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Abstract
We develop a numerical scheme for spatially discrete total variation flows. We propose a modified
minimizing movement scheme based on the localization of the energy onto the tangent space and the
exponential map. The proposed method satisfies the energy dissipation property, and the convergence
result is also shown. We further mention the application of our numerical scheme to the study of the
Kobayashi—Warren—Carter model.

1 Introduction

The Kobayashi-Warren—Carter (KWC) model was introduced in [9, 8] as a mathematical model of grain
boundaries and is formulated as the L? gradient flow of the following KWC energy:

Bwe(u,v) =0 [ 0 Val + E(v),
Q

where Q is a bounded region with Lipschitz boundary, u: Q x [0,7") — SO(3) denotes the orientation of the
crystal, v: Q x [0,T) — R is an order parameter that indicates the position of grain boundaries, and E° is a
single-well Modica—Mortola (MM) functional defined by

1
Ef(v) = ;/Q|Vv|2dx+§/g(v—l)2dx.

Our research aims to elucidate the properties of the solution to the KWC model from mathematical and
numerical analysis viewpoints. We also intend to apply our research to materials science and data science in
future.

The first term of the KWC energy is the most difficult to deal with in the numerical analysis. In other
words, we have to deal with the L? gradient flow of the weighted total variation, whose value is restricted to
the manifold SO(3).

In this paper, we first perform a numerical analysis of the total variation flow whose values are constrained
to the prescribed manifold. Then, we consider the KWC energy with fidelity and mention its possible
application to data clustering.

2 Numerical analysis of constrained total variation flow
2.1 Problem setting

Let © be a bounded region in RF with Lipschitz boundary. The total variation is defined as follows:

1
TV (u) ::/ |Du| == sup Z/ w(V-l)de, wi=(ut,...,u') e LY (QRY,
Q cpEAjzl Q
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where

A={p=(¢"...,¢") € CCER"Y) | lpllgex: <1}

We consider the L? gradient flow of the total variation where the values of the function w are restricted to
the manifold M embedded into R!. The homogeneous Neumann boundary value problem is formulated as

follows:
ou _ <_v Vu ) in Q x (0,7),

ot |V
|§—Z|~VQ:O on 00 x (0,7),
Ult:(] = UQ in Q,

where 7, is the orthogonal projection from the tangent space T,R! (= R!) to the tangent space T,M (C R)
at p € M, and v** denotes the unit outward normal vector of H.

2.2 Spatial discretization
2.2.1 Mesh

We first define partitions with rectangles. Let A be a finite set of indices and let Q be a bounded region in
R*. A family QA = {Qq }aea of subsets of Q is called a rectangular partition of € if it satisfies the following
three conditions.

L 2% (Q\Usen Qa) = 0.
2. L*(Q,NQs) = 0for (o, ) € Ax A with o # 3; here £* denotes the k-dimensional Lebesgue measure.

3. For eache a € A, there exists a rectangular region R, in RF such that Q, = Ry N, where we mean
by a rectangular region that

Ry ={z=(x1,...,21) |aj <z; <bj forj=1,2,...,k}
for some a; < b;.

Hereafter, we arbitrarily take one rectangular partition Qa = {Q4}aca of Q and fix it.

2.2.2 Finite dimensional spaces
e(A) denotes the set of edges associated with A:
e(A) = {{a, B} C A | HF 109, N ON) #£0, a# B},

where H™ denotes the m-dimensional Hausdorff measure. For {a, 8} € e(A), set Ef, g5 = 0Qq N 0Qp.
Moreover, define the set EQ2a of interior edges by

EQa = {E{ap) Ha s)ee(a):
Let Ha be the space of piecewise constant functions that take values in RY; that is,
Hp = {U € L*(;RY) | Ulq, € R is a constant for each Q, € Qa}.

Hp is a closed subspace of L2(€;R), i.e., a finite-dimensional Hilbert space, and the inner product (-, )z,
is induced from L2?(Q;R!); that is,

<U7 V)HA = <U, V>L2(Q;Rl) for U,V € Ha.
The space of piecewise constant functions that take values in the manifold M is denoted by Ma:
Mna = {u € L*(Q; M) | u|q, € M is a constant for each Q, € Qa}.

The nonconvex set Ma can be interpreted as a submanifold of Ha. Therefore, the tangent space T,,Ma of
Ma at u € Ma can be defined as follows:

T,Mp = {X € L*(Q;RY) | X|q, € Ty, M is a constant for cach Q, € Qa.}

l2g



2.2.3 Spatially discrete total variation flow

Substituting the expression u = Y7 -, u*lg, € Ha into the definition of the total variation, the discrete
total variation functional TV a: Ha — R is defined as follows:

TVa(u) = Z Ju® — v’ |l HF " (Epa ),
{a,8}€e(A)

where u® = ulq,, for @ € A. Note that the functional TV 5 is convex on Ha but not differentiable at u € Ha
such that u® = u” holds for some {a, 8} € e(A). Therefore, it is impossible to formulate the flow as an
ordinary gradient flow, but we will consider a subdifferential formulation. Recall that the subdifferential
OTVa(u) of TV at u € Ha is defined as

OTVa(u) ={C € Ha | {(,v —u)as + TVa(u) < TVa(v) for all v € Ha}.

Definition 2.1. Let ug € Ma. A map u € WH2(0,T; Ma) is called a solution to the spatially discrete total
variation flow if u satisfies

du
T € —P,;y0TVa(u(t)) forae. te(0,T), (2.1)
U|t:0 = UgQ.

Here, P, denotes the orthogonal projection from Ha to T, Ma at u € Ma defined by
P, X(x) = my@)(X(2)) forae ze.

The following theorem assures the existence of solutions to the spatially discrete total variation flow (2.1).
See [3, 5, 11] for more details.

Theorem 2.2. Let M be a C%-compact submanifold in R' and ug € Ma. Then, there exists a solution
u € WY2(0,T; M) to the spatially discrete total variation flow (2.1). Moreover, assuming that M is path-
connected, the uniqueness holds.

Remark 2.3. Since we have made a spatial discretization, it is natural to consider whether the spatially discrete
total variation flow converges to the original total variation flow as the mesh size tends to 0. However, this
problem is not as simple as it seems.

When considering a rectangular partition, it is known that the real-valued spatially discrete total variation
flows converge to anisotropic £!-total variation flows in the limit where the mesh size tends to 0 [2, 10]. It
is expected that the same argument holds in the presence of manifold constraints, but so far, there is no
mathematical proof in the literature.

2.3 Time discretization

Our time discretization methodology of the spatially discrete total variation flow (2.1) is based on the min-
imizing movement scheme [1]. Let 7 > 0 be a time step size and denote by N(7) the maximal number of
iterations, the minimal integer grater than T/7. Then, we define time nodal points t(™) by

RO nt ifn=0,...,N(r)—1,
" T ifn=N(7).

Algorithm 2.4 (Minimizing movement scheme). Let ug € Ma. Then, the following procedure obtains a

sequence {ui™ N0 in M,
1. For n =0, set u(TO) = up.

2. Forn >1, ug-") is defined as a minimizer of the optimization problem
Minimize &7 (u; u{""Y) subject to u € Ma, (2.2)
where

1
7 (u; ul" V) == 7TV a(u) + §||u - ug_"_l)H%IA, u € Ha.



The optimization problem (2.2) is classified as a non-smooth Riemannian constraint optimization problem;
therefore, it is not easy to solve it. We thus replace problem (2.2) with a more manageable problem. The key

idea is to localize the energy functional ®7(+; " 1)) to the tangent space T’ (»-1) M by using the exponential
mabp.

Let exp,: T,M — M denote the exponential map of the Riemannian manifold M at p € M. We then
define the exponential map Exp,,: T,,Ma — Ma of Ma at u € Ma by

X(x) — expy ) (X(x)) forae z€Q.

Utilizing the exponential map Exp -1 at uS-n_l), any element u in Ma can be written as u = Exp 1) (X)

forsome X € T =1 M. Since the Taylor expansion of the exponential map Expu(n) is of form u(Tn) +X+o(X)

as | X||g, — 0, ignoring the higher-order term o(X) and substituting v = "™V 4 X into the energy
functional ®7 (u; ugn_l)) yield

1
7 (u{"V + Xiul ) = P TVAS Y + X) 4 ZlIX

Based on this observation, we propose the following modified minimizing movement scheme.

Algorithm 2.5 (Modified minimizing movement scheme). Let ug € Ma. Then, a sequence {u(Tn T (g) in
M is obtained by the following procedure.
1. For n =0, set u( ) = ugp.
2. Forn > 1, uT is defined by the following two steps.
(a) X" is defined as a minimizer of the optimization problem
Minimize &7 _(X;u{""V) subject to X € T -1 Ma, (2.3)

where

7 (X;ul" D) = 7TV (ul*™ 1)+X)+—||X||HA for X €T i1 Ma.

(b) Define ui™ as u{™ = = Exp n-v (X7 (n=1y,

Since the tangent space T win— yMp is a linear space and the energy functional ®7 (X; usn_l)) is con-
vex with respect to X € T wln— 1>M A, the optimization problem (2.3) is convex, which yields the modified
minimizing movement scheme s well-posedness.

2.4 Energy dissipation and convergence

We summarize the mathematical properties of the modified minimizing movement scheme. For detailed
discussions and proofs, see [7].

Since the total variation flow decreases the total variation with time evolution, it is natural to expect that
our numerical scheme also satisfies this property in a discrete sense. We have the following theorem.

Theorem 2.6 (Energy dissipation [7, Proposition 5]). Let M be a C?-compact manifold embedded into R!,

ug € Ma be an initial data, and {u(n)}fj(g) be a sequence generated by the modz‘ﬁed minimizing movement

scheme. If T is sufficiently small, then the energy dissipation property TV a(ur +1)) <TVa(u 7(-”)) holds for
alln=0,1,...,N(1) — 1.

We obtain the following theorem concerning the convergence of the numerical solution to the original
spatially discrete total variation flow.



Theorem 2.7 (Convergence [7, Theorem 1]). Let M be a path-connected and C?-compact submanifold in R!

and T > 0. Fiz two initial data ul,ud € Ma. Let u € WH2(0,T; Ma) be a solution to the spatially discrete

total variation flow with initial value u}, and {uS-")}nN:(B) be a sequence generated by the modified minimizing

movement scheme with initial value ui. Then, we have

(n)

(™) = ul |2, < %o lug — ud|3, + et (Cr7 + Cor?)

foralln=0,1,...,N(7), where Cy, C1, and C are constants independent of u and {u(rn)}ivz(g).

In particular, if ul = u2, then we have an O(7'/2)-convergence of the numerical solution to the spatially
discrete total variation flow.

3 Numerical examples

In this section, we show the results of numerical experiments for the cases of M = S? and M = SO(3).

3.1 M=5?

In [4], an example of constrained total variation flow, which does not reach the stationary point in finite time,
is shown. More precisely, the following theorem holds.

Theorem 3.1. Let a,b € S? be two points represented by a = (a1,a2,0) and b = (a1, —az,0) for some
ar,as € [—1,1] with a3 +a% =1 and a; > 0. Take arbitrary hg € S* N {z2 = 0} whose x3-coordinate does not
vanish. Then, for any L > 0 and 0 < Iy < ly < L, the total variation flow u: [0,00) — L2((0, L); S?) starting
from the initial value

uo = al,) + holg, 1) +01a,,1)
s given by
u(t) = alog,) + h(t)1a, 1) + 0l
and h(t) converges to (1,0,0) as t — oo but does not reach it in finite time.

The function h(t) = (h1(t),0, ha(t)) in the theorem can be characterized as a solution to the following
system of ordinary differential equations:

d V2a

= (b, hy) = ——=

dt (62V/ 1-— ai hl
where ¢ = l; — ;. We use this solution as a benchmark task for our numerical scheme.

In order to visualize the numerical results, we adopt the Euler angle representation. More precisely, the
Euler angle representation of a point (z,y, z) in S? is given by

(h% - 17h1h3)7 (31)

(x,y,2) = (sin@sin ¢,sin b cos ¢, cos §),

and we plot the angle 6. Figure 1 shows the result of the numerical computation. The reference solution is
computed using the explicit Euler method for the system of ordinary differential equations (3.1) with time
step size 107%. The numerical solution plots the solution obtained by applying the modified minimizing
movement scheme. It can be seen that their time evolution are similar. Figure 2 shows how the error decays
as the time step size 7 of the numerical solution becomes smaller and smaller, and it can be seen that the
error decays in the first order of 7. On the other hand, the result presented in Theorem 2.7 is of the order of
1/2, which means that there is room for improvement in the error analysis.

3.2 M =S0(3)

In M = SO(3), the numerical solution cannot be compared with a simple reference solution, unlike M = S2.
In this subsection, we will check whether the facet-preserving phenomena, a facet’s property to evolve in
time while preserving its structure as much as possible, holds with time evolution to determine whether the
numerical computation is successful. Figure 3 plots the time evolution of the Euler angles, showing that the
facet-preserving phenomena are indeed observed and that our numerical scheme works well also in this case.
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Figure 1: Comparison of numerical solution with numerical solution. The vertical axis represents the value
of the Euler angle 6.
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Figure 2: L? error between reference solution and numerical solution.

4 Kobayashi—Warren—Carter energy with fidelity

By modifying the numerical scheme constructed in the preceding sections for spatially discrete total variation
flows accordingly, we can perform numerical computation for the L? gradient flows of the KWC energy Ef -
The time evolution of u is computed by the modified minimizing movement scheme. In contrast, the time
evolution of v is computed by the discrete gradient method, enabling the numerical solution to satisfy the
energy dissipation property in a discrete sense.

In this section, we briefly describe our recent efforts to apply the KWC model to data analysis, rather
than just numerical computation of the L? gradient flow of the KWC energy. The KWC energy Efwc is
very similar to the Ambrosio—Tortorelli (AT) energy without fidelity

Eirp(u,v) = 0/ 0?|Vul? dz + E<(v).
Q

The only difference being the exponent of |Vu/| in the first term’s integrand is either 1 or 2. ES§ can be
regarded as inhomogenization of the Dirichlet energy plus single-well MM functional. Given this observation,
Efwc can be interpreted as inhomogenization of the total variation plus the single-well MM functional.

In data analysis, especially image processing, the AT energy with fidelity has been often used. It is defined
by

e . 1
B (.01 ) = Bio,0) + 5 /Q (u— f)? da,
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Figure 3: Time evolution of total variation flow in the case of M = SO(3).



where f represents the reference image data. The basic idea is to compute the L? gradient flow of this energy
to obtain a smooth reconstruction of the original data from the noisy data. The similar idea is to use the
KWC energy with fidelity:

€ F 1
Bidvol.v: ) = e (u,) + 5 /Q (u— f)?do.

Since the first term in the KWC energy is inhomogenization of the total variation, we expect that the L?
gradient flow of the KWC energy with fidelity can remove noise from the image while preserving sharp edge
structure.

Another interesting research topic is the singular limit of the KWC energy as € tends to 0 and its numerical
analysis. In [6], a precise analysis of the singular limit that tends € to 0 is given for the KWC energy defined
on a one-dimensional interval. Based on this work, we have developed a numerical scheme for the limit
KWC model. We are also beginning to understand that there are several stationary solutions to the KWC
model with fidelity, and we are discussing the structure (e.g., number and size) of facets and the stability of
stationary solutions.
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