CLASSICAL FIELD EQUATIONS AS EFFECTIVE THEORIES OF
QUANTUM ELECTRODYNAMICS AND YUKAWA INTERACTIONS

ZIED AMMARI

ABSTRACT. In this short note the so-called Bohr correspondence principle is extended to standard
models of quantum electrodynamics and to the Yukawa theory of strong nuclear forces. The
main motivation here is to provide firm mathematical foundations to the physics of interacting
quantum fields at small energy scales and to provide a comprehensive parallel between quantum
and classical field theories.
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1. INTRODUCTION

Quantum electrodynamics is the fundamental theory that describes the interactions between
matter and radiation through phenomenological models of Quantum Field Theory (QFT). Since
the fifties enormous progress has been made in the understanding of such theory with for ex-
ample the breakthrough of perturbative renormalization and asymptotic freedom, see e.g. [23].
Nevertheless, several conceptual and analytical mathematical problems remain open as well as
outstanding questions like the Millennium Prize Problem of Yang-Mills, see e.g. [17, 21]. On
the other hand, some of the issues in the general topic of QFT, which have recently aroused the
interest of the mathematical physics community, concern the relationship between classical and
quantum field theories. The aim of this brief note, based on joint works with Marco Falconi and
Fumio Hiroshima [4] and [5], is to explain the rigorous mathematical basis for such a relationship
related to Bohr’s correspondence principle and canonical quantization.

Specifically, we consider the two cases of electrodynamics and Yukawa interaction. Recall
that quantum electrodynamics is usually described by it standard model, namely the Pauli-Fierz

Date: April 30, 2021.
Key words and phrases. Newton-Maxwell equation, Schrédinger-Klein-Gordon system, QED, Yukawa interaction
and classical limit.
1



2 ZIED AMMARI

Hamiltonian, and is widely studied as an interesting example of QFT. Such model consists of non-
relativistic spin zero particles interacting with the quantized electromagnetic fields in Coulomb’s
gauge. On the other hand, the Yukawa interaction describes the strong nuclear force as the
nucleon-meson interaction of a Dirac field with a boson field of positive mass. If one fixes the
number of nucleons and consider them to be non-relativistic then the Yukawa interaction reduces
to the so-called Nelson Hamiltonian, see [20]. These two models will be recalled in Section 2 and
3 respectively and our main results will be stated in Section 4. Let us now give a brief sketch of
the canonical quantization and Bohr’s correspondence principles.

Canonical quantization: The general goal of constructive QFT is to provide solutions for
nonlinear quantum field equations like for instance the ¢*" equation,

(O4+m)o(t, z) + X" Tt 2) =0, (1.1)

where ¢(t; x) and 7w (t; x) = Op(t; z) are the unknown quantum fields (distribution-valued opera-
tors) satisfying the canonical condition

[0(t,2), ¢(t, y)] = [7 (¢, 2), 7w(t,9)] = 0, [w(t, 2),ip(t, y)] = hd(z —y). (1.2)

Such evolution system is Hamiltonian and its energy His a formally conserved quantity. Hence
H can be expressed as a function of the zero-time canonical variables ¢(0;x) and 7(0; ),

H= / 2(0,z) 4+ |[V¢(0,2))? + mep(0, z)?] + #(0, 2)>" 2 dx | (1.3)

2n + 2

and the time variation of quantum fields is given by the equation of motion
ihdyp(t; ) = [p(t;z); H]  and  ihdym(t; z) = [n(t;x); H] . (1.4)

In particular, if Hisa self-adjoint operator over a Hilbert space on which a representation of the
zero-time canonical commutation relation is realized, then one determines the quantum fields at
any time

o(t;x) = ei%Hgb(O;x)e*i%g and 7(t;x) = e inH 7(0;x)e —iiH (1.5)
Hence, solving (1.1) requires on one hand the study of representations of canonical commutation
relations (1.2) and the study of self-adjointness of the formal operator H on the other.

Consider the smeared fields
o(f)= [ #0,z)f(x)dz and =(f)= / m(0,2)f(x)dz, VfeL*RYR) (1.6)
R R

as self-adjoint operators on a given Hilbert space .7 then one can check that the Heisenberg
commutation relations are satisfied:

[6(f), ¢(9)] = [=(f),w(9)] =0,  [r(9),id(f)] = h(f,g) Id.

To avoid domain problems due to the unboundedness of ¢ and =, it is more convenient to deal
with the following Weyl commutation relations:

() Wign )W (g2, f2) = 27102 I W (g1 4 go, fi + o).
where o is the canonical symplectic form over the space L?(R% R) @ L?(R% R). In this topic

it is known that the most relevant representation of Weyl commutation relations is the Fock
representation acting on the symmetric Fock space,

H=Ty(%) =2, &" &,
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where & = L*(R?,C) ~ L*(R%,R) @ L*(R% R) and the subscript ”s” stands for the symmetric
tensor product. On such spaces one can rigorously defines the following operators for any f € Z:
Annihilation operator:

d(f)fl ®s ®s fn = \/% % Z <f7 f01> fa2 ®s "'®s fU‘n7 (1'7)

" 0ESy

Creation operator:

& (f)fL @+ ®s fo=VhAn+1) fRsfLe - Qs fn. (1.8)
Weyl operator:
W(f) = e%(&*(f)Jra(f)) ) (1.9)

Remark that the above Weyl operator depends in i € (0,1). Hence, the above structures in the
Fock space determine the zero-time quantum fields ¢(0, -) and 7(0, -) using (1.6) and the relations

LA A ah)—at()
o) = T w(f) = R

Now a canonical or Wick quantization is a mapping for each polynomial functional b(&, o) of the
complex classical fields &, . corresponds an operator in the Fock space

b(@, ) — b(a*, &) = bV

according to the Wick quantization rules so that all the &*’s are in the left and all the &’s are

in the right. Such procedure can be implemented more systematically using Wick operators with
homogenous polynomial functionals b defined as
- n—p+q)n! _ ptq - _
bchk@gg _ ( f ‘Q) W b @, Id2mp)
(n —p)!
where b(a, o) = (a®?,ba®P) for some p.g € Nand b : @22 — 1% is a given operator. For
instance, the canonical quantization of the total mass and the Klein-Gordon classical energy yield

/ a(k) a(b)dk — N = (a, a>WiCk:/ (k) a(k)dk, (1.10)
Rd RY

/ a(k)wk)a(k)dk — Hy= (a, w(k)a)WiCk:/ & (k) w(k) a(k)dk,  (1.11)
R4 R4

where
w(k) = Vk2+m?2,

and &*(-),&(-) are distributions valued operators defined similarly as in (1.6). Expressing the
Hamiltonian H of the ¢?" theory in (1.1) according to the above procedure yields an operator or
a quadratic form over the Fock space. The challenging question remaining is then to show that H
corresponds to a well-defined self-adjoint operator. Such task for the ¢?" model is at least solved
in d = 1 with spatial-cutoffs but still unsolved for d = 3 while for d = 2 is solved by a different
euclidian approach. The above discussion describes briefly the purpose of canonical quantization

and constructive quantum field theory from a Hamiltonian point of view.

Bohr’s correspondence principle: A classical Hamiltonian system with an infinite number of
degrees of freedom is described by pairs of momentum-position canonical variables (p1,q1, - , pn,
n,- -+ ) and the equation of motion is derived from a classical Hamiltonian functional,

H(p7q) = H(plaqla oy Pnsdns ')7
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as the following system of ODEs

OH OH .
J opj J 0g;
In such Hamiltonian systems there is usually a natural symplectic form and a compatible complex
structure allowing to formulate the above equation of motion (1.12) in terms of classical complex

fields, p 5
H(p,q) = H(a,a), iaa(t) = %(@(t), a(t)) . (1.13)

There are mainly two approaches to describe the dynamics of such classical Hamiltonian systems:

(1) The evolution of dynamical states: One considers the equation (1.12) or (1.13) as a Cauchy
problem with initial data given as phase-space points. Then one try to determine unique
solutions or trajectories satisfying (1.12) or (1.13) for each initial datum. Within this
point of view the main issues that are considered are more quantitative and they are re-
lated to PDE analysis, for instance well-posedness, Hadamard’s stability, scattering and
blow up.

(2) The evolution of statistical states: Instead one considers an initial ensemble of data given
by a probability distribution on the phase-space and then attempts to characterize the
time evolution of such distribution. This leads to the Liouville equation and thus to a more
qualitative study concerned with ergodic, chaotic and asymptotic statistical behaviors of
such dynamical systems.

This general picture is complemented by few exceptional Hamiltonian systems that have some
form of integrability or solvability on which specific techniques like the KAM theory are used.

On the other hand, a quantum mechanical system with infinite degrees of freedom is formally
described by a Hamiltonian

H(ﬁ? Q) = H(ﬁl:‘jh o Dny Gns ) )
where the pairs (p;, ¢;) are conjugate canonical variables satisfying the canonical commutation
relations (CCR’s):

(G5, Dk] = ihdjk, (45, qr] = [Ds, Pk] = 0.
or equivalently using quantum complex fields,

7‘[(]57 (j> = H(é‘*? d) ) [dj7 &lt] = h(sj:k :
The equation of motion in this case is given by the Schrédinger equation
itho Wy = H(&", &) Uy, (1.14)

and the dynamics of such quantum Hamiltonian system can be described either by:

(1) Schrédinger picture: Wave functions over Hilbert spaces.
(2) Heisenberg picture: States over C* or W*-algebras of observables.

The key issues in this topic are energy levels, resonances, spectral analysis, scattering, KMS states
and statistical behaviors. Again this formal general landscape is embellished by a few exceptional
solvable models like Spin chains, Hubbard and Lieb-Liniger models.

The relationship between classical and quantum fields is given by the following diagram re-
flecting the so-called canonical quantization and classical limit:

Quantization
—_— N\

Classical field theories Quantum field theories (1.15)

Classical limit
and stating that canonical quantization of classical fields yields QFT as explained in the previous
paragraph while the classical limit recovers the original classical fields. The latter link is the
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so-called Bohr’s correspondence principle. Taking again the formal example of $*" quantum field
theory then insightful parallel between these quantum and classical field theories is summarized
in the following table:

Classical system | Quantum system |
7 = L*(RY) @ L*(RY) (%)
Classical phase space (infinite dim.) Symmetric Fock space
a(k), a(k) a*(k), a(k)
Classical variables (complex fields) Quantum variables (Dist.valued operators)
b(a,a): D(b) - R b(a, a)Vick
Classical observables (functionals) Quantum observables (operators on Fock sp.)
0
Classical states (Prob. on phase sp.) Quantum states (density matrices on Fock sp.)
H(a, o) H = H(a, o) Vick
Classical energy (functional on phase sp.) | Quantum Hamiltonian (self-adjoint op. on Fock sp.)
@n, o i
Classical evolution (flow on phase sp.) Quantum evolution (unitary group on Fock sp.)

In this respect one naturally expects that complex quantum dynamics out of reach by numerical
simulations can be approximated by more tractable flow of related nonlinear PDEs governing the
classical fields. From this duality (1.15) one could in principle deduce accurate expansion of
quantum correlation functions, eigenvalues asymptotics and scattering amplitudes of quantum
field theories in the classical regime. To address such questions there are few mathematical
tools that are non perturbative with respect to the coupling constant; namely the coherent state
method and the more recent Wigner measure approach. The latter is the main topic of this note
and is useful for the interesting regimes:

e Mean field limit N — oo in quantum many-body theory where N is the number of
particles,
e Classical limit & — 0 in QED or QFT where & is the rescaled Planck constant.

And it can be applied to study the following examples of physical systems and related phenomena:

e Many-Body theory and Bose-Einstein condensate.

e Relativistic Quantum field theory (()3, P(¢)2 models).
e Yukawa interaction theory and renormalization.

e Quantum electrodynamics and Lamb shift.

Wigner or semiclassical measures: At zero temperature the states describing quantum systems
are trace class normalized non-negative operators (density matrices) while for classical systems
states are probability measures over the phase-space. Thus the classical limit implementing the
Bohr’s correspondence principle can be interpreted as a scaling limit that corresponds to an
arbitrary sequence of scaled quantum states one or several probability measures over the classical
phase-space called Wigner or semiclassical measures. Such type of convergence is rather weak
and the non uniqueness of the limit is a natural feature that can be circumvented by selecting
subsequences. Note that Wigner or semiclassical measures have been extensively studied in finite
dimension (see e.g. [18] and references therein). This concept has been extended to infinite
dimensional phase spaces in a series of articles by Ammari and Nier (see e.g. [1, 2, 6, 7]).

Definition 1.1 (Wigner measures). A probability u over the phase-space 2 is a Wigner measure

of a family of quantum states (Qh) he(0,1) O the Fock space I's(Z) if there exists a countable subset

& C (0,1) with 0 € & such that for any & € 2

. _ V2i Re(,2)
im Tl W)= [ o (=)
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Recall that the Weyl operator W (-) depends on h and is given in (1.9). The set of all Wigner

measures of a given family of quantum states (Qﬁ) he(0,1) is denoted by

M (o T € (0,1)) . (1.16)

Note that we know that the set of Wigner measures .# (o5, i € (0,R)) is not empty under
suitable assumptions of the quantum states. Moreover, usually one can only consider families of
quantum states with a unique Wigner measure without loss of generality.

The above concept allows to establish the Bohr’s correspondence principle in an effective and
flexible way. Indeed, the convergence of quantum dynamics towards classical dynamics while
taking A — 0 can be reformulated as the following question. Consider for instance the above
example of ¢*" theory, hence if the quantum system is in the state g; at time tg = 0 then its time
evolution satisfies the Heisenberg equation and yields

on(t) = e wtH gpent

Suppose now that the family of states (o5)ne(0,1) admits a unique Wigner measure 1 i.e.,

A (on,h € (0,1)) = {n},

then can we determine the Wigner measures of (o5(t)) for any time?

he(0,1)

The formal or expected answer is yes and says that the family (Qh(t)) admits a unique

he(0,1)
Wigner measure at any time given by the push-forward measure

e = () 4 1o (117)
where @, = (®4)} is in our case the flow of the classical field equation related to the ¢*" theory
admitting the following classical energy

H(@,a) = /@(k) ViE +m2 a(k) dk+/

Remark that our discussion here is formal and in particular the self-adjointenss of H and the well
posedness of the nonlinear classical field equation are presumed without proof. Such result can
also take the following form for all £ € &,

lim Tr [Qﬁ ez%f[ W(f) e—i%f[:| :/ eiﬁ?ﬁe({,z) d/.Lt(Z) )

h—0 z
The above Bohr’s principle is proved rigorously for the Yukawa interaction with and without
ultraviolet cutoffs in [3, 4] respectively; and more recently it is considered for non-relativistic
quantum electro dynamics in [5]. Such results are briefly given in Section 4.

2n+2g0(a;)2”+2 dx. (1.18)

2. NON-RELATIVISTIC ELECTRODYNAMICS
We briefly review below the standard model of non-relativistic quantum electrodynamics.

2.1. Pauli-Fierz Hamiltonian. The dynamics of a quantum extended charge interacting with
the quantized electromagnetic field in Coulomb’s gauge is usually described by the Pauli-Fierz
Hamiltonian, see [22]. Such operator is proved to be essentially self-adjoint under some regularity
assumptions on the charge distribution, see for instance [11, 14, 15, 16, 19].

The particle-field Hilbert space is:
Q= L*R3,C) ® I (L*(R}, C?)), (2.1)

where I's(+) stands for the symmetric Fock space. The particle’s momentum and position operators
are respectively:
p=—iV,, j=x,



while the creation-annihilation operators for f € L2(R?, C?) are given by:
2 2
a0 =3 [ Fwd et @) =3 [ phd)ag)ar.
j=1 j=1

with &a(k, j) and &*(k, j) are the annihilation-creation fields satisfying the canonical commutation
relations:

Gk 1), & (K, 7)) = B0k — k) 60
In this framework the Hamiltonian of free fields is

2
Ay =3 [ K6 (b (k) di
i=1

Consider now a smooth function ¢ : R® — C representing the Fourier transform of the particle’s
charge distribution and satisfying the assumption:

_ 1
|- [7he(), - [7() € LX(R%,©) . (AO)
The quantum electromagnetic vector potential flw = (121%1, A%g, A¢’3) is defined by

2
Age(@) =) /]R ke, ) (k) €70 6 (k) + (k) €™ Gk, j) ) b
j=1

where {e(-,j)}j=12 are the polarization vectors satisfying for a.e. k € R,

e(k,j) k=0,  e(kj)- ek j) =0 Vi#j. (2.2)
The Pauli-Fierz Hamiltonian is then given by
~ 1, . ~ L2 ~
HPF: 5( _ASO) +Hf

The Pauli-Fierz Hamiltonian is self-adjoint according to the following result of F. Hiroshima.
Proposition 2.1 ([16]). Assume (A0), then Hpp is self-adjoint on 2(p%) N 2(Hy).

This in particular gives the existence and uniqueness of quantum dynamics related to the
Pauli-Fierz model of non-relativistic quantum electrodynamics.

2.2. Newton-Maxwell equation. The dynamics of an extended classical non-relativistic charge
coupled to the classical electromagnetic field is described by the Newton-Maxwell equation. The
latter is a coupled system of an ODE and a PDE consisting in Newton’s equation for the particle
and Maxwell’s equation for the field. Consider the same function ¢ as in (A0) and assume for
simplicity that it satisfies

p € G (RPN {0}), (A0")
to avoid ultraviolet and infrared problems. More general conditions will be considered in [5].
Denote by (¢,p) € R? x R? = RS the phase-space coordinates of the particle and by (E,B) :
R? — R? x R3 the electromagnetic field. Define the smeared fields

E,=¢*xE, B,=¢x*DB,

and the particle’s current J, ,(-) = p@(g — -), then the Newton-Maxwell equation takes the form:

G=p, p=~Eq)+pxByq)
E=VxB-J,,, B=-VxE
V-E=¢(qg—)
V-B=0

(N-M)
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One can introduce the vector potential A for the electromagnetic field and chose the Coulomb
gauge to reformulate (N-M) in terms of A, A and (g,p) only. Moreover, one can introduce new
complex canonical variables (@, «) instead of A, A. Indeed, define for j € {1, 2},

alk,j) = Js ek, j) - (|k|> F (A) (k) — i [k] 2 F(4)) , (2.3)

where {e(-, j)}j=1,2 are the polarization vectors satisfying (2.2) and .# denotes the Fourier trans-
form. Then one can write

2
A@) = S VERe F7 (e 4) |- |72 al-,4)) () (2.4)
j=1
2
A@) =3 V2SmZ " (e(j)| - [al-j)) (@) (25)
j=1
such that
A, =¢xA.

Using such new canonical variables (g, p, &, &) one can reformulate the Newton-Maxwell equation
as a classical Hamiltonian system with an energy functional:

2
1 2 P .
Mo, 0) = 5 (0= A4p(@) + 3 [ @) [k | alhd) di
=1
and a classical equation of motion:
q<t> = apHNM(Q=p7 5(, O() ) p<t> = _aqHNM(Q7p7 da Oé) 5
Z.atOC(',j) = a()73LLNM(Q7p7a70Z) .

Specifically, if we consider (q,p) and «(-) as the unknowns, the explicit equation of motion takes
the form:

g=p-— Acp(Q)
3
=3 (e~ Apsl0) ) VA ela)
p e (pf ,t\q ) ,t\q . (N-M)
3
rad) = | faltd) =3 S5l e et ) (b= Ap(0)

Global well-posedness of (N-M) on various spaces has been studied in the literature, see for
instance [8, 9, 10]. The natural functional space for the field a(-) is L?(R3, C?). Therefore, we
recall existence and uniqueness of (N-M*) solutions on the space

I = R3x R3a L2(R3, C?).
N——  \ ,
(a,p) a(?)

Proposition 2.2. For each initial datum (qo, po, ) € Znwmr there exists a unique global solution
(q(t),p(t),a(t,")) € €(R, R & L*(R3,C?)) of (N-M*). The map

@lr(90, Po- o) = (a(t), p(1), alt,-))
defines the Hamiltonian flow of the Newton-Maxwell equation.
3. YUKAWA INTERACTION MODEL

In this section we consider the quantum non- relativistic Yukawa field theory and the Schrédinger-
Klein-Gordon classical system.
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3.1. Reduced Yukawa Hamiltonian. The formal Hamiltonian of the reduced Yukawa model
is understood as a non-relativistic boson field interacting with a meson field according to an
Yukawa type interaction given by

Hyw = / a*(z) (—Ax>ﬂ(m)dm+ /}R & (hw(k)a(k)dk

. . | | (3.1)
L / () (@ (R)e ™™ + a(R)e™ ) ix)dd
(2m)2 /RS 2w(k)

where w(k) = VA2 +m?2, m > 0 is the meson mass and @, 4! are respectively the creation-
annihilation operators of the particle and meson fields satisfying the CCR’s:

[a(z), @ (y)] = hd(x —y);  [a(k),a"(K)] =ho(k k).

The number of non-relativistic particles is a conserved quantity for the formal Hamiltonian (3.1)
and hence one can decompose H vy as direct sum over fixed number of particles. In an influential
article E. Nelson constructed in 1964 a renormalization procedure allowing to define quantum
dynamics from the formal expression (3.1) by means of dressing transformations and cancellation
of the infinite self-energy, see [20]. In particular, there exists a bounded from below self-adjoint
operator Hy, implementing the Yukawa dynamics and related to the quadratic form (3.1), see [4]
for details. The dressing transformation involved in this renormalization procedure consists of a
unitary transformation

Uso = e T (3.2)
where Ty, is a self-adjoint operator given as
Ty = /}R (@) (d*(k)goo(k)e_ik‘z n @(k)goo(k)ei“))a(x)dx . (3.3)
and
Goo(k) = —— L1~ Xnlh) (3.4)

(2m)*/2 /2w (k) g57 +w(k) |

for some fixed value 0 < oq and a cutoff function xq,(-) = x(5;) with x € €°(R3) such that
X = 1 around the origin.

3.2. Schrédinger-Klein-Gordon system. The Schrédinger-Klein-Gordon (S-KG) equation with
Yukawa coupling is a well studied system of non-linear PDEs, see e.g. [12, 13], given as:

. A
10w = —mu + Au

(O +mi)A = ~[ul”

where mg, M > 0 are positive masses. Introducing the complex fields (@, «) according to the
relations

; (3.5)

(a(k)e™™** + a(k)e™ ) dk (3.6)

A(r) = L

1
N (271’)% R3 \/QW(k)

Alz) = ——2 /]Rs VER (a(k)e® — a(k)e ™) dk (3.7)

(2m)3

one can reformulate the S-KG equation (3.5) with these complex fields (@, «) instead of the
vector potentials (A, A) as for the Newton-Maxwell equation. In particular, the S-KG equation
is a Hamiltonian system with the following energy functional:

_ _ A 1 1 — —ik-x ik-x 2
Here(u,a) = <u,< 2M)u>L2+<a,wa>Lz+(2ﬂ)3/2 o /2 <a(k)e +a(k)e )|u(w)| dxdk .
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And hence the equation of motion takes the form:

, A
10U = —onrt + Au

10 = wor + \/%]:(|u|2) '

Moreover, it is well known that such system is well posed on its energy space, see [4] for more
details.

(S-KG)

Proposition 3.1. For any initial condition (ug, ag) € Z(V—A) & P(y/w) there exists a unique
global solution (u,a) € € (R, Z2(vV—-A)®Z(\/w)) of the Schridinger-Klein-Gordon system (S-KG)
satisfying (uo, ap) = (u(0), a(0)). Moreover, the map

Py (ug, a0) € 2(V-A) & 2(Vw) — (u,a) € (R, 2(V-A) & 2(Vw)) .
defines a global flow of the (S-KG) system.

4. MAIN RESULTS

The three results below reflect the Bohr’s correspondence principle in electrodynamics and
Yukawa theory.

4.1. First contribution. Recall that the space Q is given in (2.1) and the scaled number oper-
ator N is defined similarly as in (1.10). The following formal statement will appear in [5].

Theorem 4.1 (Dynamical Pauli-Fierz model). Assume (A0’) and let (yn,)
normalized vectors on the Hilbert space Q satisfying :

he(0,1) be a family of

~2
301 > 0.Vh € (0,1), ||(% + Hy) ynl| o < C1, (A1)
3Cy > 0,Yh € (0,1),  (¢n, (@ + N*)hn)o < Co, (A2)

and admitting a single Wigner measure p. Then the evolved quantum states
on(t) = K FPF ) (| ent e
has a unique Wigner measure given by:
Ht = ((I)g-LNM>#/~L»
with <I>§_[NM 1s the flow of the Newton-Mazwell equation.

4.2. Second contribution. The relationship between the Yukawa Hamiltonian H vu and the
classical (S-KG) system is altered by the renormalization procedure and it is not obvious even
formally how these quantum and classical theories are still related. Nevertheless, we are able
in [4] to prove the following Bohr’s correspondence principle. Recall that the operators N, H,
defined on the Fock space I's(L?(R?)) are given in (1.10)-(1.11). We denote by L2(R®") the space
of symmetric square integrable functions.

Theorem 4.2 (Dynamical Yukawa theory). Let (hn)neny be a sequence such that hy, € (0,1),
lim A, = 0 and (nhy)nen is bounded. Let (0n)nen be a family of density matrices on L2(R3") ®
) (LQ(R3)) satisfying:
3C >0, VneN, Trlon (N4 UsHoUs) < C.
Then:
(i) M(0n,n € N) # 0.
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(ii) For anyt € R,
M(e_iﬁ Hyy On eiﬁﬁw,n € N) = {(fogKG)#,u, p € M(gn,n € N)} . (4.1)
Furthermore, suppose that M(gn, n e N) = {u} then for any € € L?> ® L? and any t € R,
i [ g AW = [ gt

L2®L2
where W () is the Weyl operator rescaled with hy, similarly as in (1.9).

4.3. Third contribution. In the case where an ultraviolet cutoff and a particle confinement
is imposed in the Yukawa interaction model of Section 3, we are able to prove a further result
concerning the convergence of the ground state energy towards the infimum of the Schrodinger-
Klein-Gordon energy functional when A — 0. Consider for instance a cutoff function y € €°(R3)
such that x = 1 in a neighborhood of the origin. Then the corresponding Schrodinger-Klein-
Gordon equation with ultraviolet cutoff takes the form:

0 = —Au+ Vu+ Ayu

—

i0rr = wa + L(ﬂu)

V2w
with w(k) = Vk? + m?, m > 0, and the real field A, given by:
1 x(k)

2m)% Jre \/2w(k)
Here V is a confining potential satisfying

VelLl (RERT), lim V(z)=+oo. (A3)

|z| =00

Ay(z) = (a(k)e™ ™ + a(k)e™™)dk .

Using the canonical quantization explained in Section 1, one can define the ultraviolet-cutoff
quantum Nelson-Yukawa Hamiltonian:

Ay = Hska, (4, 6) = / @ (@) (~ 204V (2) ) alx)do + / &* (k)w (k)ak) dk
3 3
1 T x(k) ik ) ik (4.2)
a2 (d*(k)e_l T 4 (k) ‘l’)«a(w)dwdk,
(27)3 Jro V2w (k)
related to the classical energy of Schrodinger-Klein-Gordon equation with cutoff Yukawa type
interaction,

e (1) = /

R3

/]RG ﬂ(x)%(d(k>e—ik.z n Oz(k?)eik'x)u(a:)dxdk_

a(z)( —Ag+V(x) Ju(x)dx + a(k)w(k)a(k)dk
< ) /]R?’ (4.3)

(2m)>

The number of particle is conserved and taking (H NY)|L2(r3n) one retrieves the Nelson Hamil-
tonian. In particular, it is known that such expression defines a bounded from below self-adjoint
operator. In this framework the following result is proved in [3].

Theorem 4.3 (Ground state energy limit). Assume that m > 0, x € €§°(R?) and V satisfying
(A3). Then the ground state energy of the Nelson-Yukawa Hamiltonian Hyy has the following
limit, for any \ > 0,

lim inf o ((E[NY)|L§ (R3")®FS(L2)) = inf HSKGX (U, Oé) s (44)

h—0,nh=\2 HuHL2(JR3):>‘
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where the infimum on the right hand side is taken over allu € (V—A+V) and o € 2(\/w)

with the constraint ||ul[r2rs)y = A
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