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Abstract

This paper is twofold. A challenge appearing in identification problems, in particular unidentifiability
problems in parameter estimations, in the field of systems biology is introduced with an example of PBPK
models in the first section. In the second section, an algebraic and algebro-geometric approach to the
challenge in a wider context is explained. More precisely, a method to extract a geometric structure that
is uniquely determined by observed time series data and unidentifiable state-space models as an algebraic
variety is introduced. Our method is based on differential algebra. An application of the proposed method
for analysis of viral dynamics during therapy is briefly described.

1 Introduction of challenges in identification problems in sys-
tems biology

In the field of systems biology, biological phenomena and their interactions are analysed integratedly.
In such a field, biological systems are often modelled as and investigated through mathematical models.
One of common modelling approaches is by ordinary differential equations, ODEs, which are constructed
based on biological knowledge. Partial differential equations, PDEs, are also one of the major modelling
approaches in such a field. However, considering possible constructions of PDEs based on refining com-
partment models, a class of ODEs, analytical methods for ODE models are considered to be still usefulfor
analysis of PDEs. Based on this, our study focuses on ODE models appearing in systems biology. In
particular, we consider such models with unknown parameters to be estimated using observed time-
series data, etc. Parameter estimation problems of such models, which constitute a type of identification
problems of ODEs, are the main topic in this study.

In order to illustrate challenges in parameter estimation problems in systems biology, an example
based on physiologically-based pharmacokinetic models, so-called PBPK models, is introduced. Roughly
speaking, PBPK models describe drug responses in human bodies dynamically [1]. In the field of phar-
macokinetics, such models are constructed and practically used for predicting the time course of the
concentration of drugs in plasma and other sites. Although PBPK models have their origin in such a
field, their applications can be seen in other fields, e.g., [2], so we newly applied the model to immunology.
A PBPK model is constructed as compartments, each of which corresponds to an organ or a compound of
organs. State variables of a PBPK model correspond to the amounts of the items of interest, for example,
drugs in compartments. Some of the model parameters are assigned to the meanings of certain biological
functions such as clearance rates at organs. Thus, not only the behaviours of state variables but also
parameter values are of importance, and these tend to be unknown. Furthermore, they are considered
to be different depending on the subject, for example, by age group. Using relevant time-series data,
e.g., drug concentrations in plasma measured at several time points from subjects, such parameters, i.e.,
biological functions, are quantitatively estimated for the corresponding subjects. In such estimations,



there exists an intrinsic challenge: the parameters tend to be unidentifiable. In other words, parameters
cannot be uniquely determined from given data due to their insufficiency [3]. Unidentifiability of param-
eters causes difficulties in investigation of corresponding biological systems. For example, in the context
of immunology, such situation makes detection of immunological abnormalities from estimated parame-
ters difficult in spite of the desire. Besides, estimations conducted without considering the unidentifiable
property may overlook possible important considerations for the systems, as we pointed out in [4]. Due
to experimental constraints, unidentifiability problems often appear in systems biology, suggesting the
importance of approaches to dealing with unidentifiable models.

2 Algebraic approaches to unidentifiable state-space models:
the parameter variety

Based on the previous section, we consider an approach to unidentifiable models, of which the underlying
theory is differential algebra [5]. Roughly speaking, differential algebra is an algebraic framework in which
differentiations are allowed as operations. See, e.g., [5, 6] for details and, e.g., [7] for its applications and
references therein.

Here, we deal with the following state-space models:

S = e ua), (1)
y=g(z,u;a), (2)

where z(t) € RY is the state variable vector, u(t) € RM is the input vector, y(t) € R is the output,
and ¢ € R" is the unknown parameter vector, where N, M,n are positive integers. u(t) and y(¢) are
observed. The coefficients of f(z,u) and g(z,u) are assumed to be rational functions of a. Here, we
consider the models with polynomials f and g of # and u. (1) denotes the mathematical model that
describes the system under consideration, for example, a PBPK model mentioned in the previous section.
(2) denotes an observation model, which describes a data acquisition. In this paper, (1) and (2) are called
unidentifiable if for any input w(t), there exist two parameters a; # ao in a parameter space such that
y(u;a1) = y(u; az) holds, where y(u;a) denotes the output of (1) and (2) with u applied as input given
a. In our method, we focus on the fact that sets of all the possible parameters fitting observed data form
algebraic varieties, which we call the parameter varieties, and then propose a method to describe them
explicitly.

In control theory, the transfer functions of linear state-space models are derived through methods
such as the Laplace transformations. Through these functions, the input-output behaviour of the models
can be investigated. This is possible because they do not contain information on the state variables. To
investigate the input-output relations of (1) and (2), we apply algebraic techniques, and thus, eliminate
the state variables. Technically speaking, the models considered in this paper may not be able to be dealt
with by commutative algebra naively since they contain derivatives of variables with respect to time. In
fact, in order to derive input-output relationships from such models, derivative operations, which are
not allowed in commutative algebra, for the models are required. More precisely, we first consider the
differential ideal generated by (1) and (2) in the differential polynomial ring whose field is the rational
functions of a and variables are z,u,y and their derivatives. Then, we investigate the intersection of
the differential ideal and the differential polynomial ring whose field is the rational functions of a and
variables are w,y and their derivatives, which contains differential polynomials representing the input-
output relationships of the model. In this way, our method appears to fall under the umbrella of differential
algebra, which is rather difficult compared to the non-differential one. In general, one of the difficulties
regarding differential algebra is the fact that the differential polynomial ring is non-Noetherian. This
implies that the differential ideal in such a ring, for example, the intersection that we consider, may not
be finitely generated. However, thanks to state-space representations of (1) and (2), it is guaranteed
that essential polynomials representing the input-output relationships can be derived considering certain
truncated differential ideals generated by the models. Such an ideal can be regarded as a non-differential
ideal in the non-differential polynomial ring where the derivatives of variables are regarded as other



variables, which is Noetherian. The details of the way of truncation of the differential ideal are described
in [4].

Once the truncated ideal for (1) and (2) is considered, the intersection of the ideal and the polynomial
ring of which the field is the rational functions of ¢ and the variables are u,y and their derivatives up
to a finite order is our interest. In the proposed method, such an intersection is described using the
Grobner basis for the truncated ideal at first. A subset of the Grobner basis that does not contain state
variables and their derivatives describes the intersection representing the input-output relations of the
model thanks to its elimination property [8]. Then, by introducing observed data into the subset, the
sets of parameters, each of which generates the given data, are described as sets of constraints in terms of
parameters, i.e., the algebraic varieties. Once the structure, i.e., the variety, is extracted, overlooking the
feasible parameters, which may lead to insufficient or inappropriate system considerations, would never
occur [4]. See [4] for details of the proposed method.

We applied our method in the analysis of viral dynamics, which reveals an important fact about the
efficacy of a drug that was missed in a previous study [9]. In [9], the viral dynamics under a drug therapy,
which is described as (3) and illustrated in Figure 1, is investigated.

% = a;—j?)@ — a7, %(1 — az)asTy — azr3, Y = To (3)
Figure 2 shows examples of estimated parameter varieties in parameter spaces of an unidentifiable model
that appeared in [9] given observed time-series data taken from two different subjects. See [4] for the
details of the varieties. As can be seen in Figure 2, our method captures feasible parameters exhaus-
tively, unlike conventional approaches [9], suggesting an applicability of our method to, for example,
classifications of subjects in terms of their varieties.
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Figure 1: The schematic representation of the viral dynamics under the drug therapy described by (3).
21 denotes the number of productively infected cells. x5 denotes the viral load, which is observed. The
infected cells die at a constant rate a; per cell per day and produce the virus at an average rate aq4.
Virions are cleared at a constant clearance rate az. The drug reduces the production of virions from the
infected cells by a fraction 1 — ag, where 0 < ag < 1. See [9] for details.
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