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1 Introduction

Let Q C RY (N > 2) be a bounded domain of class C? and let D C D C Q be an open set. Let o, # 1
be a positive constant and let ¢ denote the following piece-wise constant function:

0 =0, XD‘FXQ\D, (11)

where X4 is the characteristic function of the set A (i.e., Xa(z) is 1 if z € A and 0 otherwise). We
consider the following overdetermined problem:

Problem 1. Find the pairs (D,Q) for which the solution of
—div(eVu) =1 in Q, u=0 on0Q, (1.2)
also satisfies the overdetermined condition
Opu = const. on 09, (1.3)

where O,, denotes the (outward) normal derivative on OS).
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Figure 1: Problem setting.

Remark 1.1. Any pair of concentric balls (Do, Qo) is a solution of Problem 1 (trivial solution).

Remark 1.2. Serrin [Se] showed that, when D = (), the only solution of class C*> of Problem 1 is given
by ©Q =ball.

Remark 1.3. Sakaguchi [Sa] showed that, when € is a ball and D 1s an open set of class C?% with finitely
many connected components and such that Q\ D is connected, then Problem 1 is solvable if and only if
D and 2 are concentric balls.

Remark 1.4. By the (local) result of [KN], if (D,Q) is a classical solution of Problem 1, then 9 is an
analytic surface.



2 Variational interpretation of Problem 1

For a fixed bounded open set D, let
Ep(Q) = / o|Vul?, (2.4)
Q

where o is the piece-wise constant function (1.1) and u denotes the solution to (1.2). Now, for some
constant Vp > |D| consider the following constrained maximization problem:

Problem 2. .
max {ED(Q) L Q>D, |0]= VO}. (2.5)

Proposition 2.1. Let Q be a bounded domain of class C2. If Q is a critical shape for Problem 2, then u
satisfies the overdetermined condition (1.3).

Proof. By hypothesis € is a critical shape for the following Lagrangian
£(Q) = Ep() - ul9]

for some suitable Lagrange multiplier . Computing the shape derivative of £ with respect to some
perturbation field h : RN — R¥ yields (see [Ca2, Theorem 4.2]):

L’(Q)[h]_/aa|8nu|2h-n—,u/mh-n.

Now, since by hypothesis £/(€2)[h] = 0 for all perturbation fields h, we must have |9,,u|?> = u on 9. In
other words, u satisfies (1.3) as claimed. |

Definition 2.2. We say that a solution (D,Q)) of Problem 1 is a variational solution if it is a local
extremizer of Problem 2. Otherwise, we say that (D,Q) is a saddle-type solution.

Remark 2.3. Critical shapes for Problem 2 (that is solutions to Problem 1) are not necessarily variational
solutions. Indeed, as shown in [Cal], the trivial solution (Do, ) is of saddle-type for o. € (0,1) and a
variational solution (local mazimizer) for o. € (1,00).

3 Known results (local behavior near trivial solutions)

Let (Do, ) denote the trivial solution given by the concentric balls centered at the origin with radii R
and 1 respectively (0 < R < 1). Moreover, for k € N, let

E(N+k—1)—(N+k—2)(k—1)R>N-2
k(N +k— 1)+ k(k — )R2-N-2t
Y :={s€(0,00) : s=s(k) for some k € N}.

s(k) ==

Depending on whether o, belongs to ¥ or not, the local behavior of solutions near (Dg,$2y) changes
drastically.

Theorem 3.1 (Local existence for . ¢ 3, [CY1]). If 0. & X, then for every domain D of class C**
sufficiently close to Dy, there exists a domain ) of class C*% sufficiently close to Qo (and with the same
volume of Qo) such that the pair (D,Q) solves Problem 1.

Theorem 3.2 (Bifurcation phenomenon around o, = s(k), [CY2]). The values o. = s(k) are bifurcation
points for Problem 1 in the following sense. There exists a function t — A(t) € R and a continuous
branch of the form (Dy, Q) that solves Problem 1 for o. = s(k) + A(t) for small |t|. Moreover, Q4 is a
ball only fort =0.

Remark 3.3. A simple calculation yields that s(k) < 1. As a result, for o, > 1 we always have local
existence for Problem 1 near trivial solutions. Moreover, by Remark 2.3 we know that such solutions
are of variational type in a small enough neighborhood. Similarly, we know that the symmetry-breaking
solutions given by Theorem 3.2 are of saddle type in a neighborhood of o, = s(k).
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Figure 2: Bifurcation diagram for Problem 1 ( Theorem 3.2).

Remark 3.4. The result of Theorem 3.1 can be extended to Lipschitz continuous perturbations of Do in
a similar way (see [Ca8]). This yields the existence of nontrivial solutions of the form (D,Q), where 0D
1s Lipschitz continuous and 02 is an analytic surface.

Remark 3.5. There are only a finite number of k € N such that s(k) > 0. In other words, for any given
radius R € (0,1) there is only a finite number of bifurcation points in the sense of Theorem 3.2.

4 Numerical computation of the solutions

The study of solutions of Problem 1 has also been treated numerically ([CY1]), employing a steepest-
descent algorithm based on the following Kohn—Vogelius functional. For given D, let

F(Q) ::/0|V1}—Vw|2,
Q

where v is the unique solution of (1.2) and w is the unique solution of the following Neumann boundary
value problem:

—div(eVw) =1 in Q, Opw = —|Q|/|0Q| on 09, / w = 0.
o0

Remark 4.1. By construction, F(Q) > 0 for all domains Q > D and F(Q) = 0 if and only if (D,$)

solves Problem 1.

In what follows, let D be fixed. By Remark 4.1, it is clear (D,Q) is a solution of Problem 1 with
|Q = Vp if and only if € is a solution of the following minimization problem.

Problem 3. Minimize the following augmented Lagrangian:

) s= )~ G0 + 560, 6= B

where @ is a Lagrange multiplier and b > 0 is a large parameter.

In order to solve Problem 3 (and hence Problem 1) numerically, we first need to find the steepest
descent direction of £, which we obtain by computing the shape derivative of £ with respect to a smooth
perturbation field h : RN — RN, We get:

L(Q)(h) = 8Q¢ h-n,

where ¢ = (—|Vw|2 + 2w+ 2cHw — |[Vv|?> + 2¢* — p+ b IQL+V0> In particular, notice that h* = —¢n
0

is a descent direction, because £'(Q2)(h*) = — [, ¢* < 0. By the above, we obtain the following steepest
descent algorithm:



Fix an initial shape Q. For £ =0,1,..., until convergence:
1. Compute the descent direction h* := —¢n corresponding to the domain €.
2. Update the shape according to Q11 := (Id + €h*)(Qy,) for some small parameter € > 0.

3. Repeat

In what follows we can see that the numerical results are in line with the expected results (Figure 4
shows the numerical approximation computed by the algorithm above, while Figure 5 shows the first-order
approximation of the solution as given by the corollary of Theorem 3.1.)

Figure 3: Initial shape Figure 4: Final shape Figure 5: Analytical result

Figure 4, in particular, suggests that the solution € “inherits the geometry” of D. This is indeed the
case. Nevertheless, it is worth mentioning that the way the geometry of D is inherited also depends on
the coefficient o, as shown in the following figures.

Figure 6: Final shape for o, = 10 Figure 7: Final shape for o, = 0.1

Finally, we will consider the cases when the effect of D is negligible, that is when D is either small or
o is close to 1. The numerical results below suggest that, in both cases, the solution €2 is close to being
a ball. This result has been made precise in a quantitative sense and proven rigorously in [CPY].

Figure 8: When D is small Figure 9: When o is close to 1
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What is left to do: a peek into global existence

We are left with one big open problem, that is, the global existence of solutions for Problem 1.

Conjecture 5.1. Let D C RY be a bounded open set and let 0. > 0. Then there exists some bounded
domain Q D D such that the pair (D,Q) is a solution to Problem 1.

We can think of two possible approaches:

Variational approach. Find a solution of Problem 2 in the class of quasi-open sets by the
variational method of Buttazzo—Dal Maso ([BD]) and then bootstrap the regularity of the solution
obtained. Downside: by this method, we cannot find saddle-type solutions.

Perturbation approach. Take a very large ball Qy O D. Since D is very small in comparison,
notice that the pair (D, ) is close to being a solution to Problem 1 (see [CPY] for the precise
result). Then, construct the solution 2 as a suitable perturbation of €y by the implicit function
theorem. Downside: by this method, we can only find solutions with || > |D].
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