;) € Cx \{C}}
contains a point z in [0,b) \ I = [0,a). Let kK € K \ {j} be the minimum among such is
and let x be a point of Cx = [ag, k) € Ck contained in [0,a) = [0,b) \ I. Note that
CiNI D ApNI # B since k € K\{j} € J\{j}. Thus, B; < 8j and o, <z < a < a}, < By
for some a) € Ay NI # (. Furthermore, since we chose I = [a,b) # [0,b) as the rightmost
maximal contiguous interval among the maximal contiguous intervals in 3, ; A;, we have

16



> icsAi #[0,0) = [0, 8;). Let I' = [d’,a) be the rightmost maximal contiguous interval in
[0,0) \ >_;cs Ai- Since Cy, = [oy, Bx) is a contiguous interval and satisfies ap < 2 < a <
aj, < B, we can assume x € I'NVCy # 0. Thus, 2, € A, by I'NM A, CI'NY ;A = 0.
Then, however, Procedure FindMaxFlow(H () (s, t)) would have included zj into Ay in
place of some a;, € Ay NI # (), because Procedure FindMaxFlow(Hyy(s,t)) sets Ay =
[ak, br) \ Z ! A; C O, with length A = min{\, len(Cy \ 325 0 A} < len(Cy \ Sk A
such that ag is the leftmost endpoint in Cf \ Zf:ol A;. This is a contradiction. Thus, we
have each C; € Cx is contained in I and (J,cx C; C 1.
By the argument above, we have

Uci=1=>4, (10)

1cK icK

since A, NI = for h € J\ K and

I:ZA,»OI:ZAiﬁIQZAiQZCi

1eJ €K €K 1s¢

by the definitions of I and K and A; C C; for each i € K. Thus, I can be written by

I=In+ I+ +I,=> I (11)
=4

where I, = [zg,-1,2¢,) with 2,1 = min{a; | C; = [y, 8i) € Cx} and Ip, = [2g,-1,2,)
with zy, = B;. Thus, for each ¢ = ¢1,0; +1,...,45 (ie., for each I, C I), we have
Yo ANy =" Ai N, since

Ap,NI=0forhe N\ K (12)

(i.e., for h € J\ K by definition of J and K and for h € N \ J by the definition of Ay
in Procedure FindMaxFlow(H y(y)(s,t))). Furthermore, there is no edge from C; € Cx to
Iy € Iy with I, N1 = () in Hyy(s,t) by Eq.(10) (Figure 13).

Since A; C C; and fy(s,C;) = len(A;) for each i € N, f\(Ip,t) = len(A N Iy) for each
Iy € Iy with A =3"7" | A;, and f\(Cy, Ir) = len(A; N 1;) implicitly for each edge (CZ, Iy) in
En of Hy(y)(s,t) as mentioned above, we have fi(s,C;) = len(A;) = len(C;\ Y 1-5 A;) <
A = capa(s, () and fi(s,C;) = len(A;) = A = capa(s, C;) < len(C; \ Z;;O i) for each
i€ N\ {j} by Eq.(8) and p =1,

I, t) =len(ANI) = len(z AiN 1) = len(Iy) = capa(ly,t), (13)
€K

for each € = ¢1,01 +1,..., 05 (ie., for each I; CI) by U;cx Ci =1 = >, Ai in Eq.(10)
and f)\(Cp,I;) = 0 for each C}, with h € N \ K and for each I, € Iy with I, C I by
Ap,NI=0for he N\ K in Eq.(12).

Let Y be the set of vertices v of Hy(y)(s,t) such that there is a s-v path in the residual
network H () (s,t)(fx) with respect to fx. If fa(s,Cj) = len(A;) = A = capa(s, C;) then
Y = {s}. Otherwise (i.e., if fi(s,C;j) = len(A;) < A = capa(s,C})), then 5,C; € Y C
Crx + I +{s}, since there is no edge from Cx to Iy \ I in Hy(y)(s,t), there is no edge from
I to tin Hy(y(s,t)(fx) by Eq.(13), and f\(Ch, I¢) = 0 for each C}, with h € N\ K and
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t
HN(/l)(S,f)

Figure 13: |J,cx Ci = I and there is no edge from C; € Cx to I, € Iy with I, NI =0 in
Hyy)(s,t). There is no edge from C; € C; \ Cx to I, € Iy with I, C [b,1) in Hy(y(s,1).

for each I, € Jy with I, C I as mentioned above (see Figure 13). Thus, ¢ is not contained
in Y and f) is a maximum s-t flow in Hy(y)(s,1).

Now we assume that fy is a maximum s-¢ flow in Hp(y) (s,t) when there are at most p—1
numbers i € N = {1,2,....,n} such that len(C;\ Y5} Ay) = min{\, len(C;\ Y5 Ai)}
and we consider when there are exactly p numbers i € N = {1,2,....,n} such that
len(C’i\ZZ,_:lo Ay) = min{\, len(C’i\ZZ,_:lo A;r)}. Thus, we can assume that {j1,j2,...,Jp}
is the set of i € N = {1,2,....,n} with len(C; \ Y20 Ay) = min{\, len(C; \ S5 Ai)}
and that Eq.(9) holds, i.e.,

I<ji<je<---<jp<n.

Let j = j; and let J = {1,2,...,5}. Then the argument above holds in this case, that is,
if we use the same notation J, K, I as above, then Eq.(10) holds, i.e.,

YUcai=1=> 4,

€K €K

and there is no edge from C; € Ck to I, € Ix with I, NI = () in Hy(y)(s,t). Furthemore,
since Cy = (C; : i € N) was sorted in the lexicographic order with respect to (5;, @),
it is clear that there is no edge from C; € €; to Iy = [zy—1,2¢) € In in Hy(n(s,1)
such that I, lies to the right of I (i.e., £ > ¢5 + 1) as in Figure 13. We then consider
cake C" = C'\ Y ;.7 A; (thus C" = C'\ Y, ; A; is obtained from C by deleting all the
maximal contiguous intervals in ), ; A;) and valuations (‘Z’N\ ;= (C] i€ N\ J) with
C; = Ci\ X ;esAi. We can vitually consider that all the deleted maximal contiguous
intervals in ) .. ; A;) are contracted (i.e., the both endpoints of each deleted maximal
contiguous interval in ), ; A; are considered the same) and that the cake C” is a single
interval and each C/ € G’N\ ; is also a single interval.

Thus, the cake cutting problem with cake C’, players N \ J and valuation intervals
(‘Z’N\ ;= (C] i€ N\J)is almost the same as the original cake-cutting problem. Only
difference is that valuation intervals (‘Z’N\ ; = (Cf i € N\ J) may be not solid. In

this case, we have only to modify C" and set C' = U;cn\ ;C;. By this modification, we
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have the cake cutting problem with cake C’, players N \ J and solid valuation intervals

v\ = (Ci :i€ N\ J). Note that, the lexicographic order of Cy\; = (Ci:i € N\ J) is
preserved in e?\/\] = (C} i€ N\J). Let Hy\ o\ (s,t) be the flow network obtained from
valuation intervals e?\/\] = (G} :i € N\ J). Then, FindMaxFlow(Hn\ j(x)(s,t)) runs in
the same way as FindMaxFlow(Hyy)(s,t)) after i = j + 1 in the instruction “for i = 1
to n do”. Thus, by induction hypothesis, fy restricted to Hy sz (s,t) is a maximum
s-t flow in Hn j(x)(s,t). Since fy restricted to Hj(y)(s,t) is also a maximum s-t flow in
Hj A)(s,t) which can be obtained by the same argument above in the case when p = 1
(Figure 13), we have that there is no s-t path in the residual network Hy(y)(s,?)(fx) and
that f) is a maximum s-t flow in Hy(y)(s,?). O

4.2 Parametric Flow in Hy(s,t)

Parametric flows and parametric searching have been studied by many researchers [1, 5,
21, 38]. The density p(X) of interval X = [2/,2") of cake C = [0,1) is closely related to
the parameter A in Hy(y)(s,t). For a maximum s-t flow fy in Hy(y(s,t), we denote by
Y, throughout this paper, the set of vertices v such that there is a v-t path in the residual
network Hy(y)(s,2)(fx) and let

Yy = Vn(s,t) \ Ya. (14)
Then (Y),Y)) is a minimum s-t cut in Hyy (s, t) ? (Figure 14) and
Y{C Yy (thus, Y3 CYY) (15)

holds for each minimum s-t cut (Y/\’,?A’) in Hpy(y)(s,t). That is, Y) is a maximum set (Y
is a minimum set) among the minimum s-t¢ cuts (YX,?A’) in Hy((s,t). Furthermore, for
two distinct parameters A" and A,

if M < X then Yy CY, (thus, Yy C Yy) (16)

holds [21].

Specifically, for A = pmin (Pmin 18 the minimum density of valuation intervals Cy) and
the minimum s-t cut (Y3, Yy) in Hp ) (s,t) defined by Eq.(14) above, Y) is the disjoint
union of all the maximal intervals of minimum density pmi, and its capacity capa(Y)\,K)
is

capa(Yy,Yy) = A[YANCx| + Z capa(Iy,t). (17)
LeYANTy
Of course,
MYy Ney| = Z capa(s, C;), (18)
C;€YA\NCN

since capa(s,C;) = A for each C; € Cy. There are at most n distinct minimum s-¢ cuts
(Yx, Y)) in Hpy(y(s,t) for parameters A with 0 < A < 1, since Yy C Y} (ie,, Yy 2 Y))
holds for two distinct parameters A < X as described in Eq.(16) above 3.

*For two maximum s-t flows f) and gx in Hy () (s, t), let YA (f) be the set of vertices v such that there
is a v-t path in the residual network Hy(x)(s,t)(fx) and Y)(gx) be the set of vertices v such that there is a
v-t path in the residual network Hy(x)(s,t)(gx). Then Yx(fr) = Ya(ga) holds. Thus, (Yx,Yx) is uniquely
determined even if we choose an arbitrary maximum s-t flow fx in Hpy (s, ).

3Tt is easy to show that if Yy, C Y) then Y,y N Cx C Yy N Cn holds.
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Figure 14: Minimum s-¢ cut (Y),Y)) in Hpy(y)(s,t) in Figure 4 with A = pyin = 0.1, where
G/N =Cxn ﬂ?)\ and I = Iy ﬂ?)\.

Y a
y=8ﬂ. y=3/1+05
1 —
o.s/ﬁ =1
0.5
0 0.1 015 02 A

Figure 15: Minimum s-¢ cuts (Yy,Y)) in Hyy)(s,t) in Figure 4 for parameters A with 0 <
A <1 form a lower envelope of the arrangement of lines generated by y = capa(Y}\,K)
AYANCN]+ D1, evingy capa(le,t) (K =3 and A = 0.1 < A2 = 0.15 < A3 =0.2).

Suppose that there are exactly K 4 1 distinct minimum s-¢ cuts (Y, Yy) in Hpy (s, 1)
for parameters A with 0 < A <1, and let A1, Ao, ..., A be the breakpoints of such K + 1
distinct minimum s-t cuts (Y3,Y)) in Hy(y)(s,t). We assume

)\0:O<)\1<)\2<"‘<)\K§1:)\K+1a (19)

where we consider \g = 0 and Ax 41 = 1 for convenience. That is, (Y3, , Yy, ) is a minimum
s-t cuts in Hy(y(s,t) if and only if Az < A < Ay, for each k& = 1,2,..., K + 1. Thus,
both (Y3,,Y),) and (Y),,,,Ya,,,) are minimum s-¢ cuts in Hyy,)(s,t) in each breakpoint
A for k=1,2,... K, but (Y3,,Y),) is not a minimum s-¢ cut in Hyon(s,t) if A < Mg
or A > \g.

Figure 14 shows an example of network H(y(s,t) corresponding to valuation intervals
Cy=(C;:ie N) (and Iy = (I; : 1 < ¢ < m)) in Figure 3 and the minimum s-t cut
(YA, Y)) in Hy(y)(s,t) with A = ppin = 0.1. Figure 15 shows that the minimum s-¢ cuts
(Y),Yy) in Hpyy)(s,t) in Figure 4 for parameters A with 0 < A <1 form a lower envelope
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Figure 16: Another minimum s-¢ cut (Z, Z) in Hpyy)(s,t) in Figure 4 with A = pyin = 0.1,
where Z = {S, CQ, 05, 15, Ilo} and Z = {t} + (GN \ {Cg, 05}) + (jN \ {15, Ilo}).

74 $=64+02
y=84 y=3 5
y=A1+0.8
1 ——
ﬁ' =1
08—, Y
0.5
0.2
0 0.1 015 02 A

Figure 17: There are more minimum s-t cuts in Hpy (s, ).

of the arrangement of lines generated by

y=capa(Y),Yy) = AYanCy| + Y capa(ly,t) (20)
IL,eY\NIy

(K=3and A\ =0.1 < XAy =0.15 < A\3 =0.2).
Note that there are more minimum s-¢ cuts in Hy(y)(s, ), for example,

(Z,Z) with Z = {s,C3,C5,I5, 10} and Z = {t} + (€x \ {Ca,C5}) + (In \ {I5, [10})
is a minimum s-t cut Hy(y)(s,t) with A = 0.1 (Figure 16) and the corresponding line is
y = capa(Z, Z) = 6\ + capa(Is,t) + capa(lig,t) = 6\ + 0.2

(Figure 17).

Note also that, for finding a lower envelope of the arrangement of lines generated by
all the minimum s-t cuts in Hy(y(s,t) for parameters A with 0 < A < 1, it is sufficient to
consider only all the minimum s-¢ cuts (Yy,Y)) in Hyy) (s, t) defined by Eq.(14) above.
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4.3 Finding Breakpoints \i, Ay, ..., A\ in Parametric Flow

In order to find all breakpoints A1, Mg, ..., Ax, we use a binary search on interval (A=, A\T)
to find A\x, with A= < Ay < AT based on the method in [21].

We initially set A~ =0, AT =1 and HN(A)(A*,)#)(SJ) = HN()\)(OJ)(S,t) = HN()\)(S,t).
Then we find the minimum s-t cut (Y)-,Y\-) in Hyx-,a+)(8,t) with A = A~ (which is
denoted by Hy(x—y(n—,a+)(8,t)) and the minimum s-t cut (Yy+, Ya+) in Hyoyo-, a+) (s, 1)
with A = AT (which is also denoted by Hyx+yr—,r+)(s,t)). Thus, intially, we find the
two minimum s-t cuts (Y),Yx) in Hyny0,1)(8:t) = Hy(n(s,t) with A = A7 = 0 and
A=At =1

Let y,- (A\) be the capacity of the s-t cut (Y)-,Y,-) in Hy oy, a+) (8, ). Similarly,
let yy+(A) be the capacity of the s-t cut (Yy+,Y\+) in Hyyo—, a+)(s,t). Thus,

ua-(\) = capa(Yy-, Vi) =AY,-Nen| + Y capa(ly, 1), (21)
LeY, NIy
ua+(\) = capa(Yys, Yar) =AVar NCy| + Y capa(ly,t). (22)
LEY, 4Ny
Initially, since A\~ = 0, AT = 1 and the solidness of valuation intervals €y = (C; : i €

N), we have Yy~ = {s}, Yy~ = Vn(s,t) \ {s} and Yy+ = V(s,1) \ {t}, Yar = {t}. Thus,
initially, yy- (A) = yo(A) = nA and yy+(A) = y1(A) = 1. Note that,

-(\7) = capa(Yy-,Yao) = A [Va-new| + D capa(lt),
ey, Ny

yar (A7) = capa(Yyr,Yar) = XF[VarneCy| + ) capa(ly,t).
ey, Ny

In each iteration, we first find A* such that yy- (A*) = yy+ (1) by Eq.(21) and Eq.(22).
Then we find the minimum s-t cut (Y«, Ya+) in Hyx=ya—, 2+) (8, 1) (e, in Hyoyo-, a+) (85 1)
with A = A*) and let yy«(A) be the capacity of the s-t cut (Y, Ya«) in Hynyoa—, 1) (5,1)
Thus,

yv(N) =AY ney| + Y capa(lpt). (23)
IieY\«NIn

If ya«(A*) = ya-(A*) = yo+(A*) then we set \ry = A* and stop the binary search
on interval (A7, A"). Otherwise, we continue the binary search on interval (A7, \*) in
the network Hpy(yy(x-,a+)(8,t) obtained from Hy(y)x— a+)(s,t) by deleting Yy \ {t} and
the binary search on interval (A*,A*) in the network Hy(yxa+)(s,t) obtained from
Hyayoa-,a+) (8, 1) by deleting Yy« \ {s} (Figure 18).

Let Cn(x—, a+) be the set of vertices C; € Cy which are contained in Hyx)a—,1+)(8, 1)
Similarly, let N(A~, A) be the set of players i € N with C; € €y~ +) and let Ty 3ty
be the set of vertices I, € Jy which are contained in Hpy(yya—,r+)(8,t). Thus, initially,
eN(O,l) = GN and jN(O,l) = jN, since HN(A)(OJ)(SJ) = HN()\)(S,t).

Thus, all A1, A2, ..., Ag can be found by Parametric Flow Algorithm (ALGORITHM
2) below, where Procedure FindBreakpoints(H y(y)(x-a+)(5,t)) below is used in order to

find the minimum s-¢ cut (Yy«, Yy«) in Hy (-, a0y (85 1).
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H

N(/l)(/l*,/l*)(s’t) H

N A (5,1)

Figure 18: There is no edge from a vertex in Yy~ N Cy to a vertex in Yy~ N Iy in
Hyosyoa-,an(8,1). Hyyo- a9 (s,t) is obtained from Hy - a+)(s,t) by deleting
Yy- \ {t} and Hyy)ax a+) (5, 1) is obtained from Hy(y)—, a+) (s, t) by deleting Yy« \ {s}.
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ALGORITHM 2: Parametric Flow Algorithm

Input: A cake C' =[0,1), n players N = {1,2,...,n} and solid valuation intervals
Cny = (C; : i € N) with valuation interval C; = [«;, §;) of each player i € N
and Ug. e, Ci = C.

Output: (s; :¢ € N) such that there is an envy-free allocation A’y = (A : i € N) to

players N with A} C C; and len(A;) = s; for each i € N and ),y A = C.

Let Xy = {xo,21,...,2Zm} be the set of all a;, f; of C; = [, Bi) of Cx = (C; 17 € N);

sort X and assume xg < x1 < -+ < X, where zg = 0 and z,, = 1;

let Iy = [zy_1,xy) for each ¢ with 1 < ¢ < m;

leth:(Igilgfgm);

sort Cy = (C; : i € N) in a lexicographic order with respect to (3;, ;) and assume

C; <0y <--- <, in this order;

set AT =0 and \T = 1;

Consider Hyyyxn—, a+)(s,t) with A7 < X < AT implicitly;

K =0;

FindBreakpoints(H y(xya— 1+ (5, 1));

Procedure FindBreakpoints(H y(xyx- a+) (8, 1))

find A\* such that yy— (\*) = yy+ (A*);

let GN()\*.)\*) = (Ci17Ci27’ e 7Cip) with i1 <ig < ... < ip;
// find a maximum s-t flow f in Hy(y-yx-at)(8,t) as follows:
Ai() = (Z)a

for j =1topdo
let Z = Z;/:lo Ai, + ZIZEJN\JNO\,}AJQ Iy;
set A;; = [ai;, bi;) \ Z C C;; \ Z of length min{\*, len(C;, \ Z)} where a;; is the
leftmost endpoint in C;,\ Z;
1(5,Cs,) = len(A )
let A= Z?:l Az‘j;
for each Iy € Iy(\— a+y do  f(Iy,t) = len(AN Iy);
for each (Cy;, Iy) € Enx in Hynyo-a+)(s,t) do f(Ci;, Ip) = len(A;; N 1) implicitly;
// fis a maximum s-t flow in Hy(xeya-a+)(8,t) as shown in FindMaxFlow(-)
let Hy(x=ya—, 2+)(8,1)(f) be the residual network with respect to f;
let Yy« be the set of vertices v of Hy(x«y(a— a+)(5,t)(f) such that there is a path
from v to t in Hyeya—, a+)(5,8)(f);

let Yy« be the set of vertices v of Hyy«)(x—,+)(s,1)(f) not contained in Yy
let ya+(A) = AYas NCN[+ D1 ev,. gy c@Pa(le, t);
if 1. (A7) = g1 () = g (V') then
K=K+1; Ak =A% for j =1topdos;; = Ag;
else
FindBreakpoints(H y(x)(a—,a+) (8, 1)) where Hy(yya- a#)(8,t) is obtained from
Hy -, a0)(s,t) by deleting Yy \ {t};
FindBreakpoints(H y(x)x=,at+) (5, t)) where Hy(yya= at+)(8,t) is obtained from
Hy oy, a+)(8,t) by deleting Yy« \ {s}.
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Figure 19: Maximum s-t flow f = fy« with A = A* = 0.125 found in the first call of
FindBreakpoints(H y(x)(x— a+) (s, 1)) in Parametric Flow Algorithm (ALGORITHM 2) for
valuation intervals €y = (C; : i € N) (and Iy = (I; : 1 < j < m)) in Figure 3 and the
residual network Hy(y«)(x— a+)(8,1)(fa)-

Figure 19 shows how Parametric Flow Algorithm works for valuation intervals Cy =
(Ci:ie N) (and Iy = (I; : 1 < j < m)) in Figure 3. Initially, since A= = 0, AT = 1,
Ya-(A) = yo(A) = nA, and yy+(A) = y1(A) = 1, we have nA = 8\ =1 and \* = § = 0.125.
By FindBreakpoints(Hyx)a—a+)(s,t)), we have

Yy = Yo125 = {Cs,Cr,Cs, 11, Is, Ig, 11, I12,t}, Yy« = Y195 = V(s,t) \ Yy~

and
Yar(A*) = 3X* 4+ 0.5 = 0.875 # y)- (A*) = 8A* =1 = yy+ (\).

Thus, FindBreakpoints(Hy(x)x—+)(8,t)) is recursively called, where
Hyoyo- a9 (8, 1) = Hy(3)0,0.125) (85 1)

is obtained from Hy(x)0,1y(s,t) by deleting Yy \ {t}.
Then FindBreakpoints(H y(yy(x,a+)(8,t)) is recursively called, where

Hyoyoeat)(8,1) = Hyay0.125,1) (85 )

is obtained from Hpy(y)(a—,r+)(8,t) by deleting Y- \ {s}.
Figure 20 shows FindBreakpoints(H y(x)(0,0.125) (8, 1)) Since yy-(A) = yo(A) = 5, and
Y+ (A) = yo.125(A) = 0.5, we have 5A = 0.5 and \* = % =0.1.
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Figure 20: In the second call of FindBreakpoints(H y(yyx—a+)(5,1)).

By FindBreakpoints(H y(x)(0,0.125)(5,t)), we have Yy = Yo1 = {t}, Yo» = Yo1 =
(Yoa25 U {t}) \ Yor = Yoa25 and ya=(A*) = 0.5 = y-(X") = 5A" = yp+(A"). Thus,
FindBreakpoints(H n()(0,0.125) (8, 1)) sets K = K +1=1and A\; = A* =0.1.

Figure 21 shows FindBreakpoints(Hy(x)0.1251)(5,t)). Since yr-(A) = yo.125(\) =
3\, and yy+(A) = () = 0.5, we have 3X = 0.5 and \* = %2 = 1 = 0.166....
By FindBreakpoints(Hy(x)(0.1251)(5,t)), we have Yy« = Yoie6.. = {Cs, 2,1}, Ya» =
Yoae6.. = (Yoa2s U {s}) \ Ya- = {Cs,C7, 11, Is, I, I11, s} and yx=(A\*) = A* + 0.3 # 0.5 =
A= (AF) = 3A" =y (A7),

Thus, FindBreakpoints(Hy(x)(0.125,0.166...) (5, )) is recursively called, where

Hyoyo-a9)(8,1) = Hy(n0.125,0.166...) (8 1)

is obtained from Hy(x)0.125.1)(s,t) by deleting Yy« \ {t} = {Cs,l12}. Since y,-(A) =
yo.125(A) = 2A, and yy+ (A) = yo.166...(A) = 0.3, we have 2\ = 0.3 and \* = % =0.15.

By FindBreakpoints(Hn(x)(0.125,0.166...) (5, 1)), we have Yax = Y15 = {t}, Ya» = Y15 =
(Yoaee... U {t}) \ Yar = {C6,Cr,11,Is, Iy, 11, s} and yx«(A*) = 0.3 = yy—(A*) = 2\*
Y+ (A*). Thus, FindBreakpoints(H y(xy(0.125,0.166..)(; 1)) sets K = K +1 =2 and A2 =
A* =0.15.
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Figure 21: In the third call of FindBreakpoints(H y(x)a- r+)(5,1))-

Then FindBreakpoints(H y(x)(0.166...,1) (5, t)) is recursively called, where Hy()(0.166...,1) (5, )
is obtained from Hy(x)(0.125,1)(5,t) by deleting Yy« \ {s}. Since y»-(A) = yo.166..(A) = A,
and yy+(A) = y1(A) = 0.2, we have A = 0.2 and A\* = &2 =0.2.

By FindBreakpoints(H n(x)(0.166...,1) (8, 1)), We have Yy = Yoo = {t}, Y\« = Yo =
(Yo.a66... U {s}) \ Ya= = {Cs, [12, s} and yr«(A*) = 0.2 = y,- (X)) = A" = yy+(A"). Thus,
FindBreakpoints(H y(x)0.166...,1) (8, 1)) sets K = K +1 =3 and A3 = \* = 0.2,

Lemma 4.2 Procedure FindBreakpoints(H y(y)x-a+)(s,t)) correctly finds all the break-
points of Hyy(s,t) which are contained in interval (A=, AT).

Proof: We will show that the lemma holds by induction on the number of recursive calls
FindBreakpoints(-) in FindBreakpoints(H y(x)x- a+)(s,t)). If there is no recursive call
FindBreakpoints(-), then yy«(A*) = yy- (A*) = yy+ (A*) and A* is the unique breakpoint in
interval (A, AT), and thus, the lemma holds.
Now we assume that the lemma holds when the number of recursive calls FindBreakpoints(-)

in FindBreakpoints(H y(x)a—,a+)(s,t)) is less than p and consider the case when exactly

p recursive calls FindBreakpoints(-) are contained in FindBreakpoints(Hy(x)(x— x+)(8:1))-
Without loss of generality, we can assume A~ = 0 and A" = 1. Thus, Hy (-, 1) (5,1) =
HN()\)(S,t), GN()\*,)\*) = @N, N()\_, )\+) = N and jN(A*,A*) - jN-
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Now FindBreakpoints(H y(xy(x-,a+)(8,t)) first calls FindBreakpoints(H y(x)(x—,x+) (5, 1))
and then calls FindBreakpoints(H ) (x+ a+) (8, t)). Both FindBreakpoints(H y(xy(x—a+)(8: 1))
and FindBreakpoints(H y(x)(x=,a+)(8,t)) contain less than p recursive calls FindBreakpoints(-)
and, by induction hypothesis, FindBreakpoints(Hy(y)x-+)(s,t)) finds K breakpoints

15 A9y - - -y N, and FindBreakpoints(H ()« +) (8, t)) finds Ko breakpoints A, Ay, ..., M. .
Thus, FindBreakpoints(Hyx)a-a+)(s,t)) finds K’ = Ki + K breakpoints and we can
assume

A <Ay <o < Ny, < Ny <00 < Agr, (24)

where )\’Kl R = A} for each k =1,2,..., K>. Then we have the following proposition that
K' = K and A} = A for each £k =1,2,..., K in Eq.(19). The proposition can be proved
as follows.

By the same argument as in Proof of Lemma 4.1 for Procedure FindMaxFlow(H y(x)(s, 1)),
we can show that FindBreakpoints(Hy(y) - a+)(s,1)) finds a maximum s-t flow f =
Iy in Hyoeyo- a+)(s,1), and that Y, is the set of vertices v of the residual network
Hy(a)(a—, A1) (8, £)(fax) such that there is a path from v to ¢ in Hy(y)a—, ) (8, 6)(fax)
and Yy~ is the set of vertices v of Hy(x+y(a—, a+)(5,t)(fa+) not contained in Yy-. Thus,

(Yy+, Yy«) is a minimum s-t cut in Hyya-,a+)(s, 1) and there is no edge from a vertex

in Y\« N Cx to a vertex in Yy NIy in Hyeyoa-,a)(s,t) (Figure 18). As mentioned
before, Hy(xya-a+)(8,t) is obtained from Hyy— at+)(s,t) by deleting Yy« \ {t} and
Hyyaxa+) (8, ) is obtained from Hyyya—, a+)(8,t) by deleting Y« \ {s}. The capacity
of (Y, Yax) in Hyoxeya— a+)(8,1) is yn+ (A*), where

yx+(A) = capa(Yy+, Yy-) = A[Ya= N Cy| + Z capa(ly,t) (25)
IreY\«NIn

is the capacity of (Ya+,Y«) in Hyy)a-, r+)(s,t) as mentioned in Eq.(23).

Since fy+ is a maximum s-t flow in Hpyy«)x-, a+)(5,t) and the restriction of fi+ to
Hyo=yoax, 1) (8, 1) is also a maximum s-t flow in Hy(y+)(a+, a+)(5,t) by the structure of
Hysya-,a+)(8,t) as shown in Figure 18, we can show that, for a parameter A with
AT < A < A%, there is a maximum s-t flow fy in Hy(yya-, a+)(s,t) whose restriction to
Hyayox, a+) (8, 1) is also a maximum s-t flow in Hy(y)a=, a+)(8, 1) (note that A is not in the
interval (A*, A*) and that the restriction of fx to Hy(x)ax, a+)(s,t) can be obatained from
the restriction of fi+ to Hy(x+)(a+, a+)(8,t) by decreasing flow). Thus, we can write the

minimum s-t cut (Y, Y)) in Hy(y)n-,a+) (s, ) defined by Eq.(14) by using the minimum
s-t cut (Yy,Y)) in Hyyo-, a0 (s, 1) as follows * :

=Yy, Ya=Y{+%-
Let y4(\) = capa’(Yy,Y]) be the capacity of (Y},Y]) in Hynyo-, a9 (5,1), ie.,

yA(\) = capa’ (Y3, Y]) = \[Y{NneCn| + Z capa(Iy,t). (26)
LEeY{Niy

Thus, for a parameter A with A~ < A < A\*, the capacity y)()) of (Yy,Y)) in Hyyo-,at)(8:1)

* Y] is the set of vertices v of the residual network Hy -, a9 (8, 1) (f2) with respect to a maximum
s-t flow f} in Hy(yya—, A% (5, 1) such that there is a path from v to ¢ in Hy (-, a0 (5,8)(f3)-
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Figure 22: For a parameter A with A\~ < A < X*, (a) the capacity y}(\) = Capa’(Y)(,?)() of
(Y3, Y3) in Hyya-, a0 (s, 1), and (b) the capacity ya(A) of (Yx, Yx) in Hy(x)a—,a+) (8, 1)
is given by ya(A) = capa(Yx, Yx) = capa’ (Y}, YY) + A[Ya- N Cx| = ¢4 (N) + A[Ya- N Cx|.

is written by

yr(A) = capa(Yy,Y))
= M|+ Ya)NnCy| + Z capa(Iy,t)
IeY{niy
= MY]nen| + AYa-nen| + > capa(lyt)
I, eY{NIn

= yh(\) + AYa- NCyl.

That is, for a parameter A\ with A~ < A < A*, by using the capacity y} () = capa’(Y)(,Z()

of (Y),Y)) in Hy(nya-, 1) (s, ), the capacity yx(A) of (Y, Ya) in Hy(yyn—,a+)(s, t) can be
written as follows:

yx(\) = capa(Yy,Yy) = capa’(Y)(,YA’) + AV NCx| = vA(A) + A[Ya« N Cx. (27)

See Figure 22 (a) and (b).

Similarly, since fy+ is a maximum s-t flow in Hy(y«)x— a+)(8,t) and the restriction of
Iae 1o Hy(awy(a—, a+) (8, 1) is also a maximum s-t flow in Hy(y«)x—, a+) (8, ) by the structure
of HN(,\*)()\i)ﬁ)(s,t) as shown in Figure 18, we can show that, for a parameter A with
A < X < AT, there is a maximum s-t flow fy in Hy(ny-,a+)(8,t) whose restriction to
Hy -, (8, 1) is also a maximum s-t flow in Hy(yya-, a+)(8, 1) (actually, we can choose
the restriction of fa« to Hy(x+y(a—,r+)(s,1)). Thus, we can write the minimum s-t cut
(Y),Yy) in Hyya-,a+) (8, t) by using the minimum s-¢ cut (Y/(',Y_i’) in Hyyoeat)(s:t)
as follows °

VA=Y +Y\, Yy=Y/

Let y§(\) = capa”(Y)f’,Y_)(’) be the capacity of (Y/\”,Y_/\”) in Hyxyox,at)(8,1), e,

Ya(A) = capa” (Y, Y)) =AYy NEn| + > capa(lp,t). (28)
LeY{Niy

® Y/ is the set of vertices v of the residual network Hy o, a+) (8, 8)(fY) with respect to a maximum
s-t flow fY in Hy(y)nr, a+)(5, ) such that there is a path from v to t in Hyyyax, x+) (5, £)(f3)-

29



== =31
y 1 A 6 y
| y=4+03
0.5 ;
/7 | y=0.5
0.3 |
0 0125 0.15 1 02 A

6
@

b b el y=31+0.5
6 T =1+08
08/7 y=1

0 0125 0.151 02
6
(b)

>y

Figure 23: For a parameter A\ with A* < X < AT, (c) the capacity y}(\)
capa” (YY', YY) of (YY, YY) in Hyyox,at)(s:t), and (d) the capacity ya(\) of (Y)Y
in Hy(yo-, ) (s, 1) is given by ya(A) = capa(Yy,Yy) = capa” (Y, YY) + A[Y)« N Cy|
YA(A) + X pevy.nay capalle, t).

~—

Thus, for a parameter A with A\* < A < AT, the capacity yx()) of (Y),Y)) in Hyoyo-, ) (8:1)
is written by

ya(A) = capa(Yx,Yh)

= AY/ney| + Z capa(ly,t)
IgE(Y;\/—I—Y)\*)ﬂjN

= AY/ney| + Z capa(Iy,t) + Z capa(Iy,t)

I[EY;QJN IeYy,«NIn
"
= yh(A) + Z capa(Iy,t).
LEY NN

That is, for a parameter A with A* < A < AT, by using the capacity y§()\) = capa” (Y’ ,Y_/\”)
of (Y, YY) in Hy(nyax, a+)(8,1), the capacity ya(\) of (Y),Yy) in Hy oy, a1y (8, 1) can
be written as follows:

yx(A) = capa(Yy,Y)) = capa"(Y/\",Y_/\”)—i—)\\Y_,\*ﬂ Cn| = yi(\)+ Z capa(Iy,t). (29)
IieYy«NIn

See Figure 23 (a) and (b).
This completes our proof of lemma. O

By Lemma 4.2 and Theorem 3.1, we have the following theorem.
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Theorem 4.1 For a cake C' = [0,1), n players N = {1,2,...,n} and solid valuation
intervals Cy = (C; : i € N) with valuation interval C; = [ay, 3;) of each player i € N and
UCzE@N C; = C, Parametric Flow Algorithm (ALGORITHM 2) not only correctly finds
(si : i € N) such that there is an envy-free allocation A’y = (A} : i € N) to players N
with Aj C C; and len(Aj) = s; for each i € N and ),y A} = C, but also actually finds
an envy-free allocation Ay = (A; : i € N) with A; C C; and len(A;) = s; for each i € N
and Y, v A; = C in O(n?logn) time using at most 2n — 2 cuts on cake C.

Thus, Parametric Flow Algorithm (ALGORITHM 2) is envy-free. We can also show
that Parametric Flow Algorithm (ALGORITHM 2) is truthful by an argument which is
much simpler than the argument in [3]. We omit the details.

5 Application to Mechanism of Chen et al. [16]

By Theorem 3.1, in order to obtain an envy-free allocation Ay = (4; : ¢ € N) with
A; € Cj and len(A;) = s; for each i € N and ),y A; = C, we only need (s; : i € N)
such that there is an envy-free allocation A%, = (A} : i € N) to players N with A} C C;
and len(A}) = s; for each i € N and ),y A; = C. Thus, Theorem 3.1 can be applied to
the mechanism of Chen, et al. for the cake-cutting problem when the valuation function
v; of each player i € N is piecewise uniform [16]: Given a cake C' = [0,1), n players
N ={1,2,...,n} and solid piecewise uniform valuation functions (v; : i« € N) such that
D(v;) = {x € C | vi(x) > 0} of each valuation function v; consists of m; > 1 maximal
contiguous intervals in C' (i.e., D(v;) = 70", C;; where each Cj; is a maximal contiguous
interval in C') and (J;cy D(v;) = C.

The mechanism of Chen, et al. [16] finds an envy-free allocation A’y = (A4} : ¢ € N)
such that -,y A} = C and A} = 377" A} with A} C Cj; for each i € N and for each
j=1,2,...,m; (we give an outline of Mechanism of Chen et al. below). Thus, we can set
8i; = len(Agj) and apply Theorem 3.1 to obtain an envy-free allocation Ay = (4; : i € N)
such that A; = Z;”:Zl A;, for each i € N with A;; € Cy; and len(4;;) = s;; for each
J=1,2,...,m; with at most 2(3_,cym;) — 2 cuts. Note that, we can delete all C;; if
5i; = len(A;j) = 0, and thus, we can assume s;, = len(A;j) > 0 for each i € N and for
each j =1,2,...,m;, without loss of generality.

In summary, we have the following corollary.

Collorary 5.1 Suppose that we are given (sij 21 € N,j=1,2,...,m;) such that there
is an envy-free allocation A = (A} : i € N) to players N satisfying >,y A; = C and
Ap = Y770 Aj with Aj € Cj; and len(A; ) = si; > 0 for each i € N and for each j =
1,2,...,m; for the cake-cutting problem with cake C' = [0,1), n players N = {1,2,...,n}
and solid piecewise uniform valuation functions (v; : ¢ € N) such that D(v;) = {z € C'|
vi(x) > 0} of each piecewise uniform valuation function v; consists of m; > 1 maximal
contiguous intervals Cj,,...,C;, in C and J;cy D(v;) = C (such Ay = (4] :i € N) to
players N can be obtained, for example, by Mechanism of Chen, et al. [16]). Then, Core
Mechanism M; (ALGORITHM 1) correctly finds an allocation Ay = (4; : ¢ € N) with
YoienAi = C and A; = Z;"zll Aj; with A;; € C;; and len(A;;) = s;; for each i € N and
for each j = 1,2,...,m; in O} ;. ymilog ;. ym;) time. Furthermore, the number of
cuts made by M; on cake C' is at most 2(3 ;. mi) — 2. Thus, Mechanism of Chen, et al.

[16] can be implemented to make at most 2(3 ;.5 mi) — 2 cuts on cake C.
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5.1 An Outline of Mechanism of Chen et al. [16]

In this subsection, we give a brief outline of the envy-free and truthful mechanism proposed
by Chen, Lai, Parkes, and Procaccia for the cake-cutting problem where the valuation
function of each player is piecewise uniform by borrowing their description in [16].

Thus, we are given a divisible heterogeneous cake C, n players N = {1,2,...,n} with
piecewise uniform valuation v; over C' for each player i € N with D(v;) = >0, Cj;
such that each Cj; is a maximal contiguous interval in C' and | J;cy D(v;) = C, and the
mechanism proposed by Chen, et al. [16] finds an allocation Ay = (A4; : i € N) of C to the
players N such that A; = Z;n:ll A;; with A;; C C;, for eachi € N and each j = 1,2,...,m;
and } .y A; = C and that Ay = (A4; : i € N) is envy-free and truthful.

We denote by Vx the (multi-) set of piecewise uniform valuations of all the players N,
ie, VN = (v1,...,0,). We also write Vy = (v; : i € N). For a subset P of players N and
a piece X of cake C (thus, P C N and X is a set of maximal disjoint subintervals of C),
let DOM(P, X) denote the set of € X such that there are at least one player i € P with
x € D(v;), i.e.,

DOM(P, X) ={x € X | x € D(v;) for some i € P}.

Note that DOM(P, X) is a set of maximal disjoint subintervals of C, i.e., a piece of C.
Actually,
DOM(P, X) = (| D(v;)) N X.
icP
Define avg(P, X) by
len(DOM(P, X))
| Pl

Thus, avg(P,X) is the average length of pieces of the players in P when the piece
DOM(P, X) of cake C is divided among the players in P.

Mechanism of Chen et al. [16] for cake C, n players N = {1,2,...,n} with piecewise
uniform valuation v; over C' for each player i € N is a recursive mechanism that finds
a subset of players with a certain property, makes the allocation decision for the subset,
and then makes a recursive call on the remaining players and the remaining intervals.
Specifically, for a given set of players P C N and a remaining piece D of cake to be
allocated, the mechanism finds the subset P’ C P of players with the minimum avg(P’, D).
Then the mechanism finds an allocation Apr = (A; : i € P') of DOM(F’, D) to players
P’ such that A; C D(v;) and len(4;) = avg(P’, D) for each i € P’ and ) ,.p A; =
DOM(P’, D). The mechanism is recursively called on the remaining players P\ P’ and
the remaining intervals, i.e., D \ DOM(P’, D).

avg(P, X) =

ALGORITHM 3: Mechanism of Chen et al. [16]

Input: A cake C'=[0,1), n players N = {1,2,...,n} and solid piecewise uniform
valuations Vy = (v; : i € N) with piecewise uniform valuation v; over C' for
each player i € N.

Output: Allocation Ay = (4; : i € N) to players N with A; C D(v;) for each i € N.

ChenCutCake(N, C, Vy);

To find a maximal subset Pyin € P such that avg(Pmin, D) = minprcp avg(P’, D),
Chen, et al. considered a flow network arising piecewise uniform valuations Vy = (v; : i €
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Procedure ChenCutCake(P, D, Vy)

find a maximal subset Ppin C P such that avg(Pmin, D) = minp/cp avg(P’, D);
find an allocation Ap_, = (A;: i € Pyin) of DOM(Ppin, D) to players Ppi, with
A; € D(v;) and len(A;) = avg(Puin, D) for each i € Py, and
Eierin A; = DOM (Prin, D);
P = P\ Ppuin; D = D\ DOM(Pyin, D);
if P # () then ChenCutCake(P, D,Vy);

N) [16]. We give a flow network Hp(y(s,t) which is almost the same as the network used
in [16].

Let X be the set of all endpoints «;;, f;; of intervals C;, = [ i Bi j) of the piecewise
uniform valuations v; in Vy = (v; : @ € N) such that D(v;) = Cyy + -+ G, (ie.,
D(v;) = (Cj; : j = 1,...,m;)) for each i € N and we assume the elements in Xy are
sorted

To <21 << Tm,

where zg = 0, z,, = 1 and m < ZieN 2m; — 1. For each ¢ with 1 < ¢ < m, let
Iy = [z4—1,2¢) and let
IN=(T:1 <0< m)

(Figure 24(a)). Let Cy = (Cj; :i € N,j =1,...,m;) and let Gy = (Cy,Jy, En) be a
bipartite graph with vertex set Vi = Cny + Jn and edge set Enx where (CZ-].,Ig) € Ey if
and only if I, C C;;. Gy = (Cn,In, En) is called a convex bipartite graph since it has a
property that if (Cj;, Ip), (C;;, Ip) € Eny with £ < ¢ then (Cy;, I;n) € Ex for each £ with
e <t

Let Gn(s,t) be the directed graph obtained from Gy = (Cn,JIn, Ex) by adding new
vertices s,t and v; (i = 1,...,n) and directed edges (s,v;) (i € N), (Ip,t) (¢ =1,...,m)
and (v;,Cy;), (Cij,vi) (1 € N, j = 1,...,m;). We consider each edge (Cj;,I;) € Ey is
directed from Cj; to I, (Figure 24). We denote by Viv(s,t) and En(s,t) the set of all
vertices and the set of all directed edges in G (s, t), respectively. Thus,

Vn(s,t) = Vn+{s,t} =Cn+In+ {s,t} +Vn,

En(s,t) = En+{(s;vi)[vi € VN}+{(et) | Ir € In}
+ {(Ui,Cij),(Cij,Ui) ‘ { € N7 ] - 17' 7ml}

Then the flow network Hp(y)(s,t) can be obtained from Gy (s,t) by defining the ca-
pacity of each directed edge of Gy (s,t) as follows. Each directed edge (s,v;) (i € N) has
capacity A with parameter 0 < X\ < 1, both directed edges (v;, Cj;), (Ci;,vi) (i € N, j =
1,...,m;) have capacity len(C;;), each directed edge (I;,t) (¢ = 1,...,m) has capacity
len(Iy), and each directed edge (Cj;, Iy) € Ey has capacity oo (Figure 24(b)).

An s-t flow f in Hy(y)(s,t) is called a parametric flow in Hy(yy(s,t). The parameter
A is closely related to avg(P, X). Actually, we have the following.

For a maximum flow fy in Hy(y)(s,t), let Y, be the set of vertices v such that there
is a v-t path in Hy(y)(s,2)(fr), which is the residual network of Hyy)(s,t) with respect
to fy, and let

Y\ = Vn(s,t)\ Y.

Then (Yy,Y)) is a minimum s-t cut in Hy (s, t) and

Y, C Y,
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Figure 24: (a) Example of piecewise uniform valuations Vy = (v; : ¢ € N) with D(v;) =
Cy1 + Cia, D(vy) = Cy and D(v3) = Cs1 4+ Cs2 and Iy = (I1,...,17). (b) Gn(s,t) and
flow network Hy () (s,t) on Vy = (v; : i € N).

(thus, Yy C ?ﬁ) holds for each minimum s-t cut (Y/(,?A’) in Hy(y(s,t). That is, Y is a
maximum set (Y) is a minimum set) among the minimum s-¢ cuts (Y}, 7)() in Hy(y)(s,1)
Furthermore, for two distinct parameters N < )\,

Yv CY,

(i.e., Y 2 Yy) holds. There are at most n+ Y,y m; +m + 1 distinct minimum s-t cuts
(Yx, Y)) in Hpy(y(s,t) for parameters A with 0 < A < 1, since Yy C Y) (i.e,, Yy 2 Y))
holds for two distinct parameters A < X as described above.

Suppose that there are exactly K +1 distinct minimum s-¢ cuts (Yx, Yx) in Hy(y) (s, t)
for parameters A with 0 < X\ < 1, and let A1, Ao, ..., A be the breakpoints where minimum
s-t cuts (Yy,Y)) in Hp ) (s,t) change. Assume

M=0< A <A< <A <1=Ag41, (30)
where we consider A\g = 0 and Agy; = 1, for convenience. Note that Yy = {s} for

0< A< A and Yy = {t} for \x <A< Agyg = 1.
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Figure 25: A maximum s-t flow f) and the minimum s-t cut (Y),Y)) with parameter
A = 0.325 in network Hy(y)(s,t) in Figure 24.

Figure 25 shows a maximum s-t flow f) with parameter A = 0.325 in network H () (s, ?)
in Figure 24 and Figure 26 shows the residual network Hy(y)(s,t)(fx) for the maximum
s-t flow fy in Figure 25 and the minimum s-t cut (Y}, Y)) in network H N (8, 1) in Figure
24. In this example,

. g 1 / g g
aveg(Nyin, C) ]\1%1&1]1\[ avg(N',C) = A\ =0.325
and Npin = {2,3}, and K =2 and A9 = 0.35.

Let Procedure ChenCutCake(P, D,Vy) be called K’ times in Mechanism of Chen et
al. (ALGORITHM 3). Then, it can be shown that K’ = K and, in the kth call of
ChenCutCake(P, D, V) which is denoted by ChenCutCake(P(k), D), V),

avg(Pr(nkizl,D(k)) = min avg(P’,D(k)) =X
PICPR®)
holds for each k =1,..., K.

Thus, we can set s;; = fi, (v;,C;;) for each j = 1,...,m; if v; € Péﬁi for each i € N
and for each k = 1,..., K. This implies that by applying M; (ALGORITHM 1), we
can make the envy-free and truthful mechanism proposed by Chen, et al. [16] use at
most 222-6 N M; — 2 cuts, where m; is the number of maximal contiguous intervals in
D(v;) = {x € C | vi(z) > 0} of each piecewise uniform valuation v;.
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Figure 26: (a) The residual network Hyy)(s,t)(f) for the maximum s-t flow fy in Figure
25 and (b) the minimum s-t cut (Y),Y)) in network Hy(y)(s,t) in Figure 24.

6 Concluding Remarks

We gave a much simpler envy-free and truthful mechanism with a small number of cuts
for the cake-cutting problem posed in [2, 30]. Furthermore, we showed that this approach
can be applied to the envy-free and truthful mechanism proposed by Chen, et al. for the
more general cake-cutting problem where the valuation function of each player is piecewise
uniform [16] based on parametric flows on a network arising from piecewise uniform val-
uations v; and can make their envy-free and truthful mechanism use 2 ZZ-E N M; — 2 cuts,
where m; is the number of maximal contiguous intervals in D(v;) = {x € C' | v;(z) > 0}
of each piecewise uniform valuation v;.

If we require the piecewise uniform valuation v; of each player 7 to be a single contigu-
ous interval C; in cake C, then parametric flows on the network arising from valuation
intervals C; can be found efficiently. Thus, Mechanism of Asano and Umeda in [4] can be
implemented to run in O(n?logn) time.
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