On principal affine W-superalgebras for $\mathfrak{sl}_{n|1}$

Ryo Sato (Academia Sinica)
joint work with T. Creutzig, N. Genra, and S. Nakatsuka

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

- Quantum Symmetry from Vertex Algebras
- 2 Duality in Principal W-algebras
- Beyond Principal W-algebras
- Main Results
- $lue{1}$ Examples: C_2 -cofinite/non- C_2 -cofinite Cases

- Quantum Symmetry from Vertex Algebras
- 2 Duality in Principal W-algebras
- 3 Beyond Principal W-algebras
- Main Results

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Origin of Vertex Algebras

The notion of a **vertex algebra** encodes an algebraic structure of "qunatum observables" acting on a space of "qunatum states" with respect to the **operator product expansion**¹.

In the early days, such a structure appeared in the representation theory of **affine Lie algebras** [Lepowsky–Wilson'79, Frenkel–Kac'80, ...].

After that, it has turned out that vertex algebras are ubiquitous in

- 2d conformal field theory [Belavin-Polyakov-Zamolodchikov '84, ...],
- 3d topological quantum field theory [Witten'89, ...],
- 4d superconformal field theory [Alday-Gaiotto-Tachikawa '10, ...],
 and so on.

¹The notion of OPE firstly appeared in the work of K.G. Wilson ('69).

Axioms of Vertex Algebras

Roughly speaking, a vertex algebra consists of

- ullet a vector space V over \mathbb{C} ,
- a bilinear mapping $(?) \times (?) : V \times V \to V((z))$,
- lacksquare a non-zero element 1 in V

satisfying the following conditions: for $A,B,C\in V$,

- ① $\mathbf{1} \underset{z}{\times} A = A \text{ and } A \underset{z}{\times} \mathbf{1} \equiv A \mod V[\![z]\!]z \text{ (unitality)};$

Note that we refer to $A(z) := A \underset{z}{\times} (?)$ as a quantum observable.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Analogy to Commutative Algebras

More precisely, the locality axiom² is given by

$$(z_1-z_2)^n[A(z_1),B(z_2)]=0$$
 for sufficiently large n .

Standard categorical notions for vertex algebras (e.g., morphisms, subquotients, simplicity, modules, ...) can be defined in a similar way to those for **unital associative commutative algebras**.

For example, we have the following lemma:

Lemma 1.1 (Tensor Products)

The tensor product of finitely many vertex algebras over $\mathbb C$ carries a natural vertex algebra structure.

²See, e.g., Kac's textbook ('98, AMS) for detail.

Well-studied Building Blocks

The following two examples are building blocks in our discussion:

- affine vertex algebras $V^{\ell}(\mathfrak{g})$ (\iff affine Lie algebras $\widehat{\mathfrak{g}}$);
- lattice vertex algebras V_L (\iff integral lattices L).

Loosely speaking, an appropriate representation category of $V^{\ell}(\mathfrak{g})$ (resp. V_L) has an explicit description in terms of the corresponding quantum enveloping algebra $U_q(\mathfrak{g})$ (resp. the corresponding finite abelian group $\mathrm{Hom}(L,\mathbb{Z})/L$ with some \mathbb{C}^{\times} -valued 3-cocycle 4).

Vertex Algebras

Principal Cas

Beyond Principal Case

Main Results

Examples

Constructions of New Vertex Algebras

More examples are obtained by the following constructions:

Definition 1.2 (Extensions and Cosets)

Let $U \hookrightarrow V$ be an embedding of vertex algebras. Then

- ullet V is called a vertex algebra extension of U,
- the commutant vertex subalgebra

$$\operatorname{Com}(U,V) := \left\{ A \in V \,\middle|\, \left[A(z_1), B(z_2) \right] = 0 \text{ for any } B \in U \right\}$$

is called the $\operatorname{\mathbf{coset}}$ $\operatorname{\mathbf{vertex}}$ $\operatorname{\mathbf{algebra}}$ of U in V.

As a special case, we call $\mathfrak{T}(V) := \operatorname{Com}(V, V)$ the **center** of V.

³See, e.g., [Kazhdan-Lusztig '93, '94, Finkelberg '96].

⁴See, e.g., Etingof-Gelaki-Nikshych-Ostrik's textbook ('15, AMS).

2d Chiral Conformal Symmetry

The **Virasoro algebra** is the universal central extension of the Lie algebra of vector fields on $S^1 = \{z = e^{2\pi\sqrt{-1}\theta}\}$, which appears as the chiral symmetry of 2d conformal field theory (CFT).

A vertex algebra V with a **conformal vector** ω , whose "modes"

$$L_n := \frac{1}{2\pi\sqrt{-1}} \oint \omega(z) z^{n+1} dz \in \text{End}(V)$$

generate the Virasoro algebra of some central charge, is referred to as a vertex operator algebra (VOA).

It is well-known that the **Sugawara construction** provides affine⁵ and lattice vertex algebras with their standard conformal vectors.

Vertex Algebras

Examples

Axioms of Modules

A **module** of a VOA (V, ω) consists of

- \bullet a vector space M over \mathbb{C} ,
- $\bullet \ \ \text{a bilinear mapping} \ (?) \underset{\mathbf{z}}{\circ} \ (?) \colon V \times M \to M(\!(z)\!)$

satisfying the following conditions: for $A, B \in V$ and $m \in M$,

- $(A \underset{z_1-z_2}{\times} B) \underset{z_2}{\circ} m \approx A \underset{z_1}{\circ} (B \underset{z_2}{\circ} m) \text{ (associativity)};$
- $(L_{-1}A) \circ m = \frac{\partial}{\partial z} (A \circ m)$ (flatness condition);
- **5** L_0 is locally finite with lower bounded eigenvalues on M.

⁵We need to assume that the level ℓ is not equal to the **critical level** $-h^{\vee}$.

Fundamental Problem

Let (V, ω) be a VOA and V-mod the \mathbb{C} -linear abelian category of V-modules of finite length, i.e., having finite composition series.

When V is C_2 -cofinite, the number of inequivalent simple objects in V-mod turns out to be finite [Zhu'96, Gaberdiel-Neitzke'03].

Adding mild conditions⁶, Y.-Z. Huang proved that V-mod carries a **braided monoidal category** structure with respect to the **fusion product** $(?) \boxtimes (?) \colon V$ -mod $\times V$ -mod $\to V$ -mod [Huang '09, ...].

Problem 1.3 (Kazhdan-Lusztig Correspondence)

Confirm such (non-symmetric) braided monoidal categories to be rigid and various conjectural connections to quantum supergroups.

Vertex Algebras

Principal Cas

Beyond Principal Case

Main Results

Examples

Origin of Non-Symmetric Braiding

For distinct n-points $\boldsymbol{p}=(p_1,\ldots,p_n)$ on the projective line $\mathbf{P}^1(\mathbb{C})$ and an n-tuple $\boldsymbol{M}=(M_1,\cdots,M_n)$ of V-modules, one can define the vector space of (genus-zero) n-point conformal blocks⁷ by

$$\operatorname{CB}ig(\mathbf{P}^1(\mathbb{C}), oldsymbol{p}, oldsymbol{M}ig) := \Big(\bigotimes_{i=1}^n M_i \Big/ (\mathsf{conformal\ constraints})\Big)^*.$$

Then the following functor

$$V$$
-mod $\to \mathbb{C}$ -mod; $M \mapsto \mathrm{CB}(\mathbf{P}^1(\mathbb{C}), (0, 1, \infty), (M_2, M_1, M^*))$

is represented by the fusion product $M_1 \boxtimes M_2$ if it exists, and the square σ^2 is the **monodromy** of four-point conformal blocks.

⁶We further assume that V is \mathbb{N} -graded by L_0 and $\ker(L_0\colon V\to V)=\mathbb{C}\mathbf{1}$.

⁷They glue to form a \mathscr{D} -module on the n-point configuration space of $\mathbf{P}^1(\mathbb{C})$.

- Quantum Symmetry from Vertex Algebras
- 2 Duality in Principal W-algebras
- Beyond Principal W-algebras
- 4 Main Results
- Examples: C_2 -cofinite/non- C_2 -cofinite Cases

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

W-algebras as Extensions

The smallest example of W-algebra is the Virasoro VOA $W^{\ell}(\mathfrak{sl}_2)$.

The second smallest W-algebra $W^{\ell}(\mathfrak{sl}_3)$ is originally introduced by A. Zamolodchikov ('85) as a higher-spin extension of the Virasoro VOA, which is no longer generated by an "elementary" Lie algebra.

General \mathcal{W} -algebras are obtained as extensions of $\mathcal{W}^{\ell}(\mathfrak{sl}_2)$ and play a fundamental role in the (conjectural) **2d chiral CFT/4d** $\mathcal{N}=2$ **SCFT correspondence** [Beem et. al. '15,...].

We first review the most standard class, called the pricipal case.

Center of Enveloping Algebra

Let $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ be a triangular decomposition of a simple Lie algebra and κ the normalized symmetric invariant form on \mathfrak{g} .

The **center** $Z(\mathfrak{g})$ of the enveloping algebra $U(\mathfrak{g})$ is isomorphic to

- 1 the commutant subalgebra $Com(\mathfrak{g}, U(\mathfrak{g}))$ by definition;
- 2) the Weyl group-invariant subalgebra $U(\mathfrak{h})^W$ of $U(\mathfrak{h})$ through the Harish-Chandra homomorphism [Harish-Chandra '51];
- **3** the opposite algebra of \mathfrak{g} -endomorphisms⁸ on the Whittaker module $\operatorname{Ind}_{\mathfrak{n}_+}^{\mathfrak{g}}(\chi)$, where $\chi(?)=\kappa(f,?)\colon \mathfrak{n}_+\to\mathbb{C}$ is defined by a **principal** nilpotent element $f=f_{\text{prin}}\in\mathfrak{n}_-$ [Kostant '78].

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Principal Affine W-algebras

Roughly speaking, the **universal principal affine** \mathcal{W} -algebra is an "affinization" of the center $Z(\mathfrak{g})$ at level $\ell \in \mathbb{C}$, denoted by $\mathcal{W}^{\ell}(\mathfrak{g})$.

 \mathcal{W} -algebras are **NOT** generated by affine Lie algebras in general!!

Modules of the principal \mathcal{W} -algebra $\mathcal{W}^\ell(\mathfrak{g})$ are obtained by

- coset construction [Goddard-Kent-Olive '85, . . .];
- free field realization [Fateev-Lukyanov '88, Feigin-Frenkel '92,...];
- 3 semi-infinite cohomology [Feigin-Frenkel '90, . . .].

⁸By the Frobenius reciprocity, they correspond to Whittaker vectors.

 $^{^9{}m This}$ case is also known as Becchi–Rouet–Stora–Tyutin (BRST) cohomology.

Free Field Realization

The **free field realization** of the principal affine \mathcal{W} -algebra $\mathcal{W}^{\ell}(\mathfrak{g})$ is a vertex algebraic analog of the Harish-Chandra Homomorphism

$$\overline{\Upsilon} \colon Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{h}),$$

which is known as the Miura map

$$\Upsilon \colon \mathcal{W}^{\ell}(\mathfrak{g}) \hookrightarrow V^{\tau_{\ell}}(\mathfrak{h}).$$

Here τ_{ℓ} stands for a certain symmetric invariant form on \mathfrak{h} .

The image of the Miura map coincides with the union of kernels of $rank(\mathfrak{g})$ screening operators¹⁰.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Generators of Principal ${\mathcal W}$ -algebra

Let $D = \{d_i \mid i = 1, ..., \operatorname{rank}(\mathfrak{g})\}$ denote the multi-set of degrees of homogeneous polynomial generators for $U(\mathfrak{h})^W = \mathbb{C}[\mathfrak{h}^*]^W$.

It is known that the set D always contains 2 which corresponds to the quadratic Casimir element Ω in $Z(\mathfrak{g})$.

The counterpart to Ω gives a conformal vector ω in $\mathcal{W}^{\ell}(\mathfrak{g})$.

Theorem 2.1 (e.g., Feigin-Frenkel '90)

The Virasoro L_0 -operator induced by ω defines an \mathbb{N} -gradation

$$\mathcal{W}^\ell(\mathfrak{g}) = igoplus_{d=0}^\infty \mathcal{W}^\ell(\mathfrak{g})_d$$

and there exists a finite set of generators $\{J^{d_i} \in \mathcal{W}^{\ell}(\mathfrak{g})_{d_i}\}$ which contains the conformal vector $\omega = J^2$ of $\mathcal{W}^{\ell}(\mathfrak{g})$.

 $^{^{10}}$ These operators are a vertex algebraic analog of simple reflections.

Langlands Dual Groups

Recall that connected complex reductive groups are determined by their **root data** up to isomorphism¹¹.

Two connected complex reductive groups are said to be **Langlands** dual to each other when their root data are dual to each other.

Let G be the **simply-connected** simple group associated to \mathfrak{g} and \check{G} denote its Langlands dual group associated to $\check{\mathfrak{g}}=\operatorname{Lie}(\check{G})$.

We note that \check{G} is the **adjoint** group of the simple Lie algebra $\check{\mathfrak{g}}$.

Example 2.2 (Duality Between Classical Groups)

We have $\check{\operatorname{SL}}_n = \operatorname{PSL}_n$, $\check{\operatorname{Spin}}_{2n} = \operatorname{SO}_{2n}/\mathbb{Z}_2$, $\check{\operatorname{Spin}}_{2n+1} = \operatorname{Sp}_{2n}/\mathbb{Z}_2$.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Feigin-Frenkel Duality

The next theorem is known as the Feigin–Frenkel duality:

Theorem 2.3 (Feigin-Frenkel '92, Aganagic-Frenkel-Okounkov '18)

For arbitrary $(\ell,\check{\ell})$ satisfying $r^{\vee}(\ell+h^{\vee})(\check{\ell}+\check{h}^{\vee})=1$, where r^{\vee} is the lacing number of \mathfrak{g} , there exists a vertex algebra isomorphism $V^{\tau_{\ell}}(\mathfrak{h})\simeq V^{\check{\tau}_{\ell}}(\check{\mathfrak{h}})$ which restricts to $\mathcal{W}^{\ell}(\mathfrak{g})\simeq \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}})$.

Remark 2.4 (Local Geometric Langlands Correspondence)

By taking a suitable limit, we obtain natural isomorphism(s)

$$\left(\operatorname{\mathcal{Z}} \! \left(V^{-h^{\vee}} \! (\mathfrak{g}) \right) \simeq \right) \operatorname{\mathcal{W}}^{-h^{\vee}} \! (\mathfrak{g}) \simeq \operatorname{\mathcal{W}}^{\infty} (\check{\mathfrak{g}})$$

of Poisson vertex algebras and the enveloping algebra of the last is naturally dual to the moduli space of \check{G} -opers on $\mathrm{Spec}(\mathbb{C}(\!(z)\!))$.

¹¹See, e.g., Springer's textbook ('98, Birkhäuser) for detial.

Beyond Principal Non-Super \mathcal{W} -algebras

Naïve Question (cf. Gaiotto-Rapčák '19)

Can we generalize the Feigin-Frenkel duality to outside of principal non-super W-algebras? Are there any relationships among

- principal W-superalgebras,
- non-principal W-algebras,

and relevant (super)geometric objects^a?

 $^{\text{a}}\text{See, e.g., [Zeitlin\,'15]}$ for the $\mathfrak{osp}_{1|2}\text{-}\text{Gaudin model}$ and $\mathrm{SPL}_2\text{-}\text{superopers.}$

Today's Main Topic: Feigin-Semikhatov Duality

In 2004, B. Feigin and A. Semikhatov found a mysterious clue of a possible super/non-principal duality which is recently proved by Creutzig—Linshaw and Creutzig—Genra—Nakatsuka, independently.

/ertex Algebras Principal Case Beyond Principal Case Main Results Examples

- Quantum Symmetry from Vertex Algebras
- 2 Duality in Principal W-algebras
- Beyond Principal W-algebras
- Main Results
- Examples: C_2 -cofinite/non- C_2 -cofinite Cases

Generalization to Non-Principal Case

Let f be a general nilpotent element in g and $\chi(?) = \kappa(f,?)$.

The **finite** \mathcal{W} -algebra¹² $U(\mathfrak{g}, f)$ is the deformation quantization of the **Slodowy slice**, which is a Poisson transversal at χ in \mathfrak{g}^* .

Informally speaking, the **universal affine** \mathcal{W} -algebra $\mathcal{W}^{\ell}(\mathfrak{g},f)$ is an "affinization" of the finite \mathcal{W} -algebra $U(\mathfrak{g},f)$ at level ℓ .

Now let's go into a bit more detail of its definition for later use.

Vertex Algebras Principal Cose

Beyond Principal Case

Main Results

Examples

Good Gradings for Lie Superalgebras

Let $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ be a complex simple Lie **super**algebra equipped with a suitably normalized **super**symmetric invariant form κ .

Definition 3.1 (Kac-Roan-Wakimoto '03)

A $\mathbb{Z}/2\mathbb{Z}$ -homogeneous $\frac{1}{2}\mathbb{Z}$ -gradation $\Gamma\colon \mathfrak{g}=\bigoplus_{j\in \frac{1}{2}\mathbb{Z}}\mathfrak{g}_j$ is said to be a **good grading** adapted to a nilpotent element $f\in \mathfrak{g}_{\overline{0}}$ if

- ① the nilpotent element f lies in \mathfrak{g}_{-1} ,
- 2 $\operatorname{ad}(f)$ is injective for $j \geq 1/2$; surjective for $j \leq 1/2$.

A good grading is said to be **even** if it is a \mathbb{Z} -gradation.

Example 3.2 (Principal Non-Super Case)

The principal \mathbb{Z} -gradation Γ_{prin} of a simple Lie algebra gives an even good grading adapted to a principal nilpotent element f_{prin} .

¹²Originally introduced by A. Premet ('02) and generalized by Gan–Ginzburg ('02).

Definition of Universal \mathcal{W} -superalgebras

Let $\Gamma \colon \mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be an even good grading adapted to f and regard $X := \Pi \mathfrak{g}_{>0} \oplus \Pi \mathfrak{g}_{>0}^*$ as a symplectic vector superspace¹³.

The quantum BRST cohomology complex (e.g., [de Boer-Tjin '93])

$$\left(U(\mathfrak{g})\otimes\overline{\overline{\mathbb{C}\ell}}(X)\stackrel{\mathsf{gr}}{\simeq}\mathbb{C}[\mathfrak{g}^*]\otimes\mathbb{C}[X],\ \overline{\mathrm{d}}=\overline{\mathrm{d}}_{\mathsf{CE}}+\overline{\mathrm{d}}_f\right)$$

admits a vertex superalgebra analog (e.g., [Kac-Roan-Wakimoto '03])

$$\left(\mathfrak{C}^{\ell}(\mathfrak{g}, f; \Gamma) := V^{\ell}(\mathfrak{g}) \otimes \mathfrak{C}\ell(X), \ \mathrm{d} = \mathrm{d}_{\mathsf{CE}} + \mathrm{d}_f \right).$$

Then the corresponding cohomology $H^*(\mathcal{C}^{\ell}(\mathfrak{g},f;\Gamma),\mathrm{d}^{\mathsf{ch}})$ turns out to be independent¹⁴ of the choice of Γ and is denoted by $\mathcal{W}^{\ell}(\mathfrak{g},f)$.

Beyond Principal Case

Examples

Trivial & Principal Non-Super Cases

 $oldsymbol{0}$ Since $\Gamma_{\sf triv}\colon {\mathfrak g}={\mathfrak g}_0$ is adapted to f=0, we have

$$\Big(\mathfrak{C}^{\ell}(\mathfrak{g},0;\Gamma_{\mathsf{triv}}) = V^{\ell}(\mathfrak{g}), \ \mathrm{d} = 0 \Big)$$

and the corresponding cohomology $\mathcal{W}^{\ell}(\mathfrak{g},0)$ coincides with the universal affine vertex superalgebra $V^{\ell}(\mathfrak{g})$.

🔼 When g is a Lie algebra, we have

$$\left(\mathfrak{C}^{\ell}(\mathfrak{g},f_{\mathsf{prin}};\Gamma_{\mathsf{prin}})=V^{\ell}(\mathfrak{g})\otimes V_{\mathbb{Z}}^{\otimes\dim(\mathfrak{n}_{+})},\;\mathrm{d}
ight).$$

Then $\mathcal{W}^{\ell}(\mathfrak{g}, f_{\mathsf{prin}})$ provides a cohomological definition of the universal principal non-super W-algebra $W^{\ell}(\mathfrak{g})$.

¹³Here $\Pi(?)$ stands for the $\mathbb{Z}/2\mathbb{Z}$ -parity reversing functor.

¹⁴Different choices of Γ may give different conformal vectors on $\mathcal{W}^{\ell}(\mathfrak{g}, f)$.

Miura Map for W-superalgebras

Let $\Gamma \colon \mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ be an even good grading adapted to f.

Theorem 3.3 (Arakawa '17, Genra '17, Nakatsuka '21)

For arbitrary ℓ , there exist a supersymmetric invariant form τ_{ℓ} on \mathfrak{g}_0 and an injective vertex superalgebra homomorphism

$$\Upsilon_{\Gamma} \colon \mathcal{W}^{\ell}(\mathfrak{g}, f) \hookrightarrow V^{\tau_{\ell}}(\mathfrak{g}_0),$$

whose image is the union of kernels of certain screening operators.

Note that De Sole–Kac–Valeri ('16) proved its Poisson analog.

Example 3.4 (Principal Non-Super Case)

When
$$(\mathfrak{g}, f, \Gamma) = (\mathfrak{g}_{\bar{0}}, f_{\mathsf{prin}}, \Gamma_{\mathsf{prin}})$$
, we get $(\mathfrak{g}_0, \tau_\ell) = (\mathfrak{h}, (\ell + h^{\vee})\kappa)$.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Generators of \mathcal{W} -superalgebras

Let $\Gamma \colon \mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ be an even good grading adapted to f and set \mathfrak{g}^f to be the centralizer of f in \mathfrak{g} .

Theorem 3.5 (Kac-Wakimoto '04)

For a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ -homogeneous basis $\{x_i \in \mathfrak{g}^f \cap \mathfrak{g}_{-j_i}\}$ of \mathfrak{g}^f , one can construct a set of generators

$$\left\{ J^{\{x_i\}} \in \mathcal{W}^{\ell}(\mathfrak{g}, f)_{j_i+1} \mid i = 1, \dots, \dim \mathfrak{g}^f \right\}$$

containing the conformal vector $\omega_{\Gamma} = J^{\{f\}}$ for $\mathcal{W}^{\ell}(\mathfrak{g}, f)$.

Example 3.6 (Principal Non-Super Case)

When $(\mathfrak{g}, f, \Gamma) = (\mathfrak{g}_{\bar{0}}, f_{\mathsf{prin}}, \Gamma_{\mathsf{prin}})$, we have $\mathfrak{g}^f = \bigoplus_i (\mathfrak{g}^f \cap \mathfrak{g}_{-d_i+1})$.

Subregular W-algebras of type A

Let $\mathfrak{g} = \mathfrak{sl}_n$ and $f = f_{sub}$, a subregular¹⁵ nilpotent element of \mathfrak{g} .

Then there exists an even good grading Γ adapted to f such that we have $\mathfrak{g}_0 \simeq \mathfrak{sl}_2 \oplus \mathbb{C}^{n-1}$ and $\mathfrak{g}^f \cap \mathfrak{g}_0 = \mathbb{C} x_0$.

As a corollary, the element $H_{\mathsf{sub}} := J^{\{x_0\}}$ generates a Heisenberg subalgebra π_{sub} of $\mathcal{W}^\ell(\mathfrak{g},f)$ iff $\ell \neq -n + \frac{n}{n-1}$.

Lemma 3.7 (Creutzig-Genra-Nakatsuka '21)

The Heisenberg coset $\pi^{\perp} := \operatorname{Com}(\Upsilon_{\Gamma}(\pi_{\mathsf{sub}}), V^{\tau_{\ell}}(\mathfrak{g}_0))$ is a rank n Heisenberg vertex algebra and we have a free field realization

$$\Upsilon_{\Gamma}$$
: $\operatorname{Com}(\pi_{\mathsf{sub}}, \mathcal{W}^{\ell}(\mathfrak{g}, f)) \hookrightarrow \pi^{\perp}$.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Principal ${\mathcal W}$ -superalgebras of type A

Let $\check{\mathfrak{g}}=\mathfrak{sl}_{\mathbf{1}|\mathbf{n}}\,(=\mathfrak{sl}_{n|1})$ and $\check{f}=f_{\mathsf{prin}}$ in the even part $\check{\mathfrak{g}}_{\bar{0}}=\mathfrak{gl}_{n}.$

Then there exists an even good grading $\check{\Gamma}$ adapted to \check{f} such that we have $\check{\mathfrak{g}}_0\simeq \mathfrak{gl}_{1|1}\oplus \mathbb{C}^{n-1}$ and $\check{\mathfrak{g}}^{\check{f}}\cap \check{\mathfrak{g}}_0=\mathbb{C}\check{x}_0$.

As a corollary, the element $H_{\mathsf{prin}} := J^{\{\check{x}_0\}}$ generates a Heisenberg subalgebra π_{prin} of $\mathcal{W}^\ell(\check{\mathfrak{g}}) := \mathcal{W}^\ell(\check{\mathfrak{g}},\check{f})$ iff $\ell \neq -(n-1) + \frac{n-1}{n}$.

Lemma 3.8 (Creutzig-Genra-Nakatsuka '21)

The Heisenberg coset $\check{\pi}^{\perp} := \mathrm{Com} \big(\Upsilon_{\check{\Gamma}}(\pi_{\mathsf{prin}}), V^{\check{\tau}_{\ell}}(\check{\mathfrak{g}}_0) \big)$ is a rank n Heisenberg vertex algebra and we have a free field realization

$$\Upsilon_{\check{\Gamma}}|\colon \operatorname{Com}(\pi_{\mathsf{prin}}, \mathcal{W}^{\ell}(\check{\mathfrak{g}})) \hookrightarrow \check{\pi}^{\perp}.$$

¹⁵The corresponding partition (the shape of Jordan cells) is n = (n-1) + 1.

Feigin-Semikhatov Duality

The next theorem was conjectured by Feigin-Semikhatov ('04).

Theorem 3.9 (Creutzig–Genra–Nakatsuka '21, cf. Creutzig–Linshaw '20+)

Set $(\ell_0,h^\vee;\check{\ell}_0,\check{h}^\vee)$ to be $(-n+\frac{n}{n-1},n;-(n-1)+\frac{n-1}{n},n-1)$. Then, for arbitrary $(\ell,\check{\ell}) \neq (\ell_0,\check{\ell}_0)$ satisfying $(\ell+h^\vee)(\check{\ell}+\check{h}^\vee)=1$, there is a vertex algebra isomorphism $\pi^\perp \simeq \check{\pi}^\perp$ which restricts to

$$\mathbf{FS} \colon \operatorname{Com} \big(\pi_{\mathsf{sub}}, \mathcal{W}^{\ell} (\mathfrak{sl}_n, f_{\mathsf{sub}}) \big) \simeq \operatorname{Com} \big(\pi_{\mathsf{prin}}, \mathcal{W}^{\check{\ell}} (\mathfrak{sl}_{1|n}) \big)$$

through their Miura maps.

Note that a similar duality between subregular \mathcal{W} -algebras of **type B** and principal \mathcal{W} -superalgebras of **type C** is obtained in loc. cit.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Kazama-Suzuki Duality

The following theorem is a generalization of the Kazama–Suzuki and Feigin–Semikhatov–Tipunin coset construction for $\mathfrak{g}=\mathfrak{sl}_2$.

Theorem 3.10 (Creutzig-Genra-Nakatsuka '21)

There exist two diagonal Heisenberg vertex subalgebras of rank one

$$\Delta(\pi_{\mathsf{sub}}) \subset \mathcal{W}^{\ell}(\mathfrak{g},f) \otimes V_{\mathbb{Z}}, \quad \Delta(\pi_{\mathsf{prin}}) \subset \mathcal{W}^{\ell}(\check{\mathfrak{g}}) \otimes V_{\sqrt{-1}\mathbb{Z}}$$
 such that we have natural isomorphisms

$$\mathbf{KS} \colon \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \xrightarrow{\simeq} \mathrm{Com}(\Delta(\pi_{\mathsf{sub}}), \mathcal{W}^{\ell}(\mathfrak{g}, f) \otimes V_{\mathbb{Z}}),$$

$$\mathbf{FST} \colon \mathcal{W}^{\ell}(\mathfrak{g}, f) \xrightarrow{\simeq} \mathrm{Com}(\Delta(\pi_{\mathsf{prin}}), \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \otimes V_{\sqrt{-1}\mathbb{Z}}),$$

which are compatible with their Miura maps.

How About Representations?

So far, we obtain the following three constructions

$$\mathbf{FS} \colon \operatorname{Com} \left(\pi_{\mathsf{sub}}, \mathcal{W}^{\ell}(\mathfrak{g}, f) \right) \simeq \operatorname{Com} \left(\pi_{\mathsf{prin}}, \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \right),$$

$$\mathbf{KS} \colon \mathcal{W}^{\ell}(\check{\mathfrak{g}}) \xrightarrow{\simeq} \mathrm{Com}(\Delta(\pi_{\mathsf{sub}}), \mathcal{W}^{\ell}(\mathfrak{g}, f) \otimes V_{\mathbb{Z}}),$$

$$\mathbf{FST} \colon \mathcal{W}^{\ell}(\mathfrak{g}, f) \xrightarrow{\simeq} \mathrm{Com}(\Delta(\pi_{\mathsf{prin}}), \mathcal{W}^{\check{\ell}}(\check{\mathfrak{g}}) \otimes V_{\sqrt{-1}\mathbb{Z}}).$$

The representation theory of a W-superalgebra can be described in terms of that of the corresponding affine vertex superalgebra, but the latter has been well-studied only in the non-super case.

Our Problem: From Algebras to Representations

To describe the representation theory of $W^{\check{\ell}}(\check{\mathfrak{g}}) = W^{\check{\ell}}(\mathfrak{sl}_{1|n}, f_{\mathsf{prin}})$ by using the dualities and relative semi-infinite cohomology.

Vertex Algebras F

Principal Case

Beyond Principal Case

Main Results

Examples

- Quantum Symmetry from Vertex Algebras
- 2 Duality in Principal W-algebras
- Beyond Principal W-algebras
- Main Results
- Examples: C_2 -cofinite/non- C_2 -cofinite Cases

Category of Weight Modules

Let (V, ω) be a conformal vertex superalgebra and π its Heisenberg vertex subalgebra generated by an abelian Lie algebra \mathfrak{a} .

A V-module M is π -weight if it decomposes into a direct sum

$$M = \bigoplus_{\lambda \in \mathfrak{a}^*} \Omega_{\lambda}(M) \otimes \pi_{\lambda}$$

of π -modules, where π_{λ} stands for the Heisenberg Fock π -module, such that the coefficient $\mathrm{Com}(\pi,V)$ -module $\Omega_{\lambda}(M)$ decomposes into **finite-dimensional** generalized L_0 -eigenspaces.

We write \mathscr{C}_{sub} for the category of π_{sub} -weight $\mathcal{W}^{\ell}(\mathfrak{g},f)$ -modules and $\mathscr{C}_{\text{prin}}$ for that of π_{prin} -weight $\mathcal{W}^{\ell}(\check{\mathfrak{g}})$ -modules.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Diagonal Coset Functor

Recall that we have

$$\mathbf{KS} \colon \mathcal{W}^{\check{\ell}}(\mathfrak{sl}_{1|n}) \xrightarrow{\simeq} \mathrm{Com}(\Delta(\pi_{\mathsf{sub}}), \mathcal{W}^{\ell}(\mathfrak{sl}_n, f_{\mathsf{sub}}) \otimes V_{\mathbb{Z}}),$$

$$\mathbf{FST} \colon \mathcal{W}^{\ell}(\mathfrak{sl}_n, f_{\mathsf{sub}}) \xrightarrow{\simeq} \mathrm{Com}(\Delta(\pi_{\mathsf{prin}}), \mathcal{W}^{\check{\ell}}(\mathfrak{sl}_{1|n}) \otimes V_{\sqrt{-1}\mathbb{Z}}).$$

Let $\mathfrak{a} = \mathbb{C}H_{\mathsf{sub}}$ and $\check{\mathfrak{a}} = \mathbb{C}H_{\mathsf{prin}}$ be the subspaces generating π_{sub} and π_{prin} , respectively. The next proposition is our starting point.

Proposition (Creutzig-Genra-Nakatsuka-S. '21+)

For $\lambda \in \mathfrak{a}^*$, there exists $\dot{\lambda} \in \check{\mathfrak{a}}^*$ such that the following functors

$$\Omega_{\lambda}^{+}(?) := \Omega_{\lambda}((?) \otimes V_{\mathbb{Z}}) : \mathscr{C}_{\mathsf{sub}} \to \mathscr{C}_{\mathsf{prin}},$$

$$\Omega_{\check{\lambda}}^-(?) := \Omega_{\check{\lambda}}\big((?) \otimes V_{\sqrt{-1}\mathbb{Z}}\big) \colon \mathscr{C}_{\mathsf{prin}} \to \mathscr{C}_{\mathsf{sub}}$$

are mutually quasi-inverse on appropriate full subcategories.

Cohomological Interpretation

Recall that **relative Lie algebra cohomology** plays an important role in connecting representation theory to geometric objects.

Its **semi-infinite** geometric analog is introduced by B. Feigin ('84) and Frenkel–Garland–Zuckerman ('86) for "string field theories" ¹⁶.

More recently, T. Creutzig and A. Linshaw ($'20^+$, $'21^+$) conjectured various W-superalgebras are related via the **geometric Langlands** kernels and the relative semi-infinite cohomology.

In this work we prove their conjecture in the simplest case!!

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Geometric Langlands Kernel

For $\psi^{-1} + \psi_!^{-1} = 1$, the geometric Langlands kernel 17 is

$$A[\mathfrak{gl}_N,\psi]:=\bigoplus_{\lambda\in P^+}V^{\psi-N}(\lambda)\otimes V^{\psi_!-N}(\lambda)\otimes V_{\sqrt{N}\mathbb{Z}+\frac{s(\lambda)}{\sqrt{N}}}\otimes\pi,$$

where P^+ is the set of dominant integral weights for \mathfrak{sl}_N , $V^k(\lambda)$ is the corresponding Weyl module, π is the Heisenberg vertex algebra generated by \mathfrak{gl}_1 , and $s\colon P^+\to P/Q\simeq \mathbb{Z}/N\mathbb{Z}$.

When N=1, this is just the free field vertex superalgebra

$$\mathfrak{K}_0 := A[\mathfrak{gl}_1, \psi] = V_{\mathbb{Z}} \otimes \pi,$$

which is independent of ψ .

 $^{^{16}}$ For a mathematical exposition, we refer the reader to [Voronov'93].

¹⁷See [Creutzig-Gaiotto '20, Creutzig-Linshaw '20⁺] for detail.

Relative Semi-infinite Cohomology

For $\lambda \in \mathbb{C}$, we have the following decomposition

$$\mathcal{K}_{\lambda} := V_{\mathbb{Z}} \otimes \pi_{\lambda} = \bigoplus_{\mu} \pi^{\dagger}_{\mathsf{sub}, \lambda + \mu} \otimes \pi_{\mathsf{prin}, \check{\lambda} + \check{\mu}},$$

where $\pi_{\text{sub}}^{\dagger}$ has the negative level opposite to π_{sub} .

Therefore the relative semi-infinite complex¹⁸

$$C_{\lambda}(\widehat{\mathfrak{a}},\mathfrak{a},?) := \left((?) \otimes \mathfrak{K}_{\lambda} \otimes \Lambda^{\frac{\infty}{2}}_{\mathsf{rel}}\right)^{\mathfrak{a}}$$

carries a level-zero $\widehat{\mathfrak{a}}$ -action and one can construct the **relative semi-infinite cohomology functor** [Frenkel-Garland-Zuckerman '86]

$$H_{\lambda}^{+}(?) := H^{0}(C_{\lambda}(\widehat{\mathfrak{a}}, \mathfrak{a}, ?), \mathrm{d}_{\mathsf{rel}}) \colon \mathscr{C}_{\mathsf{sub}} \to \mathscr{C}_{\mathsf{prin}}.$$

Vertex Algebras

Principal Case

Beyond Principal Cas

Main Results

Examples

$\mathsf{Coset} = \mathsf{Cohomology} [1/2]$

Our first main result is as follows:

Main Result A (Creutzig-Genra-Nakatsuka-S. '21+)

For any $\lambda \in \mathfrak{a}^*$, we have a natural isomorphism

$$\Omega_{\lambda}^{+}(?) \simeq H_{\lambda}^{+}(?) \colon \mathscr{C}_{\mathsf{sub}} o \mathscr{C}_{\mathsf{prin}}$$

of linear functors and a similar result for $\Omega_{\check{\lambda}}^-(?)$ as well.

For example, if we pick an object M of $\mathscr C$ such that

$$M = \bigoplus_{\mu} \Omega_{\lambda+\mu}(M) \otimes \pi_{\mathsf{sub},\lambda+\mu},$$

then the relative semi-infinite complex $C_{\lambda}(\widehat{\mathfrak{a}},\mathfrak{a},M)$ is given by

$$\bigoplus_{\mu} \Omega_{\lambda+\mu}(M) \otimes \pi_{\mathrm{sub}, \lambda+\mu} \otimes \pi_{\mathrm{sub}, \lambda+\mu}^{\dagger} \otimes \pi_{\mathrm{prin}, \check{\lambda}+\check{\mu}} \otimes \Lambda_{\mathrm{rel}}^{\frac{\infty}{2}}.$$

 $^{^{18}\}Lambda_{\text{rel}}^{\frac{\infty}{2}}$ is isomorphic to the symplectic fermion vertex superalgebra of rank one.

Coset = Cohomology [2/2]

Our first main result is as follows:

Main Result A (Creutzig-Genra-Nakatsuka-S. '21+)

For any $\lambda \in \mathfrak{a}^*$, we have a natural isomorphism

$$\Omega_{\lambda}^{+}(?) \simeq H_{\lambda}^{+}(?) \colon \mathscr{C}_{\mathsf{sub}} \to \mathscr{C}_{\mathsf{prin}}$$

of linear functors and a similar result for $\Omega_{\check{\lambda}}^-(?)$ as well.

By using the following isomorphism [Frenkel-Garland-Zuckerman '86]

$$H^i(\pi_{\mathsf{sub},\lambda+\mu}\otimes\pi_{\mathsf{sub},\lambda+\mu}^{\dagger}\otimes\Lambda_{\mathsf{rel}}^{\frac{\infty}{2}},\mathrm{d}_{\mathsf{rel}})\simeq\delta_{i,0}\mathbb{C},$$

we obtain the corresponding relative semi-infinite cohomology

$$H_{\lambda}^{+}(M) \simeq \bigoplus_{\nu} \Omega_{\lambda+\mu}(M) \otimes \pi_{\mathsf{prin},\check{\lambda}+\check{\mu}} \stackrel{\mathbf{FS}}{\simeq} \Omega_{\lambda}^{+}(M).$$

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Compatibility with Fusion Product

Let Q denote the \mathfrak{a} -weight set of $\mathcal{W}^{\ell}(\mathfrak{sl}_n,f_{\mathsf{sub}})$ and

$$M_i = \bigoplus_{\mu \in Q} \Omega_{\lambda_i + \mu}(M_i) \otimes \pi_{\mathsf{sub}, \lambda_i + \mu} \in \mathrm{Ob}(\mathscr{C}_{\mathsf{sub}}) \quad (\lambda_i \in \mathfrak{a}^*)$$

for $i \in \{1, 2\}$. Then our second main result is as follows:

Main Result B (Creutzig-Genra-Nakatsuka-S. '21+)

The fusion product $M_1 \boxtimes M_2$ exists in a certain full subcategory of $\mathscr{C}_{\mathsf{sub}}$ if and only if $H^+_{\lambda_1}(M_1) \boxtimes H^+_{\lambda_2}(M_2)$ exists in the corresponding full subcategory of $\mathscr{C}_{\mathsf{prin}}$. Moreover, we have a natural isomorphism

$$H_{\lambda_1}^+(M_1) \boxtimes H_{\lambda_2}^+(M_2) \simeq H_{\lambda_1 + \lambda_2}^+(M_1 \boxtimes M_2).$$

Lastly, we apply this result to two interesting cases!!

- Quantum Symmetry from Vertex Algebras
- 2 Duality in Principal W-algebras
- 3 Beyond Principal W-algebras
- 4 Main Results

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

C_2 -cofinite Case

Let $\mathcal{W}_{\ell}(\mathfrak{g},f)$ denote the **simple quotient** of $\mathcal{W}^{\ell}(\mathfrak{g},f)$ and so on.

Theorem 5.1 (cf. Creutzig-Linshaw '20⁺ for $r \geq 3$)

When
$$\ell = -n + \frac{n+r}{n-1}$$
 and $(n+r,n-1) = 1$, we have
$$\operatorname{Com} \left(\pi_{\mathsf{sub}}, \mathcal{W}_{\ell}(\mathfrak{g},f)\right) \simeq \operatorname{Com} \left(\pi_{\mathsf{prin}}, \mathcal{W}_{\check{\ell}}(\check{\mathfrak{g}})\right) \simeq \mathcal{W}_{\ell_{!}}(\mathfrak{g}_{!}),$$
 where $\mathfrak{g}_{!} = \mathfrak{sl}_{r}$ and $(\ell + h^{\vee})^{-1} + (\ell_{!} + h^{\vee}_{!})^{-1} = 1$.

Theorem 5.2 (Creutzig-Genra-Nakatsuka '21)

For ℓ as above, there is a chain of simple current^a extensions

$$\left(\mathcal{W}_{\ell_!}(\mathfrak{g}_!) \otimes V_{\sqrt{(n+r)r}\mathbb{Z}}\right) \otimes V_{\sqrt{n(n+r)}\mathbb{Z}} \subseteq \mathcal{W}_{\check{\ell}}(\check{\mathfrak{g}}) \otimes V_{\sqrt{n(n+r)}\mathbb{Z}} \subsetneq \mathcal{W}_{\ell}(\mathfrak{g},f) \otimes V_{\mathbb{Z}}.$$

In particular, $W_{\check{\ell}}(\check{\mathfrak{g}})$ is C_2 -cofinite and rational.

^aSimple invertible objects in V-mod are referred to as **simple currents** of V.

Fusion Product of $\mathcal{W}_{\check{\ell}}(\check{\mathfrak{g}})$ -modules

Finally, our last main result is as follows:

Main Result C (Creutzig-Genra-Nakatsuka-S. '21+)

For $(n,r) \in \mathbb{Z}_{\geq 2} \times \mathbb{Z}_{\geq 1}$ with (n+r,n-1)=1, the semisimple monoidal structure of

$$\mathcal{W}_{\check{\ell}}(\check{\mathfrak{g}})\text{-mod} = \mathcal{W}_{-(n-1)+\frac{n-1}{n+r}}(\mathfrak{sl}_{1|n})\text{-mod} = \mathscr{C}_{\mathsf{prin}}$$

can be explicitly described in terms of that of

$$\mathcal{W}_{\ell_{!}}(\mathfrak{g}_{!})\text{-mod} = \mathcal{W}_{-r + \frac{r+n}{r+1}}(\mathfrak{sl}_{r})\text{-mod}, \tag{1}$$

$$\mathcal{W}_{\ell}(\mathfrak{g},f)\text{-mod} = \mathcal{W}_{-n+\frac{n+r}{n-1}}(\mathfrak{sl}_n,f_{\mathsf{sub}})\text{-mod} = \mathscr{C}_{\mathsf{sub}}. \tag{2}$$

Note that the structure of (1) is determined by Frenkel–Kac–Wakimoto ('92) and that of (2) for even n is by Arakawa–van Ekeren ('19 $^+$). We extend the latter result to all n by using the previous simple current extensions.

Vertex Algebras

Principal Case

Beyond Principal Case

Main Results

Examples

Non- C_2 -cofinite Case (Work in Progress)

Even if the C_2 -cofiniteness fails, we expect that a braided monoidal structure may exist on a category of appropriate modules.

In fact, at least when $\ell = -n + \frac{n}{n+1}, -n + \frac{n+1}{n}$, or generic,

$$\mathrm{Com}\big(\pi_{\mathsf{sub}}, \mathcal{W}_{\ell}(\mathfrak{sl}_n, f_{\mathsf{sub}})\big) \simeq \mathrm{Com}\big(\pi_{\mathsf{prin}}, \mathcal{W}_{\check{\ell}}(\mathfrak{sl}_{1|n})\big)$$

contains a simple Virasoro VOA ${\mathcal V}$ and we expect the following:

Strategy by Induction Method (cf. Creutzig-McRae-Yang '21)

Let (\mathcal{W},π) denote $(\mathcal{W}_{\ell}(\mathfrak{sl}_n,f_{\mathsf{sub}}),\pi_{\mathsf{sub}})$ or $(\mathcal{W}_{\check{\ell}}(\mathfrak{sl}_{1|n}),\pi_{\mathsf{prin}})$. Then the fusion product $M_1\boxtimes M_2$ of \mathcal{W} -modules **may exist** when M_i for $i\in\{1,2\}$ is an appropriate sum of C_1 -cofinite $\mathcal{V}\otimes\pi$ -submodules.

Future Directions [1/2]

Since there is a conjectural relationship 19 between

$$\mathcal{W}_k(\mathfrak{gl}_{m|n}) \stackrel{?}{\longleftrightarrow} U_{q_1}(\mathfrak{gl}_{m|n}) \otimes U_{q_2}(\mathfrak{gl}_m) \otimes U_{q_3}(\mathfrak{gl}_n)$$

for appropriate $(k; q_1, q_2, q_3)$, it seems natural to expect that

$$\mathscr{C}_{\mathsf{prin}} = \mathcal{W}_{-(n-1) + \frac{n-1}{n+r}}(\mathfrak{sl}_{1|n})$$
-mod

is related with the **semisimplified** category of finite-dimensional modules for a **relevant quantum supergroup at root of unity**.

Vertex Algebras

Principal Case

Beyond Principal Cas

Main Results

Examples

Future Directions [2/2]

For example, the non- C_2 -cofinite subregular ${\mathcal W}$ -algebra

$$\mathfrak{B}_{n+1} := \mathcal{W}_{-n+\frac{n}{n+1}}(\mathfrak{sl}_n, f_{\mathsf{sub}})$$

corresponds to the (A_1, A_{2n-1}) Argyres-Douglas theory²⁰ via the 2d/4d correspondence [Adamović-Creutzig-Genra-Yang '21].

In this context, the Feigin–Semikhatov duality can be regarded as a special case 21 of the \mathfrak{S}_3 -triality in Y-algebras [Gaiotto–Rapčák '19].

We expect that the cohomological approach is efficient as well in extending our result to more general cases (work in progress).

 $^{^{19} \}text{When } m=0,$ the right-hand side corresponds to the **modular double** of $U_q(\mathfrak{gl}_n).$ See [Bershtein–Feigin–Merzon'18] for detail (cf. [Cheng–Kwon–Lam'08]).

 $^{^{20} {\}sf From}$ this viewpoint, we may regard \mathfrak{B}_2 as the free bosonic $\beta \gamma\text{-system}.$

²¹Our case is related to $Y_{n,1,0}[\Psi]$ presented in [Gaiotto–Rapčák '19].