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Abstract

We propose an (a, g)-analogue of the Poisson operator on the Fock space of Bozejko-
Ejsmont-Hasebe [6] and discuss a probability law of the operator. We show that the prob-
ability law is expressed by the g-Meixner distribution. Our results contain not only sym-
metric distributions as in [6], but also non-symmetric ones such as free Poisson, ¢ and ¢*-
deformations of Poisson, Pascal, Gamma, and Meixner distributions. This is the summary
of the paper [4].

1 Introduction

A deformation of the full Fock space with two parameters «, ¢ € (—1, 1), namely, the («, ¢)-Fock
space (or the Fock space of type B) F, () over a complex Hilbert space ¢ is considered
by Bozejko-Ejsmont-Hasebe [6]. The (0, ¢)-Fock space is the g-Fock space in the sense of [7][8].
Their starting point is to replace the Coxeter group of type A, that is, symmetric group G,
for the g-Fock space by the Coxeter group of type B, B(n) := Z§ x &, to construct F, ()
equipped with the («.¢)-inner product (-,)q,q. This replacement allows us to define, for f € 2,
the (a, g)-creation Blyq( f) and annihilation B, 4(f) operators acting on Fq 4(#) and leads us
to the problem finding a probability distribution v, 4 on R of the (¢, ¢)-Gaussian operator (the
Gaussian operator of type B) with respect to the vacuum state.

We propose an (a, g)-analogue of the Poisson operator on F, 4(.#) and discuss a probability
law of this operator. We remark that the Poisson operator of type B by Ejsmont [11] is essentially
different from ours if & # 0. In Section 3, we introduce a weighted (—q, ¢*)-Poisson operator
Y _, 2 after relationships between g-Meixner operator X, of [17] and our («, ¢*)-Poisson operator

are explained. We show in our main Theorem 3.1 that the probability law of Y_, 2 is equal to

—q,9

that of the scaled Meixner operator Y, = 1X—+"q with respect to appropriate vacuum states. As a
result, one can treat not only symmetric distributions as in [6], but also non-symmetric ones such
as free Poisson, ¢ and ¢?-deformations of Poisson, Pascal, Gamma, and Meixner distribution.

Consult our paper [4] in detail.

2 («,q)-operators and their distributions

2.1 g¢-analogue of the Meixner class of orthogonal polynomials

Let [n], denote the g-number given by [n], := 1+ ¢+ ---¢"" ! for n > 1. For given con-
stants ¢, K1, k2,7,0 with 0 < ¢ < 1, kg > 0, 6 > 0, let m, denote the probability measure



w(q; K1, k2,7,0) on R such that the sequence of monic polynomials {ng) ()} given by the re-
currence relation,

{ QW (@) =1, QW (@)=1— s,

2.
2Q7(@) = Q) (0) + (ra+an— 1)) QY (@) + (k1 + 2l Q@) mz1. Y

is orthogonal with respect to the L?(m,)-inner product. We shall refer the measure m, as
the g-Meixner distribution. The existence of probability measure my is guaranteed by Favard’s
theorem, for example, in [10]{12]. It is known [10] that the classical Meixner class of orthogonal
polynomials and distributions (¢ = 1) can be classified into five types by parameters,

_ " g
VE2 K2
D := 6% — 4r.

A g-analogue of the classical case is discussed in [2] and characterized as well as ¢ = 1 case
by the same parameters [9][16]. See also [1][5][15] for the free case ¢ = 0. More precisely, the
g-Meixner distribution is classified into five types as follows:

(i) ¢-Gaussian: 7 =0, 6 = 0.
(ii) g-Poisson: 7 =0, 6 # 0.
(iii) ¢-Pascal: 7 >0, D > 0.
(iv) ¢-Gamma: 7 >0, D =0.
(v) ¢-Meixner : D < 0.

Remark 2.1. For a,q € (—1,1), let v,,4 be the orthogonalizing probability measure of the se-
quence of monic polynomials {P;"?(z)} defined by the recurrence relation,

{ PY(z) =1, PM(x) = x,

ePR(x) = PI%(2) + (1+ ag" [l PR%(2), n> 1.

(2.2)

The measure v,  is symmetric and its explicit expression can be found in [3][6][13]. Since the
equality 1+aq" ™! = 1+a—a(l—q)[n—1], holds, { P, (x)} for o € (—1,0] can be considered as
a special case of {Q%q) (z)} in the sense of Definition 2.1. Hence the measure v, 4 for {P;"%(z)}
coincides with p(¢; 0,1+ «,0,—a(1 — q)) for a € (—1,0].

2.2 (a,q)-Poisson operator on F, ()

To make our point clearer, we put basic facts on the (a, g)-creation B(E,q and annihilation B, 4
operators acting on F, 4(7¢). One can see By, = (B:;,q)* with respect to the (a,q)-inner
product (-,-)q,q For those who are not familiar with the (a, ¢)-deformation, refer Appendix A
and also [6] written in detail.

Let us consider a self-adjoint operator P 4(f) for f € 7 defined by the form,

Pog(f) = B(lq(f) + Bag(f) + c1Ng(f) + 21, ¢c1 2 0,c2 €R

where N, is the g-number operator having #*" as the eigenspace with eigenvalue [n],. More-
over, we find the probability distribution of this operator with respect to the vacuum state
(€, Q)q,q. We call Py 4(f) the (o, ¢)-Poisson operator (the Poisson operator of type B). In the
case ¢; = 0, Py 4(f) is denoted simply by Gq4(f), called the (a,q)-Gaussian operator (the
Gaussian operator of type B).



Remark 2.2. (1) It is easy to see that the operators Bqu and By, are the same as the g-creation
operator bj] and g-annihilation operator b, on the g-Fock space Fy () := Fo 4(H), respectively.
That is, b, = (bj])* with respect to the inner product (-,-)q = (-,)o,q.- (see [8]). In [14], the
g-Poisson operator (the Poisson operator of type A) is examined as the sum of bz, b, and bzbq and
its distribution is identified with the g-Poisson distribution with 6 = 0 (7 = 0) of the Meixner’s
classification.

(2) In [11], Ejsmont introduced the Poisson operator of type B, but his operator is essentially
different from ours if a # 0.

Definition 2.3. For s € R, we define the translation T of a probability measure p by Tspu(-) =
(- —s). For A € R, X\ # 0, we define the dilation Dy of p by Dap(-) = p(-/A).

Theorem 2.4. Suppose o,q € (=1,1) and f € F with ||f|| = 1. Let paq¢ be the probability
distribution of Pqq4(f) with respect to the vacuum state (2, -Q)q 4.

(1) If g € (—1,1) and —1 < a(f, f) <0, then poq s is
/’L(qa C2, 1+ a<f77>7cl7 _a(l - q)<f77>)

(2) If c1 =0, g€ (—=1,1) and =1 < o(f, f) <1, then pagq, ¢ is equal to T02va<f3>7q, where it is
the probability distribution of Gaq(f) — c21.
2.3 ¢-Meixner operator on F, ()

Let us recall the double g-creation and annihilation operators, (bz)2 and (b,)? respectively, acting
on the g-Fock space Fy () := Fo,q(F) for f € A, defined by

(b))? fo3n = p20ee), n >0,
(bg)? [ = [2n], [2n — 1], f&2D n>1, (2.3)
bib, f22" = [2n], f¥2, n>1.

Yoshida [16] considered a self-adjoint operator X,(c3,cq) on F4(F€) given by
Xq(C3, C4) = (b:;)Q + (bq)2 + Cgb:;bq + C41, C3 Z 0, Cy S R,

and the probability distribution of this operator denoted by px, with respect to the vacuum
state (€2,-Q),. In this paper, X, is called the g-Meixner operator acting on F,(.5¢).

It is our main concern in this section to clarify the relationship between probability distri-
butions of X, and P, 4 in a sense. Let us first recall the following Theorem.

Theorem 2.5. The probability distribution i, of the operator X,(cs,c4) with respect to the
vacuum state (§2,-Q), is given as follows:
(1) If c3 > 0, then
pg = (@75 0,1+ g e3(1 4 q),q(1+ 9)°),
for g€ [0,1).

(2) If c3 =0, then px, = Te,v_y 2 for g€ (=1,1).

—q,9
Proof. Due to the equality,

1
1+ ag*®=1 = g —a(l—q)2n—1],)[2
(1 ag* D) nle = s (0 g — (1 —q)f2n — 1]g) (20l
o = —¢q implies
[2n = 1]g[2n]g = (1 + ¢+ a(1 + @)*[n = 1g2) [n] 2. (2.4)
Due to this identity, we get our assertion. O



3 Relationship between (a, ¢*)-Poisson and ¢-Meixner operators

3.1 The case a = —¢q

To see relationships between the operator X, and with (—g, ¢?)-operator, we shall define a scaled
operator Y, of X, for 0 <¢g <1,

1
Y, =—X 3.1
q 1 + q q> ( )
and a weighted Poisson type operator Y_, ;2 defined by
1 1+g¢
Yo = {BT_M2 T B tal+aNe + 021} : (3.2)

We remark here that if ¢; = c3 = 0, the condition on ¢ can be relaxed to ¢ € (—1,1).

Since Y_, 2 is not self-adjoint with respect to (-,-)_, ,2 due to the second term in RHS of
(3.2), which is a counterpart of (b;)? in (3.1), we need to modify (o, q)-creation and annihilation
operators by adding a weight 5 > 0 as follows:

Let B}; aq(f) be the B-weighted («, g)-creation defined as the («, g)-creation operator Biy,q( 1)

)

and Bg q.4(f) be the g-weighted (a, ¢)-annihilation operator given by
Bﬁva,Q(f) = ﬁBa,q(f)y 8> 0.

The above two [B-weighted operators are adjoint each other with respect to the p-weighted
(a, ¢)-inner product,

(19 ® frn, 91 QD gn)g,ag = OmmB (1R R frn, 91 @ R gn)ag fr,gr € .

1+q

By setting 5 = T the operator Y_, ;2 can be expressed as

1
Yoo =1, {Bl_yo + Boqur + (14 N + 21}
and hence Y_, ;> is the self-adjoint operator with respect to the inner product (-,-)g _, s2-
Then we can clarify the relationship between probability distributions of Y, and Y_, ;2 with

respect to the vacuum state.

Theorem 3.1. Suppose c1 = c3 and ca2 = c4. Then the probability law of Y, with respect
to (2,04 is equal to that of Y_, . with respect to (Q,-Q)g _, 2 with B = %. In fact, the
probability distribution py of these operators is given as follows:

(1) If 1 > 0, then py is

C2 1 1
Dapix, = 1 | 4% — =
aMXq M(qal_i_q)l_'_q)cl)q)) a

for g€ [0,1).
(2) If c1 =0, then py is Dapix, = DaTe,v g2 for q € (—1,1).
Moreover, the classification parameters  and 7 under ¢; = c3 for the Meixner class are given
by
0=c1v/1+g,
T=q(l4+q) >0, (3.3)
D= (1+q)(cf —4q).

Therefore, we get



Proposition 3.2. (1) If ¢ =0 (1 =0) and ¢; = ¢3 = 0 (0 = 0), then px, = Te,0,0 and
Dqjpix, = DoTey10,0 are the free Gaussian.

(2) If g=0 (1 =0) and c; = c3 #0 (0 #0), then ux, and Dqpx, are the free Poisson.
(3)If0<q<1(r>0)andci =c3>2./q (D >0), then px, and Dyjix, are the q*-Pascal.
(4) If0 <q<1(r>0) and ¢; = c3 = 2,/q (D = 0), then jix, and Doy, are the ¢*-Gamma.
(5)If0 < q<1(r>0)and0 # c; = c3 < 2,/q (D <0), then px, and Dy, are the
q%-Meizner.

We have shown by introducing the (o, ¢?)-Poisson and the g-Meixner operators that non-
symmetric probability distributions such as (2)(3)(4)(5) in Proposition 3.2 can be treated within
the framework of the Fock space of type B. In [6], non-symmetric cases are not treated.

3.2 The case a =g

Due to Proposition 3.2, X, and Y_,,
particular, the Y, ;-operator given by

> do not provide the ¢>-Gaussian and ¢?-Poisson laws. In

1
Y,,=aP,,, a=—
aq a9 1+¢
has these probability laws for ¢ € (—1,1). It is the self-adjoint operator with respect to the
inner product (-,-)144042- It is easy to see that if ¢; = 0, then Y4 = a(Ggq + c21). Hence we
have

Proposition 3.3. For q € (—1,1), the probability law of Y44 with respect to (Q,-Q)14,0 42 15
as follows;
(1) c1 = 0 = the ¢*-Gaussian, DoT,,vq g2

. C9 1
2) ¢1 > 0 = the ¢*-Poisson, 2, ,—,c1,0 .
(2) a1 q u(q 1+q1+q1)
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A Appendix

This appendix is referred from [4]. Let B(n) be the set of bijections o of the 2n points
{+1,£2,--- ,tn} with o(—k) = —o (k). Equipped with the composition operation as a product,
B(n) becomes what is called a Coxeter group of type B. It is generated by m := (1,—1) and
mi:= (i,i+ 1), 1 <i<n—1, which satisfy the generalized braid relations

7TZ-2:€, 0<i<n—1,
(7T07Tn_1)4 = (7rﬂri+1)3 =€, 1 S ) S n — 1, (Al)
(7Ti7rj)2:e7 ’Z—]‘ZQ,OSZ,]STL—l

An element o € B(n) expresses an irreducible form,

0 = Ty =" " Ty, Ofil,...,ikfn—l,



and in this case

¢1(0) := the number of 7 in o,

ly(0) := the number of m;, 1 <i<n—1,ino

are well defined.

Let ¢ be a complex Hilbert space equipped with the inner product (-,-) and norm || - ||,
where the inner product is linear on the right and conjugate linear on the left. For a given
self-adjoint involution f + f for f € J#, an action of B(n) on s#%" is defined by

7r0(f1®®fn):f1®f2®®?na nZ]-a
Ti(fi® Q@ f) =10 fi1@fin®fi®fira2®- @ fn, n>2 1<i<n—1

Throughout this paper, we assume the involution f of f € A is defined in such a way that
(f, ) € R holds and (f, f) = 0 is equivalent to f = 0.
Let Fgn () denote the algebraic full Fock space over 7,

Fin () == CQ & P 2%,

n=1

where Q denotes the vacuum vector. We note that elements of Fg, (%) are expressed as finite
linear combinations of the elementary vectors f1 ®@ -+ ® f, € %", We equip Fg, () with the
inner product

n

<f1 ®"'®fmagl®"'®gn>070 = 5m,nH <fkygk>7 fkagk S
k=1

For o, q € (—1,1), define the symmetrization operator of type B on J#®" as

pm) — Z o102 >

a7q
g€B(n)
P(E:L]) = Z q52(0)0.7 n Z 17
geG,

PO = Lyeo, Py = Lyyen,

where we put 0° = 1 and #®° = CQ by convention and

o)

Pag=EP P

n=0
be the symmetrization operator of type B on Fg, (). Since Po(fq) is known to be strictly
positive,

(1@ @ frm, 1@ Qgn)ag = (/1R ® fin,Paglg1 ® @ gn))oo

becomes an inner product and (-,-)qq is called the («,q)-inner product with the convention
0°=1land g =7r k=1,2,...,n.



Definition A.1. (1) For «,q € (—1,1), the (algebraic) full Fock space Fg,(7) with respect to
(-,)a,q 1s called the (o, g)-Fock space (the Fock space of type B) denoted by F, (). In this
paper, we do not take completion. In particular, o 4(.7) is nothing but the g-Fock space (the
Fock space of type A) F, () equipped with the g-inner product (:,-)4 := (-, )0, of Bozejko-
Speicher [8].

(2) Let B&q( f) be defined as the usual left creation operator,

Bl (He=f,
Blz,q(f)(fl(g)"'@fn):f®f1®"'®fn, n>1

and B, 4(f) be its adjoint with respect to (-,-)a.q, that is, Bag = (Bhg)*. Bh, and By, are
called the the (o, q)-creation and («, ¢)-annihilation operators, respectively.

The following proposition is a direct consequence of the definition.

Proposition A.2. (1) The (o, q)-annihilation operator B, 4 acts on the elementary vectors as
follows:

a(N)=0, Bag(f)fr=(f f1)
g (i@ f)=L+R

(0%

B
B
where

n

L=qu‘1<f,fk>f1®---®1v‘k®---®fn,

k=1

n _ v
R= aqnflz ¢, o) 1® - ® fr_ o1y @+ @ [,
k=1

Y%
for n > 2 where fi, means that fi, should be deleted from tensor product.
(2) The («, q)-creation and the («, q)-annihilation operators satisfy the commutation relation,

Ba,Q(f)Bgz,q(g) - qB(E,q(g)Ba,CI(f) = <f7 g>I + a<f7§>q2N7 fag S/

The readers can refer to [6] for details.

Corollary A.3. (1) The g-annihilation operator by(x) acts on the elementary vectors as follows:
bq(f)Q:()’ bq(f)fl - <fafl>Q)
k1 g
b(F) (i@ f)=Y " ) h® @@ ®fa n>2,

k=1

v
where fr means that fi should be deleted from tensor product.
(2) The q-creation and the q-annihilation operators satisfy the q-commutation relation (q-CCR)

ba()V(9) — qbh(9)be(f) = (f,9)1  f.g€ .
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