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Abstract: In this work, we apply a dynamic mode decomposition (DMD) to epileptic EEG
data to figure out the spatio-temporal patterns in the data. It is found that some patterns
with high frequency have direct influence on the epileptic seizure, and instantaneously capture
the abnormal patterns of the neuron firing with high precision. We prepare an ictal and
interictal EEG data for an epileptic patient, and investigating the dyamics of the DMD modes
captured by the proposed algorithm for the windowed EEG signals. From the results we
conclude that the DMD modes extracted from the EEG signals can be useful for analyzing
and understanding the dynamics of the epileptic EEG data.
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1. Introduction

The dynamic mode decomposition (DMD) originated introduced by Schmid [14] in the fluid
dynamics community as a method to decompose complex flows into a simple representation
based on spatiotemporal coherent structures [14, 4, 15]. After its introduction, DMD was
reframed by Rowley et al. [13] as a numerical technique to approximate the Koopman operator
9], establishing a strong connection to the analysis of nonlinear dynamical systems [2]. The
DMD is an equation-free, data-driven method capable of providing an accurate decomposition
of a complex system into spatiotemporal coherent structures that may be used for short-time
future-state prediction and control [7]. Thus, DMD yields a set of modes along with a linear
evolution model. The development of DMD is timely due to the concurrent rise of data science,
encompassing a broad range of techniques, from machine learning and statistical regression to
computer vision and compressed sensing [7].

Epileptic seizure is often signified by abnormal synchronization in neuronal firing either
in a focal region or across several regions in the brain [8]. It is reported that the epileptic
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zone may be localized by the abnormal signal pattern of the high-frequency domain so-
called persistent high-frequency oscillations (HFO) [6, 10]. However, using conventional
transformation algorithms to extract features from the EEG signals does not guarantee to
achieve high accuracy [11]. In recent years, newly developed methods based on the DMD have
been proposed in order to extract features from EEG data [7, 16]. The DMD estimates the
complex frequencies and magnitudes (called “modes”) corresponding to the signals. One of
the advantage of DMD is that these modes are provided in linearly independent normalized
vectors, so that the high-frequency mode pattern can be clearly detected.

In this paper, we present the feature extraction method using DMD modes for recognizing
spatial-temporal patterns of the epileptic EEG data between ictal and interictal states. In
section 2, we describe the structure of data and explain the process of feature extraction.
Finally, in Section 3, we interpret spatial-temporal patterns of the features and the DMD
modes through numerical results.

1.1. Background : Dynamic Mode Decomposition
Assume that data is collected from a dynamical system

(1.1) Cf[_}; = f(x,1),

where x(t) € R™ is a vector representing the state of a dynamical system at time ¢ and f(+)
represent the dynmaics. In general, it is impossible to construct a solution to the nonlinear
equation (1.1), so numerical solutions are used to approximate the dynamics and predict
future states. The DMD procedure constructs the proxy, approximate locally linear dynamical
system

dx
(1.2) T Ax

with inital condition x(0) and solution

x(t) = Z o1 exp(wit) by, = @ exp ()b,

k=1
where ¢, and wy, are the eigenvectors and eigenvalues of the matrix A, and the coefficients by,
are the coordinates of x(0) in the eigenvector basis.
The continuous dynamics in (1.2) can be described by analogous discrete-time system
sampled every At in time such as

Xk+1:AXk, k:O,l,Q,...,m

where A = exp(AAt) and m is the number of the states. The solution to this system is simply
expressed by

(1.3) Xpp1 = Z@A’% = ®A'b

where \; and ¢; are the eigenvalues and elgenvectors of the discrete-time map A respectively,

and b is the coefficient of the initial contion % (= x(0)) in the eigenvector basis so that
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xo = ®b. The final goal of the DMD algorithm is to produce a low-rank eigendecomposition

(1.3) of the matrix A that optimally fits x; for £ =0,1,...,m in a least-sqaure sense so that
(14) I — Al
is minimized for k =0,1,...,m — 1.

Let X = [x0, X1, ,X;m] € R (m+1) he the data matrix, then to minimize the approxima-

tion error (1.4), we arrange the matrix into two data matrices

X1 = [X0, X1, , Xpp1] € R™™,
(1:5) Xo = [X1,X2,++ ,Xp) € RP™,
Then the locally linear approximation (1.2) can be written by

X, =~ AX,

and the best-fit A matrix is given by
(1.6) A = XX,
where } denotes the Moore-Penrose pseudoinverse. The solution (1.6) minimize the error

||X2 - AXIHF )

where ||-||» is the Frobenius norm [12] given by

for M € RP*4. Thus, the DMD of the pair (X, X5) is the eigendecomposition of the matrix
A. However, in practice, if the state dimension n is large, the matrix A may be intractable to
analyze directly. Instead, we compute a low-rank approximation A by the following algorithm
[15]:
(1) Compute the reduced and appropriately truncated SVD [1] of the data matrix X in
(1.5)

(1.7) X1 = ULV

where the columns of U, € R™*" and V,. € R™*" are orthonormal eigenvectors of X; X f
and X7 X, respectively, the diagonal entries of ¥, € R™" are the square roots of the
non-negative eigenvalues of both X; X7 and X7 X, and r(< minn,m) refers to the
reduced rank of the approximated matrix given in (1.7). It is notable that the columns
of U, are called the left singular vectors of Xj.

(2) Define a low-rank approximation A of A in (1.6)

(1.8) A =U'AU, = U'X,V,5 7.
(3) Compute the eigendecomposition of A in (1.8)

(1.9) AW =WA,, A, =diag(\, g, -, \)
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where the columns of W € C™" and the diagonal entries of A, € C™" are the
eigenvectors and the eigenvalues of A respectively.

(4) Since the eigenvalues in (1.9) is also the eigenvalues of A, the DMD mode (i.e. the
eigenvector of A) corresponding to the DMD eigenvalue A; in (1.9) is given by

Qgi = Urwi7
where w; is the i® column of W in (1.9).

Each snapshot x;, is approximated by x; ~ Ax;_1, and so, this algorithm allows us to express
a local approximtation of a windowed signal as a composition of a coupled spatio-temporal
model

(1.10) x; = Axg = ®,AFc,

where ®, € C™*" consists of the columns of ggz and c is the coefficient of the initial condition
xq satisfying xg = ®,.c [7]. The phase of eigenvalues can be converted to frequency (Hz) by

S(log(N;)/At)

(1.11) fim SOEOAY,
where () is the imaginary part of a complex number. f; represents the frequency of oscillation
of mode 6;1 in units of cycles per second.

The spatial resolution for neurological signals is usually less than the temporal resolution,
e.g. we have 49 electrodes sampling at 2000Hz. Therefore the standard DMD algorithm
represented above must be modified to capture the dynamics of the neurologocial activity
properly. The modification is adopted to augment the data matrix X by stacking h number
of observation vectors x; such that the number of rows in X becomes at least twice the
number of columns. The augmented matrix for the data matrix X with stacking number h is
represented by

Xo X3 o Xm—h+1

X1 X9 o Xm—h42 _
(1.12) Xowg = | . o . e R (m=ht1),

Xp Xpt1 v Xm

More details are in [3]. Then the DMD mode amplitude is defined by
(1.13) P, = 2|ci| /Vh
where ¢; is i'" entry of ¢ given in (1.10). Meanwhile, the DMD mode power is defined by

-2
6], 13,161

2

Figure 1.1 illustrates the variation in spectral information and DMD modes corresponding
to signals from different data regions of the EEG recordings such as interictal and ictal states.
The signals used in this work are obtained from 49 channel with one-second duration and they
are resampled by a sampling rate of 500Hz with 50 stacking number defined in 1.12 ;| hence,

the data matrix X contains 2450 columns and 450 rows (the original sample has 500 columns

and 49 rows.). In Figure 1.1 we see that while the amplitudes at high frequencies are relatively
4
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FI1GURE 1.1. Examples of the patterns of DMD modes and power spectrums
for ictal signals and interictal signals.

much smaller than the amplitudes at other frequencies, the patterns of high-frequency of the
DMD mode are more significant than those of other frequencies. Beside high frequency DMD
mode patterns are relatively significant than low. Since our purpose is to detect anormal
spatial-temporal patterns of high frequency from electrode signals, we ignore these biased
spectral information to focus on DMD mode patterns itselves in this study. Therefore, in order
to detect abnormal spatial-temporal patterns of high frequencies from electrode ictal and
interictal signals, we ignore the biased spectral information to focus on DMD mode patterns
themselves in this study.

2. Material and Method

In this paper, a kind of EEG data, called ECoG, is used. The ECoG recordings are sampled
at intervals of 0.2 second, and they are segmented with one second duration. Each windowed
signal is decomposed by the DMD into a dynamic mode, and the columns of the mode are
sorted according to their frequencies and then vectorized. Those vectors are projected to the
approximated left singular vector space so that the features are extracted.

2.1. Dataset

The ECoG recording of an epileptic patient was provided by Ikeda laboratory at Kyoto
University. The recording is measured through 49 channels and composed of only two types
of signals: an ictal signal and an interictal signal. Since the sampling rate of the original data
provided is very large as 2000Hz, it has been reduced to 500Hz to match the rate used in
most of the previous related studies.



2.2. Feature Extraction
Each DMD mode is used for the feature extraction after being vectorized and aligned. The
left singular vectors are obtained by decomposing the matrix constructed with the modes.
Then, the features are extracted by projecting the computed modes to the truncated left
singular vector space which is prepared in the previous states. The feature to be used in the
proposed method is a vectorized and aligned DMD mode. The dimension of the feature is
reduced by a linear transformation mapped to the space of truncated left singular vectors,
which come from a row-wise stacked feature matrix of modes. The detail of feature extraction
is explained below.

For simplicity of notation without loss of generality we define the signal set from windowed
regions of EEG recordings as follows

(2.1) W={XW c RtV ;=1 2... J}

where n and (m + 1) are the number of channels and that of snapshots within one second
durations at 0.2 second intervals, respectively. Note that J is the number of the windowed
signals in the set.

Let X0 = X(()j),xgj), e ,X%) € W be a j-th data matrix of the signal set in (2.1).

Then we denote the augmented matrix Xéﬂ)g defined in (1.12). For each X&Eﬂ)g we calculate
®U) ¢ R fU) and PY) defined in (1.10), (1.11) and (1.13) respectively. Here for the
purpose of extracting optimal features, the low-rank approximation size r is fixed (in this
paper 7 = 200). The discussion for choosing an optimal threshold on the singular values can
be found in [5]. After that we get the aligned modes by frequency as follows

@G _ 6 4 G) ©)
(22) B = (050 0y 0]
where ¢ is a permutation of {1,2,--- 7} satisfying

) () ()
fﬂ(l) Z fa(g) 2 e 2 fg‘(r)'
In order to reduce the computational cost in featuring process without loss of the information
one can extract submatrix by truncating the rows by

trunc a]ign[l -, L: T]

where Z[u, v| denotes a submatrix of Z indexed by sequences u and v, and ¢ : k implies the
index sequences {i,7+ 1,7+ 2,--- , k} satisfying ¢ < k respectively. Note that in this paper
the size of each ®Y) s given by 49 x 200 for j = 1,2,...,J. The remarkable point is that

trunc

most of entries of @Efﬁﬂm
by small groups. So we suppose that dynamics of every signals from the EEG recording can
be explained by a few entry of DMD modes. It means that we can apply low rank reduction

schemes to the modes such as singular value decomposition (or principle component analysis).

are close to zero (or almost sparse matrices) and can be clustered

From the windowed signals, the corresponding truncated DMD modes in (2.3) are gathered
to form libraries. Construction of the libraries is performed as follows

(2.4) L= [ 651 €Z~52 ¢~5J } e R,



where
gz;j = vec (@ﬁﬁ?mc) e R™.

oY)

is a algined DMD mode matrix in (2.3) for the j-th signal of W in (2.1), and the vec (M)
represents a column vector obtained by rearranging M = [ mi Mg - My } € CP*with
vertically stacking the column vectors m; of ther matrix below in the order of the index, that
is,

my

ma
vec(M) = | . € Crr<t,

myg

Here we only consider the absolute values of DMD modes. Thus the features deternmined in
d-dimensional left singular vector space is given by the transformation of each column of |L]
onto the first d left singular vectors of |£| such as

(2.5) L] =UrYV; and Fp =UJ|L] € R

where Uy € R™™ and V,; € R’*/ are matrices orthogonal to each other, ¥, € R™/ is a
non-negative diagonal matrix, U7 is the transpose of the first d columns of U, and columns
of Fr € R/ are regarded as the features of the signal set, respectively.

3. Result

Figure 3.1 and Figure 3.2 shows spatio-temporal patterns of the DMD modes and the
features captured by the proposed algorithm for the windowed signals of the EEG recordings
respectively.

In Figure 3.1, the DMD modes of the channel 33 and 47 capture the HFO phenomenon
at the front of the ictal onset. Besides that of channel 38 derives significant values in the
ictal area. Figure 3.2 exhibits the dynamics of the features generated by projection to the
left singular vector space of the library £ in 2.4. The graph shows the feature components
associated with the high-frequency patterns of the ictal and interictal signals. The components
corresponding the third and fifth left singular vectors indicate the patterns of correlated
channels and frequencies at front of the ictal onset. Besides, that of the second left singular
vectors shows corelated channels and frequencies in the ictal area.
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F1GURE 3.1. Spatiotemporal patterns of the DMD modes for EEG data. The
first row is the sample of the orignal EEG recordings containing ictal and
interictal states. The second through fifth graphs represent the dynamics of the
DMD mode values of the associated channels, respectiviely.

References

[1] A. C. Antoulas, Approzimation of Large-Scale Dynamical System, STAM: Philadelphia, U.S.A., 2005.

[2] Z. Bai, E Kaiser, J. L. Proctor, J. N. Kutz and S. L. Brunton, Dynamic mode decomposition for
compressive system identification, ATAA Journal, 2019, 1714.

[3] L. A. Brunton, L.A., J. G. Johnson, J. G. Ojemann and J. N. Kutz, Ezxtracting spatial-temporal coherent
patterns in large-scale neural recordings using dynamic mode decomposition, J. Neurosci. Methods. 2016,
258, 1715.

8



Singular -
- Coefficient
Vector
1 : -
‘ Interictal [ Ictal | [ Interictal |
0
1 -1‘
-2t
. ettt e “*"“""""‘JMW L% W s Ve
26.7 823 141.8 3.3596e+06  3.4196e+06  3.4796e+06  3.5396e+06
frequency(Hz)
. : .
4 i
05
OW
2
-0.5-
e ‘ P !
26.7 823 141.8 335960406 341960406 347960406  3.53960+06
frequency(Hz)
.
qF i
0.5+ :
0
3 w-’\r‘~W-m
-0.5F 1
A . . . .
3.3596e+06  3.4196e+06  3.4796e+06  3.5396e+06
4L ]
05
0
4
0.5F 1
A s s s
3.3596e+06  3.4196e+06  3.4796e+06  3.5396e+06
5
= - g L L L
26.7 823 141.8 3.3596e+06  3.4196e+06  3.4796e+06  3.5396e+06
frequency(Hz)

F1GURE 3.2. Spatiotemporal patterns of the features for EEG data. The first
column and the second of each row shows the pattern of the left singular vector
and the dynamics of the feature corresponding to U, and F in 2.5, respectively.

[4] K. K. Chen, J. H. Tu, and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition,
Koopman, and Fourier analysis, J. Nonlinear Sci.,2012, 22, 8877915.

[5] M. Gavish, and D. L. Donoho, The optimal hard threshold for singular values is 4/\/§, IEEE T. Inform.
Theory, 2014, 60(8), 5040~5053.

9



[6]

[7]
8]
[9]

[14]
[15]

[16]

T. Inoue, M. Inouchi, M. Matsuhashi, R. Matsumoto, T. Hitomi, M. Daifu-Kobayashi, K. Kobayashi, M.
Nakatani, K. Kanazawa, A. Shimotake, T. Kikuchi, K. Yoshida, T. Kunieda, S. Miyamoto, R. Takahashi
and A. Ikeda, Interictal Slow and High-Frequency Oscillations: Is it an Epileptic Slow or Red Slow?, J.
Clin. Neurophysiol. 2019, 36, 166™170.

J. N. Kutz, S. L. Brunton, B. W. Brunton and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven
Modeling of Complex Systems, SIAM: Philadelphia, U.S.A., 2016.

K. K. Majumdar, Automatic seizure detection in ECoG by differential operator and windowed variance,
IEEE Trans. Neural. Syst. Rehabil. Eng., 19(4), 2011.

1. Mezié, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear
Dynamics, 2005, 41, 3097325.

J. G. Ochoa and W. G. Rusyniak, Description of Ictal HFO Mapping in Patients with Both Temporal
and Extratemporal Seizure Focus, Neurol. Res. Int., 2016, 5, 174.

M. Z. Parvez and M. Paul, Classification of Ictal and Interictal EEG signals. Proceedings of the 10th
IASTED Conference on Biomedical Engineering, Innsbruck, Austria, 13715 Feb. 2013; ACTA Press:
Alberta, Canada, 2013, 1137141.

G. Golub and C. van Loan, Matriz Computations, JHU Press, Fourth edition, 2013.

C. W. Rowley, 1. Mezié, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral anlaysis of nonlinear
flows, J. Fluid Mech., 2009, 641, 1157127.

P. J. Schmid, Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010,
656, 5728.

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode
decomposition: theory and applications., J. Comput. Dyn. 2014, 1, 3917421.

M. S. J. Solaija, S. Saleem, K. Khurshid, S. A. Hassan and A. M. Kamboh, Dynamic Mode Decomposition
Based Epileptic Seizure Detection from Scalp EEG, IEEE Access, 2018, 6, 386837 38692.

10



