An Attempt to Enhance Buchberger’s Algorithm
by Using Remainder Sequences and GCDs (II)

Tateaki Sasaki
Professor emeritus, University of Tsukuba
Tsukuba-shi, Ten-noudai, Ibaraki 305-8571, Japan
E-mail address: sasaki@math.tsukuba.ac.jp

Masaru Sanuki
Dept. Clinical Medicine, University of Tsukuba,
Tsukuba-shi Ten-noudai, Ibaraki 305-8571, Japan
E-mail address: sanuki@md.tsukuba.ac.jp

Daiju Inaba
The Mathematics Certification Institute of Japan
Ueno 5-1-1, Tokyo 110-0005, Japan
E-mail address: d.inaba@su-gaku.net

Fujio Kako
Inst. Computer Science, Nara Women’s University
Nara-shi Kita-uoya, Nara 630-8506, Japan
E-mail address: kako@ics.nara-wu.ac. jp

Abstract

Let F = {Fi,...,Fmt1} C Q[x,u] be a given system, where m+1 > 3, () = (z1,...,2m,) and
(w) = (u1,...,un), with Va; = Vu;. Let GB(F) = {G1,Ga,---}, with G1 < Ga < ---, be the reduced
Grobner basis of F w.r.t. the lexicographic order. In a previous paper [10], one of the authors proposed a
method of enhancing Buchberger’s algorithm for computing GB(F). His idea is to compute a set G’ :=
{C~¥1, ég, ...} C Q[z, u], such that each G is either 0 or a small multiple of éi, and apply Buchberger’s
algorithm to FUG’. He proposed a scheme of computing él, 5’2, ... by the PRSs (polynomial remainder
sequences) and the GCDs in “Gy = Gy = -7 order, without computing Spolynomials. The scheme is
supported by two new useful theorems and one proposition to remove the extraneous factor. In fact, for a
simple but never toy example, his scheme has computed G successfully (G1 became G1 by the proposition
mentioned above). However, an unexpected difficulty occurred in computing ég; it contained a pretty
large extraneous factor which was not removed by the proposition. In this paper, we find a surprising
pheriomenog with which we can remove the above mentioned extraneous factor in 52 and obtain ég. As
for G3 and G4, we obtain very good “body doubles” of them, by eliminating variables in leading coefficients
of intermediate remainders of the PRSs computed for G;. For systems of many sub-variables, n > 3, our
method introduces an extra factor in Qus,..,u,], into the “LCtoW” polynomial; see the text for the
LCtoW polynomial. Furthermore, we present several techniques to enhance the computation.

1 Introduction

In this paper, by K, « and u we denote a number field, variables x1, ..., 2, (m > 2) and sub-variables
U1, ..., Uy, where ; and u; are ordered as Vz; > Vu;. By (F), with F C K[z, u], we denote an ideal
generated by the polynomials of 7. By PRS,(G, H), with G,H € K|z, u|, we denote a polynomial
remainder sequence (PRS in short) w.r.t. z, started from G and H. In this paper, we mostly discuss
on the PRS and only a little on the Grébner basis. So, we explain basic concepts on Grobner basis
here. We use, without explanation, the leading monomial (abbreviated to “lmn”, and used as lImn(P)),
the Spolynomial, Spol(Py, Py) for P, P, € Kx,u]|, and the Mreduction (“M” means monomial). By

¢ - a , we denote successive Mreductions of G by H so that each monomial of G is Mirreducible w.r.t.
H. By GB(F), we denote the reduced Grobner basis w.r.t. the lexicographic (LEX) order, of F; here,
“reduced” means that any elements G; and G, of GB(F) are mutually Mirreducible.

Let G, H € K[z, u] be relatively prime. The last element of PRS, (G, H) is in K[u], and called the
resultant R = res, (G, H). R is a (often a large) multiple of the lowest-order element G of the elimination
ideal ({G, H}) NK[u]. Polynomial R/G is called the extraneous factor in the algebraic elimination; see
a nice introductory paper by Kapur [7]. G is also the lowest-order element of GB({G, H}), and we can
compute it by Buchberger’s algorithm [4, 5]. Buchberger’s algorithm is known to be quite heavy, in
particular, for the LEX order and when m + n > 1. So, the authors of [11] tried to compute G by the
PRS method. They got the following nice theorem in [11]; cont,(A) below is the content of A w.r.t. .
Theorem A: Let Py be the last element of PRS,(G, H), and Ay and By, be the cofactors of Py, satisfying
P, = AyG + ByH. Then, Py/ ged(cont, (Ayg),cont,(By)) is a constant multiple of G. O

The above authors tried to extend Theorem A to (m+1)-polynomial system F := {Fy,...,Fp41} C
K[x,u]. They failed but obtained a very useful theorem, Theorem B below, by restricting F to be
“healthy” in [12]. F is called healthy if i) all the m variables @ can be eliminated, ii) none of n sub-
variables w can be eliminated, and iii) GB(F) NK[u] # By U - -- U Bj>1 where By, ..., B; are non-empty
reduced Grobner bases in Ku], s.t. Spol(P;, P;) Iﬂ;—; 0 for any pair (P;, Pjx;), P, € B; and P; € B;.
Theorem B: If F is healthy then GB(F)NK[u] = {G}. O This theorem is not useful if we compute only
one multiple of G. Sasaki proposed a simple and outstanding idea which he called “rectangular PRSs”
(rectPRSs in short); see 2. With rectPRSs we can compute several different multiples of G. Applying
this idea to a system shown in 3, he found that the GCD of the multiples was a small multiple of G.

Thus, so long as G is concerned, we are now able to compute G or its small multiple G by the PRSs
and the GCDs quite fast. This pushed Sasaki to propose a method of enhancing Buchberger’s algorithm
by using PRSs and GCDs in [10]. His idea is to compute small multiples of important elements of GB(F),
by utilizing the intermediate elements of PRSs computed for @, and apply Buchberger’s algorithm for
the system F UG’, where G’ is a set of polynomials thus computed by the PRSs and the GCD operation.
Remark 1: We note that many elements of G’ are not multiples of corresponding ones of GB(F). What
happens actually is as follows. Let Gi€G bea “body double” of G, € GB(F). Then, lmn(éi) is a small
multiple of lmn(G) We express this situation as that G; is a small Imn-multiple of G;. //

Let GB(F) = {Gl, ég, @3, .-+ }, where @zél =< 62 =< (A?3 <---. Let R :={Ry,...,R;} be a family
of remainders of rectPRSs, of the same main variable and the same degree. For computing polynomials
in G’, Sasaki eliminated variables of the leading coefficients of R. Let ¢ be the GCD of the variable-
eliminated leading coefficients. Then, Sasaki constructed a polynomial LCtoW(¢) € (F), having ¢ as its
leading coefficient; he called it “LeadingCoefficient-to-Whole” polynomial; see 4.1 for details. For Ga
of the example shown in 3, however, the LCtoW polynomial contained a large extraneous factor which
could not be removed by Proposition 1. That is, Sasaki faced a big problem in [10].

In 2, we explain critical concepts in our scheme of elimination: the leading-term elimination and
PRSs, rectangular PRSs, u-cofactors and relating proposition for removing the extraneous factors. In
3, we explain our current problem in details. In 4, we show an unexpected phenomenon which opens
a door to solve the difficulty mentioned above, and explain how we have solved the difficulty. In 5, we
show how G3 and G4 are computed by Sasaki’s scheme. Finally, in 6, we give various theoretical and
computational considerations. In particular, we modify the previous definition of LCtoW polynomial.

2 Preliminary and a brief survey

Recursive representation and leading-term elimination It is well-known that the Grobner basis
theory is based on the monomial representation of polynomials. So, in this paper, we explain only the
recursive representation of polynomials. In computing the PRS, polynomial G € K[z], with 21 > --- >
Tm, and its coefficients are represented recursively w.r.t. its variables, as follows.

G = gdxf+gd—lxl11_l+"'+907 where \V/Z, gi EK[I27"'7IW]' (1)

By deg(G), Itm(G), lcf(G) we denote the degree d, the leading term gqx¢, and the leading coefficient
gd, of G, respectively. Given G and H = h.z{ + he_lzzrf_l + -+ € Klx], with d > e, the leading-term
elimination of G and H is defined by (the “lem” below is the operation of the least common multiple):

. def LCM LCM
ItmElim(G, H) = 1cf(G) ~ 1cf(H)

2{°H, where LCM = lem(lcf(G),lcf(H)). (2)

Let (F1=G, Ey=H, E3,...,E;,...,Ey) be a leading-term elimination sequence (LES in short) w.r.t.
T, computed by formula El = 1tmElim(Ei_2,Ei_1) = Th‘_QErL'_Q — T]i_l.fcdi_l i—1, where i Z 3, di—l =
deg(F;_2) —deg(F,;_1), and 1;_2 and 7,—1 are multipliers specified in (2). Then, the cofactors A; and B;
of E; for i > 3, with (A, A2) = (1,0) and (By, By) = (0,1), are computed by the formulas

A= mimoAio —mig xh Ay, Bi:=ni—oBi_s —mi—1 2% 'B;_;. (3)

Note that ItmElim(G, H) is quite similar in shape to Spol(G, H). In fact, by eliminating Itm(G) by
Itm(H) with Buchberger’s algorithm, we obtain ltmElim(G, H). This shows that both eliminations are
connected with each other in the most basic level. We obtain the PRS by taking out strictly degree-
decreasing sub-sequence of the LES.

“Rectangular PRSs” to utilize Theorem B By lastPRS,, (Fj,, F;,) and nmlastPRS,, (F},, F},)
we denote the last element of PRS,, (F},, Fj,) and its normalized version by Theorem A, respectively.
The conventional way of eliminating « is to triangularize F w.r.t. . On the other hand, we eliminate
x as follows: {Fl, FQ, ey Fm+1} = {Gl, GQ, ceey Gm+1} = = {Hl, HQ, - 7Hm+1}7 where Gj =
nmlastPRS,, (Fj, Fjy1) with Fq = F1, ---, Hj := nmlastPRS,, (G}, G’) with G}, ., = G}. Thus,
we obtain m x (m+1) PRSs, which we call rectangular PRSs (rectPRSs in short). By Theorem B, each

Hj is a multiple of CA}’, so HY ged(Hy, ..., Hypyp) will be a small multiple of G.

u-cofactors and removal of remaining extraneous factors Theorem B is quite powerful, however,
H defined above usually contains extraneous factors. In [12], the authors presented a method of predicting

extraneous factors in Hy,..., Hy,, 41 (hence in H). Each H; can be expressed as H; = A B+ +
Aim+1Fm+1. Since A, ; is often a big polynomial, the authors introduced wu-cofactors as follows.
def
(@ig, - Gime1) = (Ait,.oo Aimsr)|z=s, (4)
where s = (s1,...,8,) € Z™; we usually choose s = (0,...,0) if no polynomial of F disappears by this

choice. On u-cofactors , they proved the following proposition; see [12] for the proof.

Proposition 1: Let (f1,..., fm+1) := (F1,-.., Fmt1)|le=s- If f:=ged(f1,..., fm+1) 48 a non-numeric
polynomial then f is a factor of G. Let @; := ged(ain, .- aims1). If @ is a non-numeric polynomial
then @; is an extraneous factor of H (hence not a factor of CAv') .

3 Explanation of current big problem by an example

Example Fgy1 being used so far So far, we used the following example mainly:

Fl = X
FEx1 = F, = «x
F3 = T

(y+u) + 2% (y—2w) + (2utw),
(yu) + 22 (y+2w) + (3u—w), (5)

1
1
Ly—u) + 2% (2y+u) + (u—2w).

The Grobner basis GB(Fgx1) contains 10 polynomials; we show only the last four.

Gr = 176158 -- y%w + yx (286608 - - - w’ — 2549237 w’® — 424132 w° + - -- — 659890 - - - w> + 239969 - - - w?)

+ 985216 - - - uSw* — - - + 686666 - - - uPw® + - — 642027 - utw® + - — 358260 wIBw 444t
Gs = yx(142799- - u — 168202 - w’ + - — 192531 .- w? + 291426 - - - w)

— 578194 - - wSw? + ... — 402984 - wSw® + - + 963657 - wrw® + - +210252- - WBw + - f o
Go = yx(48000w® — 419640 w” — --- — 1041048 w?) + 6500 uSw® — 430980 uSw* — - - - — 5430496 w3,
Gio = 33u" 4 23uw —126u® — 55 u’w? — 343 uPw + 316 w® — 12 utw® — 130w w? + 544 utw — 202 u? + 32w w?

+ 218 udw? + 548 vPw? — 128 wPw + 144 v2w* + 428 u?w? — 420w w? + 144 uw* — 256 uw® — 32 w*.

The numerical coefficients of G; ~ Gg are of about 30 digits, and Gy and Gy consist of 61 and 20
monomials, respectively. Note that G¢ is simplest in both the number of terms and the coefficient size.

Unexpected difficulty happened in the computation of Gy The Gy is computed from three
remainders of degree 1 in y, with leading coefficients C1, Cs, C5 € Z[u,w]. Since C, Cs, C3 are of degrees

14,12, 12, respectively, w.r.t. u, each (R;, C;) was Mreduced as (R;, C;) Gy, (R}, C%), which gives

R, = yx (349136896959 uSw® + - - - + 249988316347584 w*) ©)
+ (—915846376989 ubw® + - - - — 417398434490880 w),

for example. Coefficients of both y!- and y°-terms consist of 68 monomials. Even by this Mreduction, the
computation of PRSs and cofactors is quite expensive (computational difficulty). For example, a; and
by satisfying c¢; := nmlastPRS,(C1,C%) = a1Cy + b1C% consist of 432 and 420 monomials, respectively,
and W] := LCtoW(c1) = a1 R} + b1 R} € Zly, u,w] consists of 1016 monomials.

The computational difficulty mentioned above will be reduced very much by devising efficient PRS
algorithms. However, in [10], the author faced a theoretical difficulty, too; he found that, for each
J € {1,2,3}, Gy was obtained as W Gy, Wi = Gg = W} /cont, (W), but he could not give any
theoretical justification of this. Without solving this problem, he could not advance anymore.

4 On LCtoW polynomial of second-lowest element of GB(F)

We consider the computation of LCtoW polynomial for ég in Example Fgy1, with variable notations
used in the example. Without changing the essence of computation, we set K = Z, with p = 1073738843,
so as to simplify the outputs. Hence, given are {R1, R2, R3} C Zply, u, w], and {C1,Cs,Cs} C Zp[u, w),
where, for each j € {1,2,3}, deg,(R;) = 1 and C; = lcf,(R;). Furthermore, C1,Cy,Cs are mutually
prime. We treat the case where both R and C have been Mreduced by Gio, so treat R and C7. (If a
polynomial P is Mreduced by G1g twice then we express the Mreduced polynomial as P").

In our computation, a procedure Mreduce plays an important role. Given polynomials G and H,
with deg(G) > deg(H), expressed recursively w.r.t. their variables, Mreduce(G, H) performs successive

Mreductions of G by H, G A R, as if G and H are given in the monomial representation, and returns
R by saving a polynomial @) satisfying G = Q H + R. We express Q and R as quopol(G, H) and
rempol(G, H), respectively.

4.1 Computation of LCtoW polynomial for 59 in Example Fg,

Let ¢} :=lastPRS,(C}, C},), where C} = C1. Then, we obtained

J+1
¢ = 182913124 w™ — 310233643 w™ + - - - + 301414704 w!,
ch = 504782002 w™ + 105447348 w™ + - - - + 465634055 w'?, (7)
dy = —242692664 wS — 17207621 wS + - . + 211285272 w'!,

and cofactors a); and b’ satisfying ¢; = a;C} + 0;C},,. By these, we obtained ¢ := ged(c},ch,c3) as

follows (we set ¢ monic, because GCD modulo p can be determined only up to a numerical multiplier).

¢ = wl” — 56371298 w6 + 138243860 w'® — 521121094 w'4 (8)
— 96457750 w3 — 382429906 w'? — 247496825 wll.

Secondly, we computed W} := LCtoW(c}) = aj R + bR}, ;. Thirdly, we computed W= LCtoW (¢'),
as follows. As for Fgy1, we noticed that ¢ = ged(c},) € Z,[w] for Vi # Vj. This allows us to compute
¢ as @ := lastPRS, (¢}, c5). Let the cofactors of ¢ thus computed be of, 3] € Zy[w], which satisfy
@ = ac} + Bich. Hence, we obtain W = ay Wi + B1W;. We note that not only W} but also W'is in
(FEx1), because a’;, V; € Zy[u,w] and o, B € Zplw].

Remark 2: The above ¢ and ¢, are in Zy[w], so are cofactors oy and BY, too. Hence, we can compute
both @ and (o}, ;) by the PRS method easily. In general case, although we have @ € Klwy, ..., wy>2],
we have of, B € K(wa, .., wy)[wi]. In 6.1, we will discuss this point in details. [/

The a} and b} are dense polynomials of degree 5 w.r.t. u and pretty large, making WJ' a big polynomial;
for example, W{ consists of 1016 monomials. W is a polynomial of the form ¢y + Wé, where Wg €
Zp[u,w], of degree 11 w.r.t. u. Hence, we Mreduce it by Gig, W= Mreduce(W/, G1o), obtaining

=/

= yx(w™—56371298w'® + ... — 247496825 w'!)

+ u®x(503315083 w'* + 511368115 w'® + - - - 4 365540993 w?)

+ u®x(123032576 w'® + 461931391 w'* — - -- + 29125264 w?) (9)
+ u®x(357912951 w*® + 304225978 w!” — - .- — 342880717 w'?).

If we compute the above W over Z then we have W = w®x Gy (w? is the extraneous factor).
Summarizing the above derivation, we can express W as follows.

W' = redpol(a} W + B Wy, G1o) = redpol(aj(ay Ry + b Ry) + By (ayRy + VyRS), Gho). (10)

4.2 Surprising phenomenon observed on W" in (10)

How did the extraneous factor w” appear in W7 We thought that two Mreductions by G1o created
the factor. In order to check this expectation, we have computed redpol(u’, G1g) for i = 7,...,11, and
recognized that the effect of the Mreduction was not large. In fact, we will see below that the Mreduction
does not create the w® factor. Cofactors a’; and b; have no common factor. In fact, the tuple (c},al;, b}) has
been normalized so that we have ged(cont, (a}), cont, (b})) = 1. (Without this normalization, cofactors
have a common factor w?! which has been removed by Theorem A.)

How can we remove the extraneous factor w® of W ? The u-cofactors method seems to be most
hopeful; we can define u-cofactors for W and W~ (the latter is obtained by Mreducing the former by
G19). We have computed u-cofactors of W' and W”; the former consists of 4746 monomials and the
latter 2900 monomials. We found that the contents of these u-cofactors w.r.t. u are 1, which means
that Proposition 1 cannot remove any extraneous factor. We thought that our computation could be
formulated by a determinant theory like the sub-resultant theory of two multivariate polynomials [6, 2, 3].
Developing such a theory seems to be quite difficult; see [9] for your reference. Thus, removing the w?
factor was a big problem for us many months.

We have tested various possibilities. One day, observing o’ R} and b; R’ | (j € {1,2}) separately, we
found the following surprising fact; below, by [P]’ we denote the Mreduction of polynomial P by Gig.

redpol(a;Rj,w) # 0 (mod p), redpol(VjR; 1, w) # 0 (mod p), (11)
redpol([ajRi]',w) # 0 (mod p), redpol([b; R} ,]',w) # 0 (mod p),
These relations tell that the Mreduction by Gy does not create the factor w”. On the other hand, the
W in (9) and relations in (11) tell that, for 0 < Vi <9, the w'-terms of a}R); and bR’ | (resp. [a}R}]'
and [0 R’ ,]") cancel one another in each coefficient w.r.t. u. That is, we have

—redpol(V;R}, ;,w?) (mod p),

—redpol([t;R:,], w®) (mod p).

9
{ redpol(a} R}, w”) / (12)
Jo g+l

redpol([a)R}]’, w?)

Similar relations hold for a;C% and b;C%;; we omit them because of the page limit.

4.3 Removal of the extraneous factor w® of W' in (10)

Relations in (12) suggest us strongly that the term cancellations in the additions W; = a iR, + iR

and W;/ = [0} R + [V} R} 1] occurred systematically. Systematic term-cancellations occur frequently in
the PRS computation. However, the cancellations seem to be not reflected on u-cofactors; in fact, what
we have done on cofactors is only to make them relatively primitive by Theorem A. If this observation is
correct, we must modify the u-cofactors so as to reflect the systematic cancellations.

Lemma 1 _, .,
The w?-terms, V4§ < 9, in the u-cofactors of W; and W; can be cut off.

Proof It is enough to show that WJ/ and W;/ are not changed by this cutoff. w-cofactors of W;, for
example, are expressed by a function Ucor (%0 P[1], % P[2], %P[3]) := a); ; % P[1] + a} 5 %0 P[2] + a’; 3 %0 P[3],

satisfying Ucor(F1, Fo, F3) = W;, where (a} y, @}, a’;3) is the tuple of u-cofactors and each %Pl[i] is
a system variable representing F;. Since each F;(0,u,w) has a w®-term, all the w’-terms, j < 9, of

ajq, a5, aj 5 cancel each other if we substitute F;(0,u,w) for %P[i], 1 < Vi < 3. This means that the

w’-terms, j < 9, play no role in the u-cofactors, so can be cut off. O
Now, we return back to the system F and put (u’) := (uz,..,n,), for simplicity. Let the given
remainder set be {Ri,...,R;} C K[zpy,u1,w'], with I > 3 and deg, (R1) = --- = deg, (R) = 1.

For Vj € {1,...,1}, let C; := lcf,, (R;) € Klug,u'] and compute ¢; := lastPRS,, (C;,Cj11) € K[u/],
with Cj41 = Cy, and W; := LCtoW(c;). Then, compute ¢ := gcd(cy,...,¢) and W := LCtoW(c) =
ayWh + -+ + aqW,, where ay, ..., € K[u'] are determined to satisfy ¢¢ = ajc; + -+ + aqey; for ¢, see
6.1. If necessary, we Mreduce W by G: Mreduce(W, CA}’) =W Then, similarly as in (10), we can express

W oas W = [ca W1 + -+ + W]

Proposition 2 _
Put (u') = (ug,..,u,). Let f:=gced(f1,..., fmt1), where f; := conty, (F;(0,uy,w)) fori=1,...,m+1.

If f and W' are such that, for each i € {2,...,n} and for at least one j € {1,...,l}, we have

f is divisible by u$*, but not by u?“,

redpol(Wl, ult)y #£0 for di = d; max,

redpol(W', ul'y =0 forany d; < d;max,
redpol(a;Rj,u;’) #0 for some e; < di max-

di max—%i =/
Then, [[;_ou; "™ " is an extraneous factor of W .

Proof The top condition in (13) is the same as the first claim of Proposition 1 in 2. Middle two conditions
are for the above Lemma 1. The bottom condition is to confirm the cancellation of low u;-power terms.

Then, Lemma 1 allows us to cut off low-power part of u-cofactors, so the second claim of Proposition 1
leads us to this proposition. O

Remark 3: Contrary to Proposition 1 which requires expressions of w-cofactors, Proposition 2 does not

require u-cofactors. Proposition 2 is available only if we know the cancellation of low wu;-power terms
—

from W and oqRy,...,oqR;. [/

5 Utilizing intermediate elements of rctPRSs fully

First of all, we give a simple and widely usable theorem for the intermediate elements of the PRS.

Theorem 3

Assume that F is healthy. For each i = 1,2,...,m, let the i-th PRS of the rectPRSs of F start from
Ry and Ry in Kz;,..,u] and end at Ry, in K[z;t1,..,u], where 2,41 = nil. Let R; (3 <Vj < k) be
the j-th remainder of this PRS, and A;, B; be cofactors of R;. If Aj, B; € K[x;,..,u] then R; € (F).
Furthermore, if ¢ := ged(cont,, (A;),cont,, (B;)) is a non-numeric polynomial then R;/c € (F).

Proof Since R; = A;jR1 + B;Rs and Ry, Rs € K[x;,..,u] C K[z, u], the former part is obvious. The
latter part of the theorem is a direct consequence of R; = A; Ry + B;Rs. (]

Now, we consider the computation of Imn-multiples of elements G and G7 of GB(Fgx1), with variable
notations used in Fgx, by setting K = Z,, (p = 1073738843), as in 4. We will see that our method based
on the PRSs and GCDs are quite effective for these elements, too, and that our method will eliminate
variables in the leading coefficients recursively. Furthermore, we will show in 5.2 very simple techniques
for reducing the order of LCtoW polynomials quickly, without using Mreductions.

5.1 Computation of Imn-multiples of Gg and G~

We first consider Gg of GB(Fgyx1). For computing the Gg in 4, we used the remainders R}, R}, R} €
Zyply, u, w], with deg, (R;) = 1, and their leading coefficients C7, C3, C} € Zp[u,w], where deg, (C}) = 6.
Then, in 4, we have eliminated u by computing ¢ := lastPRS,(C},C},,), (j = 1,2,3).

In order to compute an lmn-multiple of Gg, we utilize the same remainders R}, R}, R5 and the same

leading coefficients C7, C3, Cy € Zp[u,w] as above. Furthermore, we compute PRS,(C7, 7,) for each

j €41,2,3}. However, in the case of Gg, we utilize the second-last element of the PRS, let it be CN';, such

~ ~ ~ o aalaall
that C} = ciu + ¢}, where ¢}, ¢ ; € Z,[w]. For reference, we show C7, C3, C3.

C! = ux(—400332453 w3 — 486798555 w2 + - - - 4+ 610926431 w?!)
(—847591772 w3 — 61235712w52 — - .. — 480188577 w?2),

Ch = ux(—132983355 w3 + 431258669 w2 — - - - —1005915583 w?! (14)
(—319905788 w3 — 433089862 w? — - - - + 670117391 w??),

Ch = ux(—619696314w™ — 749238305w™ + - - - + 351193054 w?!)
(—504553108 w™ — 211546057 w™ — - - - — 900386305 w22).

Let ?i;,g; € Zp[u,w] be the cofactors of 5;, satisfying CN'; =a;C’ —I—EQC]‘_H. /

that ged(¢),) = ged(cy, &) = ged(c3, @) = w?! and that cont,(a}) = cont, (b}) = w'? for each j. So,
Theorem 3 allows us to replace (5;,&3,53) by (CN’;»/wm, ajw'?, 53/w12) The LCtoW polynomial for 6]’

P W' .— ' pl o 7Pl . w.
is given by W} := a} R} + 0} R . For reference, we show W7i:

At this point, we noticed

W/ = yx[ux(—400332453w™" — 486798555 w™ + - - - — 462812412 w°)
+ 226147071 w™ + 61235712w™ + - - - — 480188577 w®]
+ ' % (— 257318739 w® + 143266264 wS" + - - - — 292767155) (15)
+ u?x(— 259677448 w% + 498387731 w0 + -+ — 201039176

This W]’ is a big polynomial, of degree 10 w.r.t. u, so we Mreduce it by G1o: W;' = rempol(w;, G1o)-
By this Mreduction, ﬁ//l’ which consists of 908 monomials, for example, becomes Wl” consisting of 564
monomial. However, its coefficients w.r.t. u are still of high degrees.

The next step, which was the final step so far, is to compute an LCtoW polynomial W= LCtoW (o),
where ¢ := ged (¢}, 7,) = w'?. Since ¢ = ged(), ¢,), we compute v := lastPRS,, (¢},), for example.
Let a, 3 € Z,[w] be cofactors of v, then we obtain W' i=a W +BWY.

=

W = yx[ux(—404859241w?)
— 204727648 w'3? + 206842818 w'3! 4 - - - + 103862554 w'° |
+ ul®x(119889236 w'? + 55962549 w'?® + ... — 111119948) (16)

+ u?x (= 377202328 w30 + 508306222 w'?? + - - . + 143418763)

W" consists of 908 monomials; we surprise that the coefficients w.r.t. u are of very high degrees.

So, we simplify w’ by Gy and G1p(= CAv') We see that Gg simplifies only the terms proportional to y
and G1o does the terms proportional to u”. By W" we denote the result of these two Mreductions.

=/

W = yx[ux(356795158 w™ + 73463847 wb + --- + 767455355 w?)
— 253977356 w” — 607493081 w® — - - + 745350398 w?) |
+ u®x(364685846 w* + 395558891 w? + - - - — 226413303) (17)

+ u®x (— 334168995 w® + 111185898 w* + - - - + 962099779)

We surprise that the Mreductions by Gy and G19 make W so simple; W consists of only 59 monomials.
However, compared with Gg, we must decrease the order of W”/further which W111 be done in 5.2.

Remark 4: Although the expression W is simple, an intermediate expression W is very big. This is the
intermediate expression growth which occurs often in the algebraic computation. In 6.2, we present a

tiny idea to suppress this intermediate expression growth. //

5.2 Decreasing the leading monomials by leading-term elimination

We have seen that the Mreductions are very effective for reducing LCtoW polynomials. In this sub-
section, we show that the leading-term elimination is very effective for reducing the leading coefficients.
Furthermore, we will compute an Imn-multiple polynomial G7 for G.

Our technique is to apply the leading-term elimination to W" and u x Gg. Let the yu-terms of
W and ux Go be @ x yu and Go X yu, respectively, hence ", g9 € Zyw], where deg,, (¢”) = 7 and
deg,, (o) = 8. Let 7 := lastPRS,, (_”’,579) and a,ﬁ be cofactors of 7, satisfying 7 = a¢” + Bgo. We
obtain ¥ = —39740130 w? and W’” =aw + ﬁux Gy consisting of 108 monomials. Finally, Mreducing
w" by Gy and G1g, we obtain Gg := redpol(W”’ Gy, G1p), as follows.

Gs = yx|ux(—39740130w?)

— 598398494 w” + 512248306 wS + - -- — 5175136 w? |
+ ufx(—272808160 w' + 232623453 w® + - - - + 759618044) (18)
|

5% (— 255214102 w® — 803994460 w? + - - - — 362431630

G is our Imn-multiple of Gg. Note that lmn(Gs) = const x w Imn(Gy).

We will compute an Imn-multiple of G7 from remainders Ry, Ry, R3 € Zly, u, w], deg, (R;) = 2, and
their leading coefficients C1, Cy, C5 € Z[u,w]. (See [10] for rough expression of R;.)
Let ¢; :=lastPRS,(C},Cjy1) (j = 1,2,3) and ¢ := ged(cy, co, ¢3).

c1 = —69120000000 w'® 4 770976000000 w'* 4 - - - — 170537400000 w°,

cs = —57600000000w'” + 712320000000 w'® + --- — 46510200000 w”®,

c3 = —1440000000w'* + 15072000000w™ + --- 4+ 5167800000 w”>, (19)
¢ = ged(er,co,c3) = cs.

Using cofactors ag, by € Z[u,w] of ¢3, we computed Wy := LCtoW(c3) = asRs + bsR1 € Z[y, u, w], and
found that redpol(asRsz + bsRi,w®) # 0 and redpol(azRs + bsRi,w®) # 0. Hence, the method of
extraneous-factor removal described in 4.2 failed in this case. This is reasonable because Theorem B is
not used in the above W7.

Fortunately, we can compute an Imn-multiple of G, similarly as we have computed the Imn-multiple
polynomial Gg of Gg above. Let ¢g :=lcf, (Gy) and ¢ := lef, (W7)/100. For reference, we show ¢7:

G = — 14400000 w** 4 150720000 w3 — 2040884700 w*? — 195976380 w'! + - - - + 51678000 w”. (20)

We compute the GCD of ¢; and ¢g by the PRS method, obtaining v := ged(¢7,c9) = 260166204 w?
and its cofactors a, B € Z[w] satisfying a ¢y + Bcg = 7. Since Wy = ¢7y? + y'-terms + y°-terms and

Go = coy + y-terms, we can decrease the order of Wy by Gy as (~?7 = a Wy + ByxGy, where C~¥7 is as
follows.

Gr = y?x(260166204 w?)
y x| uSx(890901532w'6 + - - - + 736495066 w — 263471195)
1 % (—360952533 w7 + - - — 530864510 w — 470888958)

|

: : :] (21)
+ 3% [ubx(890901532w'® + - - 4 736495066 w — 263471195)
+u® % (—360952533 w7 + - - - — 539864510 w — 470888958)

.

G- is our Imn-multiple of G7. Note that lcf(C~7'7) = const x y?w?, while lef(G7) = const x y?w.

6 Various theoretical and computational considerations

6.1 On LCtoW polynomials of many sub-variables

In this sub-section, we use the variables notations x and w for F, with n > 3, and put (') := (ug, .., u,),
(u”) := (us,..,up). For 1 <Vj <, we express the remainder by R; € K[z, u], C; = lcf,, (R;) € K[u],
¢; = nmlastPRS,, (C;,Cj4+1) € K[u'], ¢ = ged(cy, . .., ¢) € K[u'], and LCtoW(¢), as in 4.

1) We discard Proposition 1 in page 31 of the paper [10], because it is useless.

2) If n > 4, we can eliminate ug of the set {c1,...,¢} as v; = nmlastPRS,, (¢, ¢ciq1) (1 < j <1).
This will give LCtoW polynomials with leading monomials @, u5?, Z,us?, - - -

3) As we mentioned in 4.1, if n > 3, we must be careful in computing LCtoW(¢). If we set the
leading coeflicient of LCtoW (€) to ¢ then many coefficients of the LCtoW polynomial become rational
functions in »”. In this sub-section, we clarify this point in details, and show how to compute LCtoW
polynomials with polynomial coefficients. It must be noted first that we compute ged(cy, ..., ¢) (I > 3)
by repeating two-argument GCDs as follows: ¢ ; := ged(ci,¢5) (J € {2,..,1}) = Ci2; :=gcd(C1,2,C1,5)
(j €{3,..,1}), and so on.

We assume that ¢1,c2 € K[u'] are made primitive w.r.t. ug, i.e., cont,,(c1) = cont,,(cz) = 1, and
¢ := ged(c, ¢2) is such that deg,,(¢) < min(deg,,(c1),deg,,(c2)). (If the last condition is not satisfied,
the situation is trivial.) Below, we consider computing ¢ and try to find @, @ € Klu'] satisfying
Q¢ + @ g = ¢ (this turns out to be impossible).

We compute ¢ efficiently by the EZGCD algorithm [8]. Since ¢; := ¢;/¢ and é := ¢3/C are in
K[u'] and relatively prime, we can eliminate ug of system {¢1,é} by the PRS method. Thus, we obtain
¢ := nmlastPRS,, (¢1,¢2) € Klu”] and its cofactors ay, e € K[u'], satisfying ¢ = d1¢1 + dads. This
equality gives us ¢ = (d1/¢) xc1 + (&2/¢) x ca. Thus, unless ¢ € K, we must introduce rational functions
of denominator ¢. On the other hand, it gives the following proposition at once.

Proposition 4
Let Wy, Wy € K[z, u] be LCtoW polynomials of ¢; and ¢y, respectively. Computing LCtoW (¢) as

LCtOW(E) = CX (5&1 Wi+ ao WQ), (22)
we obtain LCtoW (¢) in K[z, u]. O

6.2 On enhancing PRS and extended PRS algorithms

In our method, the most expensive operation is the computation of resultants and their cofactors. We
have so far developed an efficient PRS algorithm by utilizing the power-series [9], however, its efficiency
is never satisfiable. We are now developing several other methods.

Here, we present a tiny idea. In 5.1, we have faced very large polynomials, Wl’ in (15) and W in
(16), etc. They were generated by eliminating variable u from C7, Cy, Cy € Zy[u, w], where each Cj is of
degree 6 w.r.t. u; see R} in (6), where C] = lcf, (R)). However, these polynomials were made quite small
by Mreductions by Gi1p (and Gg). Then, the u-elimination process will be enhanced much if we apply
the Mreductions each time the elimination decreases the degree of u by 1.

6.3 On treatment of systems of many main-variables

Our current scheme eliminates the main variables x4, ..., z,, at once. This will give m very big resultants.
If m > 3, we should employ “divide-conquer elimination” which we have proposed in [10].

6.4 On treatment of non-healthy systems

One may think that the treatment of non-healthy systems will be difficult, which is wrong, although
the implementation will be complicated. Non-healthy systems cause only branching of the control of
computation. The scheme of our computation is based on the PRS, and the PRS computation branches
off by whether its arguments are relatively prime or not. The resultant of PRS branches off by whether
the case iii) specified in 1 occurs or not.

Acknowledgements

This work was supported by Japan Society for Promotion of Science (Grant number 18K03389), and
partly by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center
located in Kyoto University.

References

[1] W.S. Brown: On Euclid’s algorithm and the computation of polynomial greatest common divisors.
JACM 18(4), 478-504 (1971).

[2] W.S. Brown and J.F. Traub: On Euclid’s algorithm and the theory of subresultants. JACM 18(4),
505-515 (1971).

[3] W.S. Brown: The subresultant PRS algorithm. ACM TOMS 4, 237-249 (1978).
[4] B. Buchberger: An algorithm for finding a basis for the residue class ring of a zero-dimensional
polynomial ideal (in German), Ph.D Thesis. Univ. of Innsbruck. Math. Inst. (1965).

[5] B. Buchberger: Grobner bases: an algorithmic methods in polynomial ideal theory. Multidimensional
Systems Theory, Chap. 6. Reidel Publishing (1985).

[6] G.E. Collins: Subresultants and reduced polynomial remainder sequences. JACM 14 128-142 (1967).

[7] D. Kapur: Algebraic elimination methods. Tutorial paper to ISSAC ’95. Mail to kapur@cs.albany-
edu.

[8] J. Moses and D.Y.Y. Yun. The EZ GCD algorithm. Proc. 1973 ACM Annual Conference, 159-166,
ACM (1973).

[9] T. Sasaki: A theory and an algorithm for computing sparse multivariate polynomial remainder

sequence. In: Computer Algebra in Scientific Computing, Springer LNCS 11077, 345-360 (2018).

[10] T. Sasaki: An attempt to enhance Buchberger’s algorithm by using remainder sequences and GCD
operation. In: SYNASC 2019, IEEE Conference Publishing Services, 27-34 (2020).

[11] T. Sasaki and D. Inaba: Simple relation between the lowest-order element of ideal (G, H) and the
last element of polynomial remainder sequence. In: SYNASC 2017, IEEE Conference Publishing
Services, 55-62 (2018).

[12] T. Sasaki and D. Inaba: Computing the lowest order element of the elimination ideal of multivariate
polynomial system by using remainder sequence. In: SYNASC 2018, IEEE Conference Publishing
Services, 37-44 (2019).

10

