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Abstract

The non-relativistic limit of the semi-relativistic Pauli-Fierz Hamil-
tonian

VEA(—iVel—A(x)2 +m2ct —mc® + V@ 14+ 1® Hyg

is considered. Here c denots the speed of light, m the mass of a charged
particle, A a quantized radiation field, V' an external potential and
H,,q the free field Hamiltonian. By the limit ¢ — oo in the sense
of strong semigroup, we derive the Pauli-Fierz Hamiltonian in non-
relativistic quantum electrodynamics:

1
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1 Non-relativistic limit of subordinator

In 1905 Albert Einstein discovered that a particle with momentum p € R?
and mass m has the kinetic energy /c2|p|? + m?ct. Since we have

4
VE2|p]2 +m2ct — me* = L|p|2 - (’)(—lp| )
2m m3c2’’

*I was planning to give a talk at RIMS conference “Mathematical aspects of quantum
fields and related topics” held in 26-28 of July 2019, and the title of my talk was going
to “Positivity improving and spatial decays of bound states in quantum field theory”. I
however canceled my talk due to the misfortune of my relative. Here I contribute this
article different from the planed title.
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intuitively we have

exp (— H(/E(CA) T m2c — mc2)) s exp (- t%(—A))

as ¢ — oo. This intuition becomes substantial by means of the so-called
non-relativistic limit discussed in this article. Define

H.=V—-A+m2c* —mc* + V.

By using the Feynman-Kac formula we can show that H. — H,, as ¢ — o0
in a specific sense, and the limit operator is the Schrédinger operator

HOO:_LA+V_
2m

We call this non-relativistic limit.

Now we introduce a Feynman-Kac formula of e=*Hc. Let (Byt)i>0 be 3-
dimensional Brownian motion on the Wiener space (£, B, W*), where 2~ =
C([0,00); R?) is the set of R3-valued continuous paths on [0, 00), W* denotes
the Wiener measure such that W*(By = x) = 1. It is established that

(f.eeg) = / E* [ (2)g(Byym)e o Vo) do. (1.1)
]R3

Here E*[...] = [, ...dW?" denotes the expectation with respect to W*.
Next we consider a Feynman-Kac formula of e~*. To do that we need
a subordinator in addition to Brownian motion. We recall that (7}):> is a
subordinator if and only if it is a one-dimensional Lévy process and [0, 00) 3
t — T, € R is almost surely nondecreasing. For every ¢ > 0 consider the
subordinator (77);>o on a probability space (S, F, P) with parameter ¢ such

that
Ep [B_UTtC] _ e—t(\/ 2c2u+m2ct—mc?)

where u € R and Ep[...] = [ ...dP. By using the distribution

t 1 [ cAt?
10— etV (23 (2 )

of TY we have

Bele ) = [ e pis)ds.
R
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Substituting —%A into u formally above, we have

Ep[eTF38] = o—UV=FButm?et—me?)
Adding an external potential V' we have the related Feynman-Kac formulae:
(e g) = [ B l@Elg(Br)e VO de. (12)

We refer [5] for the detail of (1.2).

Proposition 1.1 ([7, Section 4.6]) Let f be a bounded continuous func-
tion on R. Then

lim Ep[f(17)] = f(t/m).

c— 00

It can be allowed to say that pf(s) — d(s —t/m) as ¢ — oo by Proposi-
tion 1.1. We derive the non-relativistic limit of e~*He.

Corollary 1.2 Let V' be a bounded continuous function. Then

s — lim e e = g tHoo
Cc— 00

Proof: We suppose that V' is nonnegative without loss of generality. It is
enough to show the weak limit

lim (f,e”"eg) = (f,e"*=yg). (1.3)

Cc— 00

Since H. > 0 for every ¢ > 0, ||e "#¢|| < 1 uniformly with respect to ¢ > 0. It
is also sufficient to show (1.3) for arbitrary f, g € .(R) by a simple limiting
argument. Note that by Proposition 1.1 it can be seen that

(VAT = [ BTt 6O
R

o [ EF@g(Bym)e 8V s = (5,12 Vg)
R

as ¢ — oo. [



2 Non-relativistic limit of RPF model

We consider a system of quantum matters minimally coupled to a quantized
radiation field. This model describes an interaction between non-relativistic
spinless n-electrons and photons. Let

H=LR®F

be the total Hilbert space describing the joint electron-photon state vectors.
L?(R3) describes the state space of a single electron moving in R? and F that
of photons. Here F = F(L*(R?x{1,2})) is the boson Fock space over Hilbert
space L*(IR3 x {1,2}) of the set of L*-functions on R? x {1,2}. The elements
of the set {1,2} account for the fact that a photon is a transversal wave
perpendicular to the direction of its propagation, which has two components.
H can be decomposed into infinite direct sum:

H = EB;;O:O;Ll(n)v

where H™ = L?(R?*) @ F™. The Fock vacuum in F is denoted by Q as
usual. We introduce the free field Hamiltonian on F. Let w = w(k) = |k|.
w(k) describes the energy of a single photon with momentum k. The free
field Hamiltonian H.,q on F is given in terms of the second quantization

Hyg = dI'(w).

Here w denotes the multiplication in L*(R*x{1,2}) by (wf)(k,7) = w(k) f(k, j)
for (k,7) € R x {1,2}.

On the other hand the charged matter, electron, is governed by Schrodinger
operator of the form

1
Hy==5 AFV

in L*(R?). Here m denotes the mass of electron. To introduce the minimal
coupling we define quantized radiation fields. Let a(f) and a'(f) be the
annihilation operator and the creation operator on F smeared by f € L*(R?x
{1,2}), respectively. Let us identify L?(R? x {1,2}) with L*(R%) & L?(R?)
by

LAR? x {1,2}) > f(-,1) = f(-,1) @ 0 € L*(R?) @ L*(R?),
LA(R® x {1,2}) > f(-,2) 2 0@ f(-,2) € L*(R®) @ L*(R?).
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We set a*(f @ 0) = da*(f,1) and a*(0 ® f) = a*(f,2). Hence we obtain
canonical commutation relations:

la(f,4),a%(9,5)] = 8;(f,9).  lalf,5),alg. 5)] = 0= [a'(f.5),a'(g.5)].
We define the quantized radiation field with a cutoff function ¢. Put

p(k)
w(k)

foreachx € R?, j = 1,2 and = 1,2, 3. Here cutoff function ¢ is the Fourier
transform of the charge distribution ¢ € .%/(R?). Although physically it
should be ¢ = 1/(27)%2, we have to introduce cutoff function ¢ to ensure
that g, (x,j) € L*(R}) for each x. The vectors e(k,1) and e(k,2) are called
polarization vectors, that is, (e(k, 1), e(k, 2), k/|k|) forms a right-hand system
at each k € R?;

90( k;) e,u(k ]) ikx

€ ka.FG_ikxa oM ZL‘,'
u(k, ) oulz,7) = o0

ou(x,j) =

k

e(k,i)-e(k,j) =0, ek, j) - k=0, e(k1)xe(k2)= T

The quantized radiation field with cutoff function ¢ is defined by

Aul) \/_ 2. < (Pulz, 7). ) + alpu(@. ), J)>, p=123.
7=1,2
Unless otherwise stated we suppose the following assumptions.

Assumption 2.1 (Cutoff functions) ¢ € ./'(R?) satisfies that (1) ¢ €
loc( ) (2) (P( ) (k): (3) \/c_ugﬁ,@/\/@, @/w € LQ(Rs)

In the case of ¢/y/w € L*(R?) and ¢(k) = ¢(—k), A,(x) is symmetric, and
moreover essentially selfadjoint on the finite particle subspace Fg, of F. We
denote the closure of A,,(z)] 7, by the same symbol. Write

b
AM = / Au(x)d:v, A = (Al,AQ,Ag).
R

3

A, is a selfadjoint operator on
D(A#):{FEH‘ F(z) € D(A,(z)) a.e. and/ A, (z ||fdx<oo}
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and acts as (A,F)(x) = Au(x)F(x) for F € D(4,) for a.e. € R%. Since
k- e(k,j) = 0, the polarization vectors introduced above are chosen in the
way that 22:1 V.9 (x) = 0, implying the Coulomb gauge condition

3
> VA, =0.
pn=1

This in turn yields Zizl[vﬂ,, A,] = 0. Let us define the Pauli-Fierz Hamil-
tonian. The interaction is obtained by minimal coupling:

-V, @1l— -V, ®1-A4,
to Hy @ 1+ 1® Hiaq.

Definition 2.2 (The Pauli-Fierz Hamiltonian) The Pauli-Fierz Hamil-
tonian of one electron with mass m is defined by

1
HPF:%(—N®H—A)2+V®H+H®Hrad.

In what follows we omit the tensor notation ® for the sake of simplicity.
Thus

1
Hpp = —(—iV — A2 +V + Hppq.
2m

We introduce classes of external potentials. We say V' € Cl,y, if and only
if D(A) € D(V) and there exist 0 < a < 1 and 0 < b such that [V f] <
al| = (1/2)Af|| + b|| f|| for f € D(A). Hpy with V' € Ciato is self-adjoint on
D(—=A) N D(Hyaq)-

Definition 2.3 (Semi-relativistic Pauli-Fierz Hamiltonian) Hgpr is de-
fined by

Hgpp = /2(—iV — A)2 +m2c* — mc* +V 4 Hyag.

The functional integration and the self-adjointness of Hgrpp is shown in [1,
2, 4]. We introduce classes of external potentials which is a counterpart of
Crato- We say V' € Ciato if and only if D(v/—=A) € D(V) and there exist
0 <a<1and0 < bsuch that |V f|| < a||vV=Af|| + b||f]| for f € D(A).
Hgpy with V' € Gl is self-adjoint on D(v/—A) N D(H,.q). In the previous
section we could see that

1
\/—A+m204—m02+V—>—2—A+V
m
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as ¢ — oo strongly in the sense of semigroup. In a similar way to this
we shall show the non-relativistic limit of the semi-relativistic Pauli-Fierz
Hamiltonian. Using (77):>o we can see that
(Foe 1557 G) = [ Bppep e 1V O (10 (0), e 1,6 By ) o,
R3
(2.1)

and the functional integral representation of e *PF with mass m is given by

(F,e PP @) = /

EWI |i6_ f(;5 V(BS/m)dS(JOF(:)j)’ G_ZAE(Kt)JtG(Bt/m)) d.ﬂ?
R3

(2.2)

Let j; : L2(R?) — L?(R*) be such that j}j, = e 57t (=1V) et

=@ [ iet - Beds,

Then K®'(c) and K; are defined by the limits: I, — K™(c) and I, — K;
as m — oo strongly in L?(2 x §) ® (&3L*(R*")). The functional integral
representation is due to [3] for e *PF and [4] for e7'rPF. Using (2.1) and
(2.2) we show that e tHrer — e=tHrPF 39 ¢ — o0 strongly. In what follows
we set B0 = Eyyegp and E* = Eyye.

Lemma 2.4 [t follows that
lim K(c) = K,
c—00

strongly in L*(Z" x 8) @ (D*LA(RY)).

Proof: We have

155 (e) — Kl < K7 (e) = Tl 4+ 1T, = Ll + [T — Kl



We have
k 2
E(IL — ) < 3Tfll¢/ﬁll2< 3 2-3/2) .
Jj=n+1

Here || - || denotes the norm on ®3L?(R*). From this we have

ER[I;, — K()[) < 31@0[@0]”@/@“2( 2. 2‘”) |

Jj=n+1

Since E°[Tf] = t/m which is independent of ¢ > 0, we obtain that

20[(e _ Fere t. < N2
E*O[|[T;, — K ()] g?%llso/\/a”Q( > 2 J/z)

j=n+1
and we conclude that
E*O|L;, — K (e)[*] = 0 (2.3)

as n — oo uniformly in c¢. Let € > 0 be arbitrary. There exists ny such that
for all n > ny E*O[|| K7 (c) — I¢||?] < €? and E*O[||I, — K¢||*] < £ uniformly
in c. Now we estimate ||I¢ — I,,||. We have

3 am th, tj/m
L-L-PY ( | et Bydse - [ gt Bs)dBé‘)-

u=1 j=1 TE tj-1/m

We note that s — [, @(- — B,)dB* and s — fsbjtj_lgé(- — B,)dB* are
almost surely continuous. Hene

T tj/m
(S,T) — E* [( [ et = oase [ g et Bs>d35)]
S t

j—1/m

is continuous. This implies that for every j,

th tj/m
Ex,O |:</ ’ jtj_1()5(' - Bs>ngv/ jtj_ﬁb(' - Bs>dBéL>:|
th tj_l/m

Jj—1

tj/m ti/m
— E* |i(/‘ jtj_1()5(' - Bs>dBéLv/ jtj—l@(‘ - Bs>ng)1
t

j—1/m tj—1/m

=Gt e (24)



as ¢ — 0o. Hence

E O[T — L)
271/
Sl
j=1
Since we have

TtL] tj/m
/ i (- — B)dBY / i (- — B.)dB"

th tj_l/m
2
TE tj_l/m :|
c
Ty 1

-1
ti1
2 tj/m
:| + E%O |: ‘ / jtj_ﬁb(' - Bs>dBéL
i tjfl/m

th, tj/m
- 2Ez70 |:</ ’ jtj_ﬁb(' - Bs>d357/ jtj_1()5(' - Bs>ng):|
g tj_l/m

tj—l

1 ~ C C
= EH@/\/&HQ(EO[% —Tf ]+t — 1)
thj tj/m
_oRso K [ et —moane, [ g et Bs>d35)].
t

Ty i-1/m

|

Tf, tj/m
/ ’ jtj_1()5<' - Bs>ng _/ jtj_ﬁb(' - BS>dBéL

Em,O [

TE
= Ez,O{ / ’ jtj_ﬁb(' - BS>dBéL

T

Note that E°[Tf

=Ty ] =t; —tj—1 and (2.4). We can see that
E™°(IT, — L] — 0
as ¢ — 0o. We have
T (B[ K3 (0) — Koll)V < 22 + L (E*O[J15 — L, )2 = 2¢.

Thus the lemma is proven. [
The main result of this article is the next theorem.

Theorem 2.5 (Non-relativistic limit) Suppose that V' is bounded and con-
tinuous. Then for every t > 0 it follows that

s — lim e tHrer — o—tHpr

c— 00

Proof: Suppose that F,G € C§°(R?) ® Fraq- From Lemma 2.4 and

(F, e~ @) = /

R3

god [e— i VB8 (3, F (), e AR 1,6 By ) | di
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it follows that

Cc— 00

lim (F, e "HrPP Q) = /R3 E* {6_ Iy VBs/m)ds (3, F(z), e_iAE(Kt)JtG(Bt/m)) dx

= (F, e tHrr @),

Since Hppp > inf,cps V(z) = g > —oo, e Hrer < 7. Let F,G € Hpp.

There exists F,, G, € Ci°(R?) ® Fraq such that F,, - F and G, — G
strongly as n — oo. By the uniform bound e *rPF < ¢ we can show
lim, o (F, e HRPEG) = (F, e~ P G). Finally since the weak convergence of
e tHreF implies the strong convergence, the theorem follows. [

Remark 2.6 Theorem 2.5 has been already published in [6, Theorem 3.137].
Although this article was planed to be published in 2019, it delayed however
by 2 years and then [6] has been published before the publication of this
article. Hence this is not the reprint of [6].
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