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Vertex Algebras

o Quantum Symmetry from Vertex Algebras

Vertex Algebras

Origin of Vertex Algebras

The notion of a vertex algebra encodes an algebraic structure of

“qunatum observables” acting on a space of “qunatum states”

with respect to the operator product expansion®.

In the early days, such a structure appeared in the representation
theory of affine Lie algebras [Lepowsky-Wilson '79, Frenkel-Kac'80, ...].

After that, it has turned out that vertex algebras are ubiquitous in
@ 2d conformal field theory [Belavin—Polyakov—Zamolodchikov 84, .. .],
@ 3d topological quantum field theory [Witten'89, ...],
@ 4d superconformal field theory [Alday-Gaiotto-Tachikawa ‘10, ...],

and so on.

IThe notion of OPE firstly appeared in the work of K. G. Wilson ('69).



Vertex Algebras

Axioms of Vertex Algebras

Roughly speaking, a vertex algebra consists of

@ a vector space V over C,
@ a bilinear mapping (7) x (7): VxV —=V(z),
@ anon-zero element 1 in V

satisfying the following conditions: for A, B,C €V,
Q1 x A=Aand A x 1 = A mod V[z]z (unitality);
Q (AZ X B) x Cr A;< (B x C) (associativity);

©Q Ax(BxCO)=Bx (AxC0O) (locality).

Note that we refer to A(z) := A x (?) as a quantum observable.
z

Vertex Algebras

Analogy to Commutative Algebras

More precisely, the locality axiom? is given by
(21 — 22)"[A(21), B(22)] = 0 for sufficiently large n.

Standard categorical notions for vertex algebras (e.g., morphisms,
subquotients, simplicity, modules, ...) can be defined in a similar
way to those for unital associative commutative algebras.

For example, we have the following lemma:

Lemma 1.1 (Tensor Products)

The tensor product of finitely many vertex algebras over C carries
a natural vertex algebra structure.

2See, e.g., Kac's textbook ('98, AMS) for detail.



Vertex Algebras

Well-studied Building Blocks

The following two examples are building blocks in our discussion:
@ affine vertex algebras V*(g) («~ affine Lie algebras §);

@ lattice vertex algebras V7, («~ integral lattices L).

Loosely speaking, an appropriate representation category of V*(g)

(resp. V1) has an explicit description in terms of the corresponding
quantum enveloping algebra® Uy (g) (resp. the corresponding finite
abelian group Hom(L, Z)/L with some C*-valued 3-cocycle?).

3See, e.g., [Kazhdan—Lusztig '93,'94, Finkelberg '96].
4See, e.g., Etingof-Gelaki—Nikshych—Ostrik's textbook ('15, AMS).

Vertex Algebras

Constructions of New Vertex Algebras

More examples are obtained by the following constructions:

Definition 1.2 (Extensions and Cosets)

Let U — V' be an embedding of vertex algebras. Then
@ V is called a vertex algebra extension of U,

@ the commutant vertex subalgebra

Com(U,V) := {A € V‘ [A(21), B(22)] =0 for any B € U}

is called the coset vertex algebra of U in V.

As a special case, we call Z(V) := Com(V, V) the center of V.



Vertex Algebras

2d Chiral Conformal Symmetry

The Virasoro algebra is the universal central extension of the Lie
algebra of vector fields on S = {z = ¢2™V=19} which appears as
the chiral symmetry of 2d conformal field theory (CFT).

A vertex algebra V' with a conformal vector w, whose “modes”
1
21/ —1

generate the Virasoro algebra of some central charge, is referred to
as a vertex operator algebra (VOA).

L, =

%w(z)z““dz € End(V)

It is well-known that the Sugawara construction provides affine®
and lattice vertex algebras with their standard conformal vectors.

5We need to assume that the level ¢ is not equal to the critical level —h" .

Vertex Algebras

Axioms of Modules

A module of a VOA (V,w) consists of

@ a vector space M over C,

@ a bilinear mapping (7) 0 (7): Vx M — M(2)
satisfying the following conditions: for A, B € V and m € M,

Q1 om =m (unitality);

Q X B) omw A ° (B ° m) (associativity);

Q AZl(B:o2 m) ~ B ° (A ° m) (locality);

Q (L_.4 om = 2(A om) (flatness condition);

© L is locally finite with lower bounded eigenvalues on M.



Vertex Algebras

Fundamental Problem

Let (V,w) be a VOA and V-mod the C-linear abelian category of
V-modules of finite length, i.e., having finite composition series.

When V is Ca-cofinite, the number of inequivalent simple objects
in V-mod turns out to be finite [zZhu'96, Gaberdiel-Neitzke '03].

Adding mild conditions®, Y.-Z. Huang proved that V-mod carries a
braided monoidal category structure with respect to the fusion
product (?) X (?): V-mod x V-mod — V-mod [Huang 09, ...].

Problem 1.3 (Kazhdan—Lusztig Correspondence)

Confirm such (non-symmetric) braided monoidal categories to be
rigid and various conjectural connections to quantum supergroups.

5We further assume that V is N-graded by Lo and ker(Lg: V — V) = C1.

Vertex Algebras

Origin of Non-Symmetric Braiding

For distinct n-points p = (p1, ..., pn) on the projective line P*(C)
and an n-tuple M = (My,--- , M) of V-modules, one can define
the vector space of (genus-zero) n-point conformal blocks’ by

CB(P'(C),p, M) := (® Mi/(conformal constraints))*.
i=1

Then the following functor
V-mod — C-mod; M ~ CB(P'(C), (0,1, 00), (Ma, My, M*))

is represented by the fusion product M; X M, if it exists, and the
square o2 is the monodromy of four-point conformal blocks.

"They glue to form a 2-module on the n-point configuration space of P1(C).



Principal Case

o Duality in Principal W-algebras

Principal Case

W-algebras as Extensions

The smallest example of W-algebra is the Virasoro VOA W¥(sly).

The second smallest W-algebra W*(sl3) is originally introduced by
A. Zamolodchikov ('85) as a higher-spin extension of the Virasoro
VOA, which is no longer generated by an “elementary” Lie algebra.

General W-algebras are obtained as extensions of W(sl) and play
a fundamental role in the (conjectural) 2d chiral CFT/4d N = 2
SCFT correspondence [Beem et.al.'15,..].

We first review the most standard class, called the pricipal case.



Principal Case

Center of Enveloping Algebra

Let g=n_ & h & ny be a triangular decomposition of a simple Lie

algebra and x the normalized symmetric invariant form on g.

The center Z(g) of the enveloping algebra U(g) is isomorphic to
@ the commutant subalgebra Com (g, U(g)) by definition;

© the Weyl group-invariant subalgebra U(h)" of U(h) through
the Harish-Chandra homomorphism [Harish-Chandra '51];

© the opposite algebra of g-endomorphisms® on the Whittaker
module Ind} (x), where x(?) = x(f,?): ny — C is defined
by a principal nilpotent element f = fyrin € n_ [Kostant '78].

8By the Frobenius reciprocity, they correspond to Whittaker vectors.

Principal Case

Principal Affine W-algebras

Roughly speaking, the universal principal affine W-algebra is an
“affinization” of the center Z(g) at level £ € C, denoted by W¥(g).

Wh-algebras are NOT generated by affine Lie algebras in general!!

Modules of the principal W-algebra W*(g) are obtained by
@ coset construction [Goddard—Kent—Olive '85, . . .J;
o free field realization [Fateev—Lukyanov '88, Feigin—Frenkel '92, .. ];

© semi-infinite cohomology® [Feigin—Frenkel '90, .. .

9This case is also known as Becchi-Rouet-Stora—Tyutin (BRST) cohomology.



Principal Case

Free Field Realization

The free field realization of the principal affine W-algebra W¥(g)
is a vertex algebraic analog of the Harish-Chandra Homomorphism

T: Z(g) = U(h),
which is known as the Miura map
T: W(g) — V™ (h).
Here 74 stands for a certain symmetric invariant form on §.

The image of the Miura map coincides with the union of kernels of

rank(g) screening operators'®.

10These operators are a vertex algebraic analog of simple reflections.

Principal Case

Generators of Principal W-algebra

Let D ={d;|i=1,...,rank(g)} denote the multi-set of degrees
of homogeneous polynomial generators for U(h)"W = C[h*]".

It is known that the set D always contains 2 which corresponds to
the quadratic Casimir element Q) in Z(g).

The counterpart to  gives a conformal vector w in W(g).

Theorem 2.1 (e.g., Feigin—Frenkel '90)

The Virasoro Ly-operator induced by w defines an N-gradation
W(g) = W (8)a
d=0

and there exists a finite set of generators {J% € W’(g)q.} which
contains the conformal vector w = J? of W¥(g).




Principal Case

Langlands Dual Groups

Recall that connected complex reductive groups are determined by

their root data up to isomorphism®!.

Two connected complex reductive groups are said to be Langlands
dual to each other when their root data are dual to each other.

Let G be the simply-connected simple group associated to g and
G denote its Langlands dual group associated to g = Lie(G).

We note that G is the adjoint group of the simple Lie algebra §.

Example 2.2 (Duality Between Classical Groups)
We have SL,, = PSL,, Spiny, = SOs,/Z2, Sping, 11 = Spa,/Zs.

HSee, e.g., Springer's textbook ('98, Birkhiuser) for detial.

Principal Case

Feigin—Frenkel Duality

The next theorem is known as the Feigin—Frenkel duality:

Theorem 2.3 (Feigin—Frenkel '92, Aganagic—Frenkel-Okounkov '18)

For arbitrary (¢,¢) satisfying vV (¢ + hV)({ + hY) = 1, where 1" is
the lacing number of g, there exists a vertex algebra isomorphism
V7 (h) ~ V7¢(h) which restricts to W:(g) =~ W*(g).

Remark 2.4 (Local Geometric Langlands Correspondence)

By taking a suitable limit, we obtain natural isomorphism(s)

(2(v (@) =) W"(a) = W (3)

of Poisson vertex algebras and the enveloping algebra of the last is
naturally dual to the moduli space of G-opers on Spec(C((2))).




Principal Case

Beyond Principal Non-Super W-algebras

Naive Question (cf. Gaiotto-Rap&ak '19)
Can we generalize the Feigin—Frenkel duality to outside of principal
non-super W-algebras? Are there any relationships among

@ principal W-superalgebras,
@ non-principal W-algebras,

and relevant (super)geometric objects®?

?See, e.g., [Zeitlin "15] for the o0sp;|-Gaudin model and SPLa-superopers.

Today's Main Topic: Feigin-Semikhatov Duality

In 2004, B. Feigin and A. Semikhatov found a mysterious clue of a
possible super /non-principal duality which is recently proved by
Creutzig—Linshaw and Creutzig—Genra—Nakatsuka, independently.

Beyond Principal Case

e Beyond Principal W-algebras



Beyond Principal Case

Generalization to Non-Principal Case

Let f be a general nilpotent element in g and x(?) = x(f, 7).

The finite W-algebral? U(g, f) is the deformation quantization
of the Slodowy slice, which is a Poisson transversal at y in g*.

Informally speaking, the universal affine W-algebra W(g, f) is
an “affinization” of the finite W-algebra U(g, f) at level .

Now let’s go into a bit more detail of its definition for later use.

2Qriginally introduced by A. Premet ('02) and generalized by Gan—Ginzburg ('02).

Beyond Principal Case

Good Gradings for Lie Superalgebras

Let g = g5 & g7 be a complex simple Lie superalgebra equipped
with a suitably normalized supersymmetric invariant form .

Definition 3.1 (Kac—Roan—Wakimoto '03)
A 7,/27.-homogeneous %Z—gradation I':g= @jegz g; Is said to
be a good grading adapted to a nilpotent element f € gg if
@ the nilpotent element f lies in g_1,
Q ad(f) is injective for j > 1/2; surjective for j < 1/2.
A good grading is said to be even if it is a Z-gradation.

Example 3.2 (Principal Non-Super Case)

The principal Z-gradation Iy of a simple Lie algebra gives an
even good grading adapted to a principal nilpotent element fyrin.




Beyond Principal Case

Definition of Universal W-superalgebras

LetI': g = @jez g; be an even good grading adapted to f and

regard X := Ilg~( & IIg*, as a symplectic vector superspace'>.

The quantum BRST cohomology complex (e.g., [de Boer-Tjin '93])
(U(g) ® (X)L Clg" ® C[X], d =dce + af)
admits a vertex superalgebra analog (e.g., [Kac-Roan-Wakimoto '03])

(€0, /i) = V(g) ® €U(X), d = dee +dy) .

Then the corresponding cohomology H*(C(g, f;T'),d") turns out
to be independent!* of the choice of I' and is denoted by W¥(g, f).

13Here T1(?) stands for the Z/27Z-parity reversing functor.

M Different choices of I" may give different conformal vectors on W¢(g, f).

Beyond Principal Case

Trivial & Principal Non-Super Cases

@ Since I'yiv: g = go is adapted to f = 0, we have
<@z(g7 OQFtriv) = Vz(g)’ d= 0)

and the corresponding cohomology W¥(g, 0) coincides with
the universal affine vertex superalgebra V(g).

© When g is a Lie algebra, we have
(66(97 fprin§ 1—‘prin) - Vé(g) 029 VZ® dim(mr), d) .

Then WE(g, forin) provides a cohomological definition of the
universal principal non-super W-algebra W¥(g).



Beyond Principal Case

Miura Map for W-superalgebras

LetI': g = @jez g; be an even good grading adapted to f.

Theorem 3.3 (Arakawa '17, Genra'17, Nakatsuka '21)

For arbitrary £, there exist a supersymmetric invariant form 1, on
go and an injective vertex superalgebra homomorphism

Tr: Wig, f) = V™(go).

whose image is the union of kernels of certain screening operators.

Note that De Sole-Kac—Valeri ('16) proved its Poisson analog.

Example 3.4 (Principal Non-Super Case)
When (ga fv r) = (g(_)a fprin, 1—‘prin): we get (907 Tl) = (ha (5 + hv)“)-

Beyond Principal Case

Generators of W-superalgebras

LetI': g = @jez g; be an even good grading adapted to f and
set g/ to be the centralizer of f in g.

Theorem 3.5 (Kac—Wakimoto '04)

For a Z./2Z x Z-homogeneous basis {z; € g/ Ng_;,} of g/, one

can construct a set ofgenerators

{J{xl} “ Wz(gv f)jri-l i=1,... 7d1mgf}

containing the conformal vector wr = JY for We(g, f).

Example 3.6 (Principal Non-Super Case)
When (gv fvr) = (g(_)v fprimerin)r we have gf = @l(gf N g—di—l-l)-




Beyond Principal Case

Subregular W-algebras of type A

Let g = sl,, and f = f.up, a subregular'® nilpotent element of g.

Then there exists an even good grading I' adapted to f such that
we have go ~ slp & C*~! and gf Ngo = Cxg.

As a corollary, the element Hy,p, := J{%o} generates a Heisenberg
subalgebra o, of Wi(g, f) iff £ # —n + 2.

Lemma 3.7 (Creutzig—Genra—Nakatsuka '21)

The Heisenberg coset m+ := Com (Y (msyp). V™ (g0)) is a rank n
Heisenberg vertex algebra and we have a free field realization

Tl"| : COm(ﬂ'subwe(gv f)) = ﬂ-l'

5The corresponding partition (the shape of Jordan cells) is n = (n — 1) + 1.

Beyond Principal Case

Principal W-superalgebras of type A

Let g = sly, (= sl,)1) and f = forin in the even part g5 = gl,,.

Then there exists an even good grading I" adapted to f such that
we have §o > glyj; @ C™ ! and §/ N gy = Ciy.

As a corollary, the element Hpin := J{#} generates a Heisenberg
subalgebra mpin of WE(§) := W(g, f) iff £ # —(n — 1) + =L,

n

Lemma 3.8 (Creutzig—Genra—Nakatsuka '21)

The Heisenberg coset 7+ := Com (Y (prin), V™ (80)) is a rank n
Heisenberg vertex algebra and we have a free field realization

Trl: Com(ﬂprin,Wz(g)) — 7t




Beyond Principal Case

Feigin—Semikhatov Duality

The next theorem was conjectured by Feigin—Semikhatov ('04).

Theorem 3.9 (Creutzig—Genra—Nakatsuka ‘21, cf. Creutzig—LinshaW’ZO*)

Set (Lo, hV; by, hY) to be (—n + 27, n;—(n— 1) + 224 n — 1).

Then, for arbitrary (£,0) # (¢, o) satisfying (€ + hY)({ +hY) =1,
there is a vertex algebra isomorphism 7w+ ~ 7 which restricts to

FS: Com(wsub,WZ(sLn, fsub)) o Com(wpr;n,WE(sllm))

through their Miura maps.

Note that a similar duality between subregular W-algebras of type
B and principal W-superalgebras of type C is obtained in loc. cit.

Beyond Principal Case

Kazama—-Suzuki Duality

The following theorem is a generalization of the Kazama—Suzuki
and Feigin—Semikhatov—Tipunin coset construction for g = sls.

Theorem 3.10 (Creutzig—Genra—Nakatsuka '21)

There exist two diagonal Heisenberg vertex subalgebras of rank one

A(raub) C WG, ) ® Vi,  A(mprin) C WHE) ® V=3
such that we have natural isomorphisms

KS: Wé(g) = COm(A(ﬂ’sub),We(gv ) @ Vz),

FST: Wi(g, f) = Com(A (mprin), W) ® Vi/=12),

which are compatible with their Miura maps.




Beyond Principal Case

How About Representations?

So far, we obtain the following three constructions
FS: Com(wsub,We(g,f)) ~ Com(ﬂ'primwg(g))v
KS: W'(g) = Com(A(meun), W' (g, f) ® V),
FST: W'(g, f) = Com(A(mprin), W(8) © V,/=1).

The representation theory of a W-superalgebra can be described
in terms of that of the corresponding affine vertex superalgebra,
but the latter has been well-studied only in the non-super case.

Our Problem: From Algebras to Representations

To describe the representation theory of W' (§) = Wt (5l1jn> forin)
by using the dualities and relative semi-infinite cohomology.

Main Results

o Main Results



Main Results

Category of Weight Modules

Let (V,w) be a conformal vertex superalgebra and  its Heisenberg
vertex subalgebra generated by an abelian Lie algebra a.

A V-module M is w-weight if it decomposes into a direct sum
M= P (M) Ry
AEa*

of m-modules, where 7 stands for the Heisenberg Fock 7-module,
such that the coefficient Com(, V')-module Q,(A/) decomposes
into finite-dimensional generalized L-eigenspaces.

We write Gsyp, for the category of mgy,-weight WE(g, f)-modules
and Gprin for that of mpin-weight WE(§)-modules.

Main Results

Diagonal Coset Functor

Recall that we have

KS: Wé(5(1\n) i) COIH(A(T(SUb), We(g[n: fsub) ® VZ))
FST: W(sly, foub) > Com(A(mprin), W(sljn) © V,—1,).

Let a = CHgyp and @ = CHpyin be the subspaces generating mgyp
and 7prin, respectively. The next proposition is our starting point.

Proposition (Creutzig—-Genra—Nakatsuka-S. '217)

For \ € a*, there exists \ € @* such that the following functors
Q;\F(‘?) = Q)\((?) & VZ) : Csub — Cgprina
Q;\_(‘?) = Qj\((?) X V\/jlz) : Cgprin — Geub

are mutually quasi-inverse on appropriate full subcategories.




Main Results

Cohomological Interpretation

Recall that relative Lie algebra cohomology plays an important
role in connecting representation theory to geometric objects.

Its semi-infinite geometric analog is introduced by B. Feigin ('84)
and Frenkel-Garland—Zuckerman ('86) for “string field theories” 1°.

More recently, T. Creutzig and A. Linshaw ('20T, '217") conjectured
various W-superalgebras are related via the geometric Langlands

kernels and the relative semi-infinite cohomology.

In this work we prove their conjecture in the simplest case!!

6For a mathematical exposition, we refer the reader to [Voronov '93].

Main Results

Geometric Langlands Kernel

For ¢~! + 1), ! = 1, the geometric Langlands kernel'" is

Algly. ¢l = P VTN eV V) ® Vimziz @,
Aep+

where P* is the set of dominant integral weights for sly, V*()\) is
the corresponding Weyl module, 7 is the Heisenberg vertex algebra
generated by gl;, and s: PT — P/Q ~7Z/NZ.
When N =1, this is just the free field vertex superalgebra

Ko = Algly, ] = Vz @,

which is independent of .

7See [Creutzig-Gaiotto '20, Creutzig-Linshaw '207] for detail.



Main Results

Relative Semi-infinite Cohomology

For A € C, we have the following decomposition
o _ T
:KA T VZ Q= @ Wsub)\-i-u ® 7Tprin,5\+;17
w
where ﬂlub has the negative level opposite to mgyp.

Therefore the relative semi-infinite complex!®

>

Cr(G,0,7) := () @Ky ® AZ)"

rel

carries a level-zero a-action and one can construct the relative
semi-infinite cohomology functor [Frenkel-Garland-Zuckerman '86]

H;\_(?) = H° (C)\(a’ a, ?)7dre|) : Coub — (gprim

oo
18Ari| is isomorphic to the symplectic fermion vertex superalgebra of rank one.

Main Results

Coset = Cohomology [1/2]

Our first main result is as follows:

Main Result A (Creutzig-Genra—Nakatsuka-S.'21")

For any A € a*, we have a natural isomorphism

Q;\’_(?) ~ H;_((?) (gsub — (gp,—in

of linear functors and a similar result for Q1 (?) as well.

For example, if we pick an object M of € such that
M = @ Q)\-i-/L(M) & Tsub, A+
o

then the relative semi-infinite complex C\\(a, a, M) is given by
2

EB Drru(M) @ Toub, x4 @ ﬂ;rub,)\—i—u ® Torin it @ A;r
o



Main Results

Coset = Cohomology [2/2]

Our first main result is as follows:

Main Result A (Creutzig—Genra—Nakatsuka-S. '217)

For any A\ € a*, we have a natural isomorphism
y p

Q;\F(?) = H)—\i_(?) Cgsub — Cgprin

of linear functors and a similar result for 1 (?) as well.

By using the following isomorphism [Frenkel-Garland—Zuckerman '86]

Hz(”sub)\ﬂi ® ﬂ-;rub,)wl—,u ® A, drel) ~ 0;,0C,
we obtain the corresponding relative semi-infinite cohomology

FS
H;—(Al) = @ Q)\+H(M) & 7Tprin,5\+/1 = Q;\l—(M)

Main Results

Compatibility with Fusion Product

Let ) denote the a-weight set of W¥(sl,,, foup) and

Mi = @ Q)\i—&-u(]\/fi) ® ﬂSUb,)\H’H S Ob(cgsub) ()‘l c Cl*)
neq
for i € {1,2}. Then our second main result is as follows:

Main Result B (Creutzig—Genra—Nakatsuka-S. '217)

The fusion product My X M, exists in a certain full subcategory of
Geub if and only if HY (M) R HY (My) exists in the corresponding
full subcategory of Gprin. Moreover, we have a natural isomorphism

HY (M) R HY (My) ~ HY (M) R My).

Lastly, we apply this result to two interesting cases!!



Examples

e Examples: Cy-cofinite/non-Cy-cofinite Cases

Examples

(5-cofinite Case

Let Wy(g, f) denote the simple quotient of W’(g, f) and so on.

Theorem 5.1 (cf. Creutzig-Linshaw '207 for r > 3)
When ¢ = —n + 2% and (n+r,n — 1) = 1, we have

Com(ﬂ'suba Wf(g’ f)) = COrn(ﬂ—prim Wé(g)) = WZ; (g!)’
where gy = sl,. and ((+hY)™ + (6 + k)" =1,

Theorem 5.2 (Creutzig—Genra—Nakatsuka '21)

For ¢ as above, there is a chain of simple current? extensions
(WZ! (g!) ®V (n+r)rZ) ®V n(ntr)Z Cc Wé(g) ® V\/WZ c We(g, f) ®Vz.

In particular, W;(g) is Ca-cofinite and rational.

aSimple invertible objects in V-mod are referred to as simple currents of V.




Examples

Fusion Product of W;(g)-modules

Finally, our last main result is as follows:

Main Result C (Creutzig—Genra—Nakatsuka-S. '217)

For (n,r) € Z>9 X Z>1 with (n+r,n — 1) =1, the semisimple
monoidal structure of

Wé(g)_mOd = W_(n_1)+ (5[1|n)—mod = (fprin

:7171‘
can be explicitly described in terms of that of
Wy, (g1)-mod = W_H%(slr)—mod, (1)

WZ(Q» f)_mOd = W—n+% (5[717 fsub)‘mOd = Cgsub' (2)

Note that the structure of (1) is determined by Frenkel-Kac—Wakimoto ('92) and that
of (2) for even n is by Arakawa-van Ekeren ('197). We extend the latter result to all

n by using the previous simple current extensions.

Examples

Non-C-cofinite Case (Work in Progress)

Even if the Cs-cofiniteness fails, we expect that a braided monoidal
structure may exist on a category of appropriate modules.

In fact, at least when £ = —n 4 g, —n + "T“ or generic,

Com(ﬂ'suba Wl(s[na fsub)) = COIn(7|'prim Wé(s[l\n))

contains a simple Virasoro VOA V and we expect the following:

Strategy by Induction Method (cf. Creutzig-McRae—Yang '21)

Let (W77T) denote (W€(5[na fsub)vﬂ'sub) or (WE(5[1|n)v7rprin)' Then
the fusion product M; X My of W-modules may exist when M; for
i € {1,2} is an appropriate sum of C1-cofinite V & m-submodules.




Examples

Future Directions [1/2]

Since there is a conjectural relationship'® between
?
Wk(g[m\n) o Ug (g[m\n) ® UCI2 (g[m) ® UQ?, (g[n)
for appropriate (k; q1,q2,q3), it seems natural to expect that
Cprin = W—(n—1)+%(5[1|n)‘m°d

is related with the semisimplified category of finite-dimensional
modules for a relevant quantum supergroup at root of unity.

When m = 0, the right-hand side corresponds to the modular double of Uy(gl,,).
See [Bershtein—Feigin—Merzon 18] for detail (cf. [Cheng—Kwon—-Lam '08]).

Examples

Future Directions [2/2]

For example, the non-Cs-cofinite subregular W-algebra
By = W—n—l—ﬁrl (5[717 fsub)

corresponds to the (A1, A2,_1) Argyres—Douglas theory?® via
the 2d/4d correspondence [Adamovié—Creutzig—Genra—Yang '21].

In this context, the Feigin—Semikhatov duality can be regarded as
a special case?! of the S3-triality in Y-algebras [Gaiotto-Rap&ak '19].

We expect that the cohomological approach is efficient as well in
extending our result to more general cases (work in progress).

20From this viewpoint, we may regard Bo as the free bosonic By-system.

210ur case is related to Yj,,1,0[¥] presented in [Gaiotto—Rap&ak '19].



