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This study is based on the paper [5]. We show a reconstruction formula of the convex hull of the
defect D from the Dirichlet to Neumann map associated with the magnetic Schrodinger operator by using
the enclosure method proposed by Ikehata [2], assuming certain higher regularity for the potentials of the
magnetic Schrodinger operator, under the Dirichlet condition or the Robin condition on the boundary
0D in the two and three dimensional case.

Let Q C R"(n = 2,3) be a bounded domain where the boundary 99 is C? and let D be an open
set satisfying D € Q and © \ D is connected. The defect D consists of the union of disjoint bounded
domains {D;}}_;, where the boundary of D is Lipschitz continuous. First, we define the DN map for
the magnetic Schrédinger equation with no defect D in Q. Here, let D3u := Z?:l D4 j(Daju), where

DA,j = %8] +AJ and A = (Al,AQ,"' ;An)

Definition 1. Suppose ¢ € L®(Q),q >0, A € C*(Q, R"). For a given f € H'/?(99), we say u € H'(Q)
is a weak solution to the following boundary value problem for the magnetic Schrédinger equation

{Diu—i—qu:()in Q, (11)

u = f on 012,
if w = f on 0Q and u satisfies
/Q(DAu) -Dap + qupdr =0
for any ¢ € H'(Q) such that ¢|sq = 0. Here, 3 is the complex conjugate of (.
The DN map A, 4 is defined as follows.

Definition 2. (Weak formulation of DN map)
The DN map Ay 4 : Hz(0Q) — H~2(09) is defined as follows by the duality:

(g1 - 3) = [ (Daw)-Dao+aunds, f.g € H/2(00),
Q
where u € H'(Q) is the weak solution of (1.1) and v € H'(Q) is any function satisfying v|sq = g.

We define the weak solution of the magnetic Schrodinger equation with a defect D in € under the
Robin boundary condition on 9D.

Definition 3. (Robin case)

Suppose ¢ € L>(Q \E),q > 0,A € CY(OD),A > 0 and A € C*(Q\ D, R™). Let v is the outward unit
normal vector to ©\ D. For a given f € HY?(99), we say u € H' (2 \ D) is a weak solution to the
following value problem for the magnetic Schrédinger equation

D%3u+qu=01in Q\ D,
v-(V+iAd)u+ I =0on 0D, (1.3)
u = f on 09,

if u= f on 0N and u satisfies

/ (DAu)'DAg)—i—qu@dx—i—/ AupdS =0
Q\D 8D

for any ¢ € Hl(Q \E) such that (P|8Q =0.

The DN map Agi{) p is defined as follows.



Definition 4. (DN map of the Robin case)
The DN map A(Rg . H2(09)) — H~2(09) is defined as follows by the duality:

(A qADf g) = )\uﬁds—i—/ (Dau) - Dav + quudz, f,g € HY?(09),
’ dD O\D

where u € H'(Q\ D) is the weak solution of (1.3) and ¢ € H*(Q\ D) is any function ¢|sq = g.

In the special case A = 0, we denote Ag{\Q,D instead of Aéﬁﬁp-

Remark 1. The weak solution of the magnetic Schrodinger equation with a defect D in € under the
Dirichlet boundary condition on D and the DN map A((Z{:X p can be defined in a similar way.

Next, we introduce an indicator function that plays an important role in the enclosure method.
We denote by S™~! the set of n-dimensional unit vectors (n = 2,3). For a given w € S""!, we can
take an orthogonal unit vector w® € S"~! namely w - w® = 0. Then we can construct a solution
vp(zsw) = e @ T (1 4 r (23w)) of D3v 4 qu = 0, where r,(z;w) is chosen suitably associated with
the parameter 7 € R. This solution is called the complex geometrical optics solutions.

Definition 5. (Indicator function)
Let t,7 € R. Then, the indicator function I, (7;t) is defined as follows.

I (751) = (Aga — ALY ) (e ™ (250)), e THor (23 w))

Here, v is the complex conjugate of vT In the special case A = 0, we denote Aq],\.i{), p instead of Agi{) D
Also, ISP )( t) can be defined by AP A p- We define the support function hp(w) as follows :

hp(w)=supz-w, we S" L
zeD

Then it is well-known that the convex hull conv(D) of D is obtained as follows.
conv(D) := Nyegn-1{x € R"|z-w < hp(w)}.

Since the indicator function I,,(7;t) is determined from the DN map, if the support function hp(w) is
obtained from the indicator function I,(7;t), the convex hull conv (D) of inclusion D can be reconstructed
from the observation data on boundary 92. Now, we give the formula of the reconstruction of the support
function from the indicator function under a certain smallness condition for the vector potential A.

Theorem 1. Suppose OD is Lipschitz continuous. Let n = 2,3,q € HQ(Q),q > 0,A € H3(Q) and
C)|Allg2) < 3. Then, we have

log |17 (7,0 log [I$Y) (7,0
lim —0g| (7:0)] = hp(w), lim —0g| (7:0)] = hp(w),
T—00 27 T—00 27

for any w € S"~L. Here, the constant C(Q) depends only on €.

For a given w € S~ !, we furthermore assume the following condition (D), for the Robin case.

(D).,: Suppose 9D is C? and the set T(w) := {x € D | hp(w) — - w = 0} consists of only one point
g € OD. Furthermore, we assume that in the neighborhood of xg the boundary 0D can be expressed as
y = f(s),]s] <e€s€ R ! and there exists Ko, K1 > 0,m,, > 2 such that

Kols|™ < f(s) < Kals|™ (|s] <e).

Theorem 2. (Robin case) Suppose X # 0,A > 0 and A € C1(OD). Letn = 2,3,q € H*(Q),q > 0,A €

H3(Q) and C(Q)||Allm2) < 3. We assume that the condition (D)., holds as 2 < m,, < 3 for some
w e S* L. Then, we have

log |15 (7 0)|

m —eltw A\l

T—00 21

= hD(w).

See [5] for the proof of Theorem 1. We present the basic estimates for the DN maps in the Robin
case.



Proposition 1. Let A # 0,A > 0 and A € C'(dD). Let L be a constant satisfying | A||p@op)y < L.

Assume 8D is C2. Take any yo € 8D, for a given f € Hz(9Q), v € H*(Q) is a weak solution of (1.1).
Let q = 5 whenn =3 and ¢ =1—¢€ for any 0 < e <1 when n = 2. Then, there exist positive constants
C1(Q, D, e),Cy = Co(Q, L, €) such that

0
/ Davlde = Cof [ ol do ([ y—mlGrl s+ [ pias)
D oD o oD
< {(Aga—AD ) D
v
< CrIDav o + NolEaoy) + Cal( [ (ly= sl 515+ [ o ds).
oD v oD

To prove Proposition 1, we prepare the following two lemmas.
Lemma 1. Let v € HY(Q) and u € HY (2 \ D) are weak solutions of (1.1) and (1.3), respectively. We
have for w :=u — v,

R
(Nga— A D) T
:/ |DAw|2+q|w|2dw+/ |DAv|2+q|v|2dx—(/ N — Alul® + Xaw dS).
Q\D D oD

We need the following estimate for the Robin case. We follow the argument in [3], where the proof is
given for the three-dimensional case.
Lemma 2. Assume 0D is C*. Let L >0 be a constant satisfying || \|| e @p) < L. Take any yo € 0D.

For a given f € H2(8Q), v € H'(Q) andu € HY(Q\D) are weak solutions of (1.1) and (1.3), respectively.
Let g = % whenn =3 and g =1—¢€ for any 0 < € < 1 when n = 2. Then, there exists a positive constant
C such that

/ lu —v|*dS <
aD
v
CIDswl iy ([ 1= wl"Go1aS + 11AP + oy [ el 2 [ jolas).
aD v D oD
Remark 2. To show Lemma 2, we need to assume that A is a real-valued function for the case A # 0.

If A =0, we can allow A to be a complex-valued function (see Ikehata [3]).

By Lemma 1 and 2, we obtain Proposition 1. To prove the asymptotic formula for the indicator
function under the Robin condition on 9D, we need the following basic lemmas.

Lemma 3. Let v, = v (z;w) = eT‘T'(‘*’““"L)(l + rr(z;w)) be the complex geometrical optics solution as
¢ =7(w—iwt), where 7 > 0 and w,w € S"7! satisfying w - wh = 0. Assume ||A| y2(q) is sufficiently
small. Then, there exists a constant C' such that

1
—7'2/ e2TTw dxg/ |DAv.,.|2dx§C’T2/ 2T g
4 D D D

/ o, [2da < C/ 2T dy,
D D

Lemma 4. (cf. Tkehata [2, Proposition 2.3])
Let OD is Lipschitz continuous. There exists C,, > 0,7, > 0 such that

for sufficient large T and

7'2/ e~ 27(hp(W)=ww) g0 > O 71 P (1> 70)
D

_f2 (=3
Pom11 (=2,
for w € S"1. Especially, when we assume furthermore the condition (D), and the graph y = f(s)
representing 0D, satisfies f(s) < g(s) = L|s|™ near xg € T'(w). We have following estimate:

1— -2
7-2/ =2 (@) =) g > Cle_z (n=3),
D CwT mw (’[’L = 2)

with

for any T > 1.



Lemma 5. (cf. Tkehata [1, Lemma 4.2])
Assume (D), for w e S" 1 and zg € T(w) which appeared in the assumption (D).

(1) Let n=3. Then, there exist constants 7, and K such that

2
(7’/ |z — x0|%e7—(z'“’_h£’(“’) dS) < K wo (T > 7w),
oD

and

/ eT(@w—hp(w) gq < KT_"%.
oD

(2) Let n=2. Then, for any 0 < e < 1, there exist 7, and K such that

2
<7’/ |x — x0|1_667(z'“’_h£’(“’) dS) < K72~ on (1 > 7u)-
oD

Proof of Theorem 2. By the definition of IR (1;t) and Proposition 1, we have
Is(t) < I8 (1,0)e= 20 @) = [(F)(7: hpy(w)) < Lu(7),

where
13(7):/ |DAe_T(hD(w))vT|2dx—C'Q(L){/ le= 7o)y, |2 da
D D

H ([ ol Dae 0, a5 4 [ et 2 as),
oD oD

I(r) = Cl(D)(/D |DAe_T(hD(w))vT|2dx+/D le=m(ho @)y, |2 dx)

+ Cz(L){(/ & — 20| Dae” TP D0, | dS)>? +/ ey 2 4}
oD oD

Since z - w — hp(w) < 0 (x € D), it follows
I(r) < Cr2

Lemma 4 implies for large 7 > 7,

CT2/ 62T(m~w—hp(w)) diE—C// eQ‘r(z-w—hD(w)) dx
D D

1- = _
> €T2/ 62T(m-w—hp(w)) de > C Tl_i (n - 3)
2 D T Mmw (TL =2).

On the other hand, Lemma 5 implies for large 7 > 7,

/.

2
eT(m-(w-‘,—in-)th (w)) (1 + T)

ds < C/ eQT(m-wth(w)) ds

s{ Cr e (nf?))'

Furthermore, since there exists a constant C' such that |r(z)| < C,|Vr(x)| < C7 (z € D), we can estimate
as follows:

2
e <€T(m.(w+iwl))_7—hD(w)(1 + T(x))) ‘ dS)

0
_ q
(/&)D [ = ol ov

(/aD |z — zo|? (IT(w +iwh) - v(1 +r(x)| + |vr(x)|>e7'(ww_hp(w)) ds)2

2 2__5_ -
C(T/ |z — I0|qe‘r(z-w—hu(w)) dS) < CKT2 e (n=3)
oD CKT" ™ (n=2).

IN

IN




Combining these estimates, we have for 7 > 7,

o_4-2c

Crl=ms O - CK7* (n=2).

L(r) > { %7‘1_"% — Cr e — CKr% ™ (n=3)
3(7) =
27

Notethatl—m—>2—m—f0rn—3and1—m—>2 4 4=2¢ for p = 2, since 2 < my, < 3. Here, we
take 0 < e <1 suﬁlClently small such that 3 — 2 > my,. S0, for Tw large enough, there exists a positive

constant C' such that )
Crimms  (n=23)
I3(7) >
3(r) 2 { or'=ms (n=2)

for 7 > 7,,. Thus, it follows

where

Then, we have
log C + alog T < —27hp(w) + log IV (7,0)| < logC + 2logT (7 > 7.,).

Now, we can conclude

log [I¥) (7,0
lim 128 "m0l
T—00 2T
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