# On $\tilde{D}$ -separable polynomials in skew polynomial rings of derivation type

#### SATOSHI YAMANAKA

Department of Integrated Science and Technology National Institute of Technology, Tsuyama College yamanaka@tsuyama.kosen-ac.jp

#### Abstract

The notion of  $(\tilde{\rho}, \tilde{D})$ -separable polynomials in skew polynomial rings was introduced by S. Ikehata, and X. Lou gave a characterization of  $\tilde{\rho}$ -separable polynomials in skew polynomial rings of automorphism type. In this paper, we shall give a new characterization of  $\tilde{D}$ -separable polynomials in skew polynomial rings of derivation type.

#### 1 Introduction and Preliminaries

Let A/B be a ring extension with common identity. A/B is said to be *separable* if the A-A-homomorphism of  $A \otimes_B A$  onto A defined by  $z \otimes w \mapsto zw$   $(z, w \in A)$  splits. It is well known that A/B is separable if and only if there exists  $\sum_i z_i \otimes w_i \in (A \otimes_B A)^A$  such that  $\sum_i z_i w_i = 1$ , where  $(A \otimes_B A)^A = \{\theta \in A \otimes_B A \mid u\theta = \theta u \ (\forall u \in A)\}$ .

Throughout this paper, let B be an associative ring with identity element 1, and D a derivation of B. By B[X,D] we denote the skew polynomial ring in which the multiplication is given by  $\alpha X = X\alpha + D(\alpha)$  for any  $\alpha \in B$ . Moreover, by  $B[X;D]_{(0)}$ , we denote the set of all monic polynomials f in B[X;D] such that fB[X;D] = B[X;D]f. From now on, let  $f = \sum_{i=0}^{m} X^{i}a_{i} \in B[X;D]_{(0)}$  ( $m \geq 1, a_{m} = 1$ ), A = B[X;D]/fB[X;D], and x = X + fB[X;D]. As was shown in [3, Lemma 1.6], we see that f is in  $B[X;D]_{(0)}$  iff  $a_{i} \in B^{D}$  ( $0 \leq i \leq m-1$ ) and

$$a_i \alpha = \sum_{j=i}^m {j \choose i} D^{j-i}(\alpha) a_j \quad (\forall \alpha \in B, 0 \le i \le m-1).$$
 (1.1)

Since  $f \in B^D[X]$ , there is a derivation  $\tilde{D}$  of A which is naturally induced by D (that is,  $\tilde{D}$  is defined by  $\tilde{D}\left(\sum_{j=0}^{m-1} x^j c_j\right) = \sum_{j=0}^{m-1} x^j D(c_j)$   $(c_j \in B)$ ). Now we consider the following A-A-homomorphisms:

$$\begin{cases} \mu: A \otimes_B A \to A, & \mu(z \otimes w) = zw \\ \xi: A \otimes_B A \to A \otimes_B A, & \xi(z \otimes w) = \tilde{D}(z) \otimes \tilde{\rho}(w) + z \otimes \tilde{D}(w) \end{cases} (z, w \in A)$$

We say that f is a separable polynomial in B[X; D] if A is a separable extension of B, namely, there exists an A-A-homomorphism  $\nu: A \to A \otimes_B A$  such that  $\mu\nu = 1_A$  (the identity map of A). Moreover, f is called a  $\tilde{D}$ -separable polynomial in B[X; D]

if there exists an A-A-homomorphism  $\nu: A \to A \otimes_B A$  such that  $\mu\nu = 1_A$  and  $\xi\nu = \nu\tilde{D}$ . The notion of  $\tilde{D}$ -separable polynomials was introduced by S. Ikehata (cf. [3]). By [7, Theorem 2.1] and [3, Theorem 2.1], the following lemma is already known.

**Lemma 1.1.** Let  $f = \sum_{i=0}^{m} X^i a_i$   $(m \ge 1, a_m = 1)$  be in  $B[X; D]_{(0)}$ . The following are equivalent.

- (1) f is  $\tilde{D}$ -separable in B[X; D].
- (2) f is separable in  $C(B^D)[X]$ , where  $C(B^D)$  is the center of  $B^D = \{b \in B \mid D(b) = 0\}$ .
- (3)  $\delta(f)$  is invertible in  $C(B^D)$ , where  $\delta(f)$  is the discriminant of f.

In this paper, we shall characterize  $\tilde{D}$ -separable polynomials in B[X;D]. In section 2, we define a D-matrix over B, and we shall mention briefly on it. In section 3, we shall give a new characterization of  $\tilde{D}$ -separable polynomial by making use of the trace map. Moreover, we shall show the "distance" between separability and  $\tilde{D}$ -separability.

## 2 D-matrix

In this section, let  $B^D = \{b \in B \mid D(b) = 0\}$ , and  $C(B^D)$  the center of  $B^D$ . For any  $b \in B$ ,  $I_b$  will represent the inner derivation effected by b (i.e.  $I_b(\alpha) = \alpha b - b\alpha$  for any  $\alpha \in B$ ). In [12], X. Lou defined the  $\rho$ -matrix, and he characterized  $\tilde{\rho}$ -separable polynomials in  $B[X; \rho]$  by making use of it. In constant, we shall define the D-matrix as follows:

- **Definition 2.1.** (1) An element b in B is called a D-element if  $I_b(B) \subset D(B)$  and  $B^D \subset \operatorname{Ker} I_b$ , where  $\operatorname{Ker} I_b$  is the kernel of  $I_b$ .
- (2) A matrix P over B is called a D-matrix if every entry of P is a D-element.

**Remark 1.** In Definition 2.1 (1), if a *D*-element *b* is in  $B^D$  then the condition  $B^D \subset \operatorname{Ker} I_b$  implies that  $b \in C(B^D)$ .

**Lemma 2.2.** Let b and c be D-elements in B.

- (1) b + c is also a D-element.
- (2) If either b or c is in  $B^D$ , then be is also a D-element.
- (3) If  $b \in B^D$  and b is invertible in B, then  $b^{-1}$  is also a D-element.

**Proof.** Let  $\alpha$  and  $\beta$  be arbitrary elements in B and  $B^D$ , respectively. Assume that b and c are D-elements. Then there exist  $b', c' \in B$  such that

$$I_b(\alpha) = \alpha b - b\alpha = D(b'), \quad I_c(\alpha) = \alpha c - c\alpha = D(c').$$
 (2.1)

Moreover, we see that  $\beta b = b\beta$  and  $\beta c = c\beta$ .

- (1) Since the equation (2.1), we have  $I_{b+c}(\alpha) = \alpha(b+c) (b+c)\alpha = (\alpha b b\alpha) + (\alpha c c\alpha) = D(b') + D(c') = D(b' + c')$ . Therefore  $I_{b+c}(B) \subset D(B)$ . It is obvious that  $\beta(b+c) (b+c)\beta = 0$ , and hence  $B^D \subset \operatorname{Ker} I_{b+c}$ .
- (2) Assume that b is in  $B^D$ . Note that bc = cb and  $I_b(\alpha c) = D(b'')$  for some  $b'' \in B$ . So it follows from the equation (2.1) that  $I_{bc}(\alpha) = \alpha bc bc\alpha = \alpha cb b\alpha c + b\alpha c bc\alpha = I_b(\alpha c) + bI_c(\alpha) = D(b'') + bD(c') = D(b'' + bc')$ . Thus  $I_{bc}(B) \subset D(B)$ . Clearly, we see that  $\beta bc bc\beta = 0$ . Therefore  $B^D \subset \text{Ker } I_{bc}$ .
- (3) Assume that  $b \in B^D$  and b is invertible. Since  $bb^{-1} = 1$  and  $b \in B^D$ , we obtain

$$0 = D(1) = D(bb^{-1}) = bD(b^{-1}).$$

This implies that  $b^{-1} \in B^D$ . Since the equation (2.1), we have  $b^{-1}\alpha - \alpha b^{-1} = b^{-1}D(b')b^{-1} = D(b^{-1}b'b^{-1})$ . Hence  $I_{b^{-1}}(B) \subset D(B)$ . In addition,  $\beta b = b\beta$  means that  $\beta b^{-1} = b^{-1}\beta$ . Thus  $B^D \subset \operatorname{Ker} I_{b^{-1}}$ .

**Lemma 2.3.** Let P be a D-matrix over  $B^D$ .

- (1) det(P) is a D-element in  $C(B^D)$ .
- (2) If P is an invertible matrix, then the inverse matrix of P is also a D-matrix.
- (3) Assume that  $P = P^T$  (the transpose of P). If P has a left (or right) inverse matrix which is a D-matrix, then det(P) is invertible in  $C(B^D)$ .

**Proof.** Let  $P = [p_{ij}]_{n \times n}$  be a D-matrix over  $B^D$  for some positive integer n. In particular, P is a matrix over  $C(B^D)$  by Remark 1.

- (1) It is obvious by Lemma 2.2 (1) (2).
- (2) Assume that P is an invertible matrix, and  $P^*$  be the cofactor matrix of P. It follow from Lemma 2.2 (1) (2) that every entry of  $P^*$  is a D-element (i.e.  $P^*$  is a D-matrix). By Lemma 2.2 (3) and the assertion (1), moreover,  $\det(P)^{-1}$  is also a D-element. Therefore  $P^{-1} = \det(P)^{-1}P^*$  is a D-matrix.
- (3) Assume that  $P = P^T$  and there exists a D-matrix  $Q = [q_{ij}]_{n \times n}$  such that QP = E (the identity matrix). Since  $q_{ij}$  is a D-element and  $p_{ij} \in B^D$ , we have  $q_{k\ell}p_{ij} = p_{ij}q_{k\ell}$   $(1 \le i, j, k, \ell \le n)$ . Then we see that QP = E iff  $\sum_{j=1}^n q_{ij}p_{jk} = \delta_{ik}$  (the Kronecker's delta) iff  $\sum_{j=1}^n p_{jk}q_{ij} = \delta_{ik}$  iff  $P^TQ^T = E$  iff  $PQ^T = E$ . Hence  $Q = Q^T$  is the inverse matrix of P. We put here  $D(Q) = [D(q_{ij})]_{n \times n}$ . Since  $p_{ij} \in B^D$ , we obtain

$$0 = D(\delta_{ik}) = D\left(\sum_{j=1}^{n} q_{ij}p_{jk}\right) = \sum_{j=1}^{n} D(q_{ij}p_{jk}) = \sum_{j=1}^{n} D(q_{ij})p_{jk}.$$

This implies that D(Q)P = O (the zero matrix), and hence D(Q) = O (i.e. Q is a matrix over  $B^D$ ). Therefore Q is a matrix over  $C(B^D)$  by Remark 1. Since P and Q are matrices over  $C(B^D)$  such that PQ = QP = E, we see that  $\det(P)$  is invertible in  $C(B^D)$ .

# 3 $\tilde{D}$ -separability in B[X;D]

The conventions and notations employed in the preceding section will be used in this section. We shall use the following conventions:

- $A^{\tilde{D}} = \{ z \in A \mid \tilde{D}(z) = 0 \}.$
- $C(A^{\tilde{D}})$  is the center of  $A^{\tilde{D}}$ .
- $\pi_i: A \to A$  is the projection map defined by

$$\pi_i \left( \sum_{j=0}^{m-1} x^j c_j \right) = c_i \ (c_i \in B, 0 \le i \le m-1).$$

•  $\tau: A \to B$  is the trace map defined by

$$\tau(z) = \sum_{i=0}^{m-1} \pi_i(x^i z) \quad (z \in A).$$

- $T_f = [\tau(x^i x^j)]_{m \times m}$ , where  $m = \deg f$  (i.e.  $T_f$  is a  $m \times m$  symmetric matrix whose (i+1,j+1) element is  $\tau(x^i x^j)$ ).
- $\delta(f) = \det(T_f)$  (the discriminant of f).

**Remark 2.** (1) Clearly,  $\pi_i$  (0  $\leq i \leq m-1$ ) and  $\tau$  are left  $C(B^D)$ - right B-homomorphisms.

(2) It is easy to see that

$$C(A^{\tilde{D}}) = \left\{ C(B^D)[X] + fB[X;D] \right\} / f[B[X;D] \cong C(B^D)[X] / fC(B^D)[X].$$

First we shall show the following

**Lemma 3.1.** (1) Every  $a_i$   $(0 \le i \le m-1)$  is a D-element in  $C(B^D)$ .

(2)  $T_f = [\tau(x^i x^j)]_{m \times m}$  is a *D*-matrix over  $C(B^D)$ .

**Proof.** (1) Since the equation (1.1), we have

$$a_i \alpha = \alpha a_i + \sum_{j=i+1}^m {j \choose i} D^{j-i}(\alpha) a_j$$
$$= \alpha a_i + D \left( \sum_{j=i+1}^m {j \choose i} D^{j-i-1}(\alpha) a_j \right).$$

This implies that  $I_{a_i}(B) \subset D(B)$  and  $B^D \subset \operatorname{Ker} I_{a_i}$   $(0 \le i \le m-1)$ . Hence every  $a_i$  is a D-element.

(2) It is easy to see that every  $\tau(x^ix^j)$   $(0 \le i, j \le m-1)$  is generated by  $a_k$   $(0 \le k \le m-1)$ . Then, by Lemma 2.2 and the assertion (1), every  $\tau(x^ix^j)$  is a D-element. Therefore  $T_f$  is a D-matrix.

So we shall show the following lemma which gives a new equivalent condition of  $\tilde{D}$ -separability.

Lemma 3.2. The following are equivalent.

- (1) f is  $\tilde{D}$ -separable in B[X;D].
- (2)  $T_f$  has a left (or right) inverse matrix which is a D-matrix.

**Proof.** (1)  $\Longrightarrow$  (2) Let f be  $\tilde{D}$ -separable in B[X;D]. So, by Lemma 1.1,  $\delta(f) = \det(T_f)$  is invertible in  $C(B^D)$ , and hence  $T_f$  has an inverse matrix  $T_f^{-1}$ . Noting that  $T_f$  is a D-matrix,  $T_f^{-1}$  is also a D-matrix by Lemma 2.3 (2).

(2)  $\Longrightarrow$  (1) Assume that  $T_f$  has a left inverse matrix which is a D-matrix. Then, by Lemma 2.3 (3),  $\delta(f) = \det(T_f)$  is invertible in  $C(B^D)$ . Thus f is  $\tilde{D}$ -separable by Lemma 1.1.

The following theorem at some extent shows the "distance" between separability and  $\tilde{D}$ -separability in B[X;D].

**Theorem 3.3.** The following are equivalent.

- (1) f is  $\tilde{D}$ -separable in B[X;D].
- (2) f is separable in B[X; D] with a separable set  $\{z_i, w_i\}$  of A/B such that  $\sum_i z_i \tau(w_i) = 1$ .

**Proof.** (1)  $\Longrightarrow$  (2) Let f be  $\tilde{D}$ -separable in B[X;D]. So, by Lemma 1.1, f is separable in  $C(B^D)[X]$ . As was shown in [1, chapter III, Theorem 2.1], there exists separable system  $\{z_i, w_i\}$  of  $C(A^{\tilde{D}})/C(B^D)$  such that  $\sum_i z_i \tau(w_i u) = u$  for any  $u \in C(A^{\tilde{D}})$ . So we can see that  $\{z_i, w_i\}$  is still a separable system of A/B, and  $\sum_i z_i \tau(w_i) = 1$ .

(2)  $\Longrightarrow$  (1) Assume that f is separable in B[X;D] with a separable set  $\{z_i,w_i\}$  of A/B such that  $\sum_i z_i \tau(w_i) = 1$ . We put here  $z_i = \sum_{j=0}^{m-1} x^j c_{ij}$  and  $w_i = \sum_{k=0}^{m-1} d_{ik} x^k$ . We obtain then

$$\sum_{i} z_{i} \otimes w_{i} = \sum_{i} \left( \sum_{j=0}^{m-1} x^{j} c_{ij} \otimes \sum_{k=0}^{m-1} d_{ik} x^{k} \right)$$
$$= \sum_{j=0}^{m-1} x^{j} \otimes \left( \sum_{k=0}^{m-1} \sum_{i} c_{ij} d_{ik} x^{k} \right).$$

We set  $e_{jk} = \sum_i c_{ij} d_{ik}$  and  $u_j = \sum_{k=0}^{m-1} e_{jk} x^k$ . Clearly,  $\{x^j, u_j\}$  is a still separable system of A/B such that  $\sum_{j=0}^{m-1} x^j \tau(u_j) = 1$ . Let  $\widehat{\tau}$  be a map from  $A \otimes_B A$  to A defined by  $\widehat{\tau}(r_1 \otimes r_2) = r_1 \tau(r_2)$   $(r_1, r_2 \in A)$ . So we have

$$x^{\ell} = x^{\ell} \sum_{j=0}^{m-1} x^{j} \tau(u_{j})$$

$$= \widehat{\tau} \left( x^{\ell} \sum_{j=0}^{m-1} x^{j} \otimes u_{j} \right)$$

$$= \widehat{\tau} \left( \sum_{j=0}^{m-1} x^{j} \otimes u_{j} x^{\ell} \right)$$

$$= \sum_{j=0}^{m-1} x^{j} \tau \left( \sum_{k=0}^{m-1} e_{jk} x^{k+\ell} \right)$$

$$= \sum_{j=0}^{m-1} x^{j} \left( \sum_{k=0}^{m-1} e_{jk} \tau(x^{k+\ell}) \right)$$

This implies that  $\sum_{k=0}^{m-1} e_{jk} \tau(x^{k+\ell}) = \delta_{j\ell}$ . By setting  $P = [e_{j+1,k+1}]_{m \times m}$ , we have  $PT_f = E$ . Noting that  $\alpha \sum_{j=0}^{m-1} x^j \otimes u_j = \sum_{j=0}^{m-1} x^j \otimes u_j \alpha$  for any  $\alpha \in B$ , we obtain  $\sum_{j=\ell}^{m-1} \binom{j}{\ell} D^{j-\ell}(\alpha) u_j = u_j \alpha$ . This implies that  $e_{jk}$  is a D-element, and hence P is a D-matrix. Therefore f is  $\tilde{D}$ -separable by Lemma 3.2.

### References

- [1] F.DeMeyer, Separable algebra over commutative rings, Lecture Notes in Mathematics, Vol.181, Springer-Verlag, Berlin-Heidelberg-New York.
- [2] K. Hirata and K. Sugano, On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan 18 (1966), 360–373.
- [3] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, *Math. J. Okayama Univ.*, **22** 1980, 115–129.

- [4] S. Ikehata, Azumaya algebras and skew polynomial rings, *Math*, *J. Okayama Univ.*, **23** 1981, 19–32.
- [5] S. Ikehata, A note on separable polynomials in skew polynomial rings of derivation type, *Math. J. Okayama Univ.*, **22** 1980, 59–60.
- [6] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, 31 1979, no. 2, 317–330.
- [7] T.Nagahara, On separable polynomials over a commutative rings II, Math. J. Okayama Univ., 15, (1972), 149–162.
- [8] T. Nagahara, A note on separable polynomials in skew polynomial rings of atutomorphism type, *Math. J. Okayama Univ.*, **22** 1980, 73–76.
- [9] K. Sugano, Separable extensions and Frobenius extensions, Osaka J. Math. 7 (1970), 29–40.
- [10] S. Yamanaka and S. Ikehata, An alternative proof of Miyasita's theorem in a skew polynomial rings, *Int. J. Algebra*, **21** 2012, 1011–1023
- [11] S.Yamanaka, An alternative proof of Miyasita's theorem in a skew polynomial rings II, Gulf J. Math., 5 (2017), 9–17.
- [12] X.Lou, On  $\tilde{\rho}$ -separability in skew polynomial rings, Port. Math., Vol.51, Frac.2 (1994), 235–241.

Advanced Science Course, Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College. 624-1 Numa, Tsuyama city, Okayama, 708-8509, Japan

E-mail address: yamanaka@tsuyama.kosen-ac.jp