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A ring R is said to be (right) primtive if it contains a faithful irreducible
(right) R-module. In order to show the primitivity of a group ring KG, Alexan-
der and Nishinaka develop the following useful Property (*) for the group G [1].

(*) For each subset M of G consisting of a finite number of elements
not equal to 1, and for any positive integer m > 2, there exist
distinct a, b, c € G so that if (z7 'g1z1) (x5 ' gowa) - - - (27, gmTm) =
1, where g; € M and z; € {a,b,c} for all i = 1,...,m, then
x; = x;41 for some 1.

Equipped with Property (*), Alexander and Nishinaka obtain the following:

Theorem 1 ([1, Theorem 1.1]). Let G be a group which has a non-Abelian free
subgroup whose cardinality is the same as that of G, and suppose that G satisfies
Property (*). Then, if R is a domain with |R| < |G|, the group ring RG of G
over R is primitive. In particular, the group algebra KG is primitive for any

field K .

As seen in [1], Theorem 1 immediately implies the primitivity of group rings
for a large class of groups, generalizing many classical results and obtaining
several new ones. The present result, published in [9], shows that Theorem
1 also applies to the non-elementary torsion-free hyperbolic groups. Thus the
class of groups satisfying Property (*) is indeed quite large and encompasses
“almost all” groups in a particular statistical sense [7].

Let G be a group with finite generating set X. Recall that the Cayley graph
I'x(G) of G with respect to X is an X-digraph with vertex set G and an -
labelled edge directed from g to gz for all g € G and x € X. We may promote
I'x(G) to a geodesic metric space by assigning each edge a length of one.

When there exists 6 > 0 such that each side of a geodesic triangle in I'x (G) is
contained in the §-neighborhood of the remaining two sides, we say that I'x (G)
has d-thin triangles. This thin triangle property is independent of the choice of

*A detailed version of this paper appears in Journal of Algebra 493 (2018) [9].



finite generating set, though § may vary. When I'x (G) has d-thin triangles for
some finite generating set X and 6 > 0, we say G is hyperbolic. A hyperbolic
group is non-elementary if it is not virtually cyclic.

Hyperbolic groups enjoy a close relationship between their algebraic and
geometric properties; see, for instance, [2, 4, 5]. For our purposes, we require the
so called “big powers property” of torsion-free hyperbolic groups. The version
stated here follows immediately from a more general version for certain relatively
hyperbolic groups given in [6].

Theorem 2 (The big powers property [6]). Let G be a torsion-free hyperbolic
group. Let u € G be nontrivial and not a proper power. Let gi,...,gr be
elements of G which do not commute with u. Then there exists N > 0 such that
if [ni| > N fori=0,...,k then

ugrutge - ut T gputt #£ 1.

The big powers property allows one to programmatically generate large sets
of nontrivial elements of G, and has seen useful application towards residual
properties, logic, and algebraic geometry [3, 8, 6].

Proposition 3. If G is a non-elementary torsion-free hyperbolic group, then G
satisfies Property (*).

Proof. Let M be a finite subset of G not containing the identity. A classical
result due to Gromov asserts that the subgroup generated by sufficiently high
powers of elements of M must be free. Since nontrivial elements of a non-
elementary torsion free hyperbolic group have maximal infinite cyclic centraliz-
ers, one can therefore find an element u € G which generates its own centralizer
and commutes with no g € M.

Let m > 2 be an integer and consider a finite sequence g1, . . ., g, of elements
from M. Since u commutes with none of the g; and generates its own centralizer,
the big powers property gives N(gi,...,gm) > 0 such that

no

U GIUt gy e G u T gt # 1
whenever |n;| > N for all i =0,...,m.
Since M is a finite set, there are finitely many m-tuples (gi,...,gm) of

elements from M. Therefore, let N > max{N(g1,-.-.9m) | 91,---,9m € M}.
We now define a = u”,b = u?V, and ¢ = u*V. Since G is torsion-free, these
elements are distinct. Consider a product

w = (27 121) (23 gow2) (7 gmm)
where x1,. .., 2, € {u,u?N w3V}, We then have
Nn

w=u"gu" gy Gmou" " gmu”",

where u™ = $1_1,u”’" = Ty, u" = xw;ll and n; € {0,£N,+2N} for ¢ =
1,...,m — 1. Note that by choice of z; and x,,, we have ng # 0 and n,, # 0.



By the big powers property and choice of N, if n; # 0 for all i = 0,...,m,
then w # 1. Therefore, if w = 1, then some n; = 0. Since we cannot have
ng =0 or ny41 = 0, we have n; = 0 for some 7 € {1,...,m — 1}, in which case
we must have 1 = u™ = :r,-a:;rl17 and so x; = Tj41. Od

We immediately obtain the following main result as a corollary to Theorem
1.

Theorem 4. If G is a non-elementary torsion-free hyperbolic group, then for
any countable domain R, the group ring RG of G over R is primitive. In
particular, the group ring KG is primitive for any field K.
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