Identical Duals
— Gap Function —

Seiichi [wamoto
Professor emeritus, Kyushu University

Yutaka Kimura
Department of Management Science and Engineering
Faculty of Systems Science and Technology
Akita Prefectural University

Abstract

We consider identical duals of two pairs of minimization (primal) problems and
maximization (dual) problems from a view point of gap function. The identical dual
means that both optimum points of a primal problem and its dual one are identical.
An identity

n—1
(CD) Z[(fﬂk—l — )ik + k(e — prt1)] + (Tt = Tn)pin + Tnpin = Top
k=1

is called complementary [17]. The complementary identity leads to a gap function.
We show that the complementary identity and the gap function play a fundamental
part in analyzing an identical duality between primal and dual.

1 Identical Dual 1

As a pair of primal problem and dual problem, we take n-variable optimization problems:
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minimize (o1 — z)® + 23] + (@01 — 20)* + 22

1
subject to (i) z € R", (ii) zp=c

b
Il

(P1)

n—1
Maximize 20— (18 + (sx — pesn)?] — 1 — 12

D k=1
(D) subject to (i) p€ R™.

First we present an identity, which plays a fundamental role in analyzing the pair. Let
x = {xr}§, p = {u}7 be any two sequences of real number with xy = ¢. Then an identity

n—1

(C1) o = Z[(xk_1 — )ik + TR — 1))+ (Tn1 — ) + Tfin
k=1



holds true. This identity is called complementary. Furthermore the complementary iden-
tity implies that
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[(@r1 — k= p1)* 4 (@6 = pr + fr1)?] 4 (@1 — 2 — p10)* + (20 — pn)*
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This is an identity on R"xR"™, which is called quadratic.
Now we define three functions f, g : R* — R', h: R"xR" — R' by

n

f@) = (@1 — o) + 3]

k=1
n—1
() = 2c =Y [+ (e — )] — 2085
k=1
n—1
h(z,p) = [(xk—l - Tk — :"Lk)2 + (T — i + ,Uk+l)2] + (Tn1 — Tn — :un)Q + (20 — /‘n)z'
k=1

They are called primal, dual and gap functions, respectively. Then (QI;) is summarized
as follows.

Lemma 1 It holds that

QL) f(x) —g(n) = h(z,p).
We consider a linear system of 2n-equation on 2n-variable (z, u):
C—T1 = M1, L1 = fb1 — M2
(EC1)  @po1 — ok = ey, T = pe —fopr 25k <n-—1
Tp—1 — Tp = Un, Tn = [n.
Lemma 2 [t holds that
(i) h(x,u) >0 V(z, u) € R"XR"
(i) h(z,p) = 0<= (z,pn) satisfies (ECy).

Corollary 1 [t holds that
(i) flz)=g(u) V(z, p) e R'R"
(ii)  fz) = g(u) <= (2, ) satisfies (ECy).

Definition 1 We say that that (P;) and (D) are dual to each other and (EC;) is an
equality condition (EC) if Corollary 1 (i), (ii) hold. Then we say that one is dual of the
other. This definition applies for any triplet such as {(P;), (D;), (ECy)}.
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From Corollary 1, it turns out that both are dual to each other, and (EC;) is an

equality condition.

Lemma 3 (EC,) has a unique solution:

Tr = (122'1, T2y, ooy Ty «ooy Tp_1, l’n)
C
- F (FZn—la FZn—37 "'7F2n—2k+17 ceey F3a Fl)?
2n+1
= (:U/h K2y ooy My ooy Hn—1, ,U/n)
C
= Jai (an, FQn—27 “‘7F2n—2k7 “‘7F47 FQ)
2n+1

(2)

Here {F,,} is the Fibonacci sequence. This is defined as the solution to the second-order

linear difference equation

Tn42 — Tnt+1 — Tp = 07 T = 17 Ty = 0.
n -2 -1 01 2 3 4 5 6 7 8 9 10 11
F{--- -1 1 0 1 1 2 3 5 8 13 21 34 55 &9

Table 1 Fibonacci sequence {F},}

Proof.  From (EC;), we have a pair of linear systems of n-variable on n-equation:

(3)

c= 311 — I ¢ = 2y — 2
T1 = 3x2 — T3 p1 = 3pia — pi3
(EQq) : :
Tpo = 3Tp_1 — Ty Hn—2 = 3/-1%—1 — Hn
Tp_1 = 2T, Hn—1 = 3,“%
The left system has a solution z in (1), while the right has a solution px in (2). O
Fo,
Theorem 1 The primal (Py) has a minimum value m = c(c — 1) = —=2—c* at a path
2n+1
T = (j:lv ':%27 R i‘kv ) j:n—lv jn)
c
= 7 (Fon—1, Fon-3, ooy Fonopr1, -, F3, F1).
2n+1
. FQn 2
The dual (D1) has a mazimum value M = cp} = ¢ at a path
2n+1
po= (HT? M; R ﬂza R :u:z—la ,u,’;)
c
- I3 (F2n> FZn—2> "'>F2n—2k> "'>F4a FZ)
2n+1



Let o = {zx}g, 1 = {pu}7 be any two sequences of real number with zy = c¢. Then a
complementary identity

n—1

(C1) cem = Z[(xk_1 — @)k + k(i — prrr)] + Ty — Tn) i + Tfin
k=1

holds true.
Let us define two sequences y = {y.}3", v = {}3" from =z = {2}8, p = {p}?
through

Y1 =C— 1, Y2==T1, Ys =1 — T2, Y4 = T2, Ys = T2 — I3

vy Yon—2 = Tp—1, Yon—-1 = Tn-1 — Tn, Yon = Ty
Vy = M1, V2 = 1 — M2, V3 = Uz, Va = g — U3, Vs = U3
ces Von—o = Up—1 — Un, Vop—1 = Un, Von = Un

, respectively. Then an identity

2n
(CT) CVp = Zykyk
k=1

holds under a constraint — a linear system of 4n-variables (y, v) on 2n-equations — :

c= 1Yy +Y v, =l + 13
Y2 = Y3+ Ya V3 = Vst Vs
(Cyu) . .

Yon—4a = Yon-3 + Yon—2 Vop—3 = Vop—9 + Vop 1

Yon—2 = Yon—1 + Yon Von—1 = Von.

An equality (C}) with constraint (C¥") is called a 2n-variable conditional complementarity.
This is simply written as (Cf) under (C¥").

Now let y = {yx}7", v = {w}7" satisfy (CY"). Then an elementary inequality with
equality

20y < 22 4+y? on R*; z=y (5)

yields

2n
20 <Y (4R + 7).
k=1

Thus we have an inequality
2n 2n
2cvy — Zl/i < Zyi
k=1 k=1
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The sign of equality holds iff
(ECy) yr = 1<k<2n. (6)
Hence we have a pair of conditional optimization problems:
minimize y; +y5 4+ + Vo1 + Yon
subject to (1) y14+y2 = ¢
(2) ys+ys =y

(P1) :
(n—1) yan—3+ Yon—2 = Yon—s
() Yon—1+ Yon = Yon—2

(n+1) yeR™

Maximize 2cv; — (V7 4+ Vs + 4 Va1 + Vi)

subject to [1] o +v3 =14
[2] Vy -+ Vs = U3

(D)

n—1] vop—o+ Vop—1 = Vap_3
[n] Vopn = Vop—1

n+1] veR™

Let (AC;) be an augmentation of the system (CY{") with the additional equality condition
(ECl):

c= 1Y +Y2 Vi = Vot U3
Yo = Ys+ Y V3 = Vs + Vs
(ACy) Yon—a = Yon—3 + Yon—2 Von—3 = Vop_2 + Von_1
Yon—2 = Yon—1 1 Yon Von—1 = Vop
Y = v 1 < k< 2n.

The linear system (AC) is of 4n-variables on 4n-equations. Let (y, v) satisfy (AC;). Then
both sides become a common value with five expressions:

ity
=
(5Vy) = 2 — (Vi +vi+-+1d)
= i+ v+ 40,

= Cly.



The system (AC;) has indeed a unique common solution:

Y= (yl> Ya, o5 Yks -+ Yon—-1, an)
c
- F (F2n7 F2n—17 "'7F2n—k+17 "'7F2a Fl)?
2n+1
V:<V17 Voy ooy Viy «vvy Vop—1, VQn)
c
= F (FQTH FQTL—I? ---7F2n—k+17 "’7F27 Fl)
2n+1
Fon
Theorem 2 The primal (P1) has a minimum value m = 2" at a path
2n+1
g: (glv g27 R glm BRI an—la QQTL)
c
= F (FQTH FQTL—I? "'7F21’L—k+17 ey F27 Fl)
2n+1
. Fon 2
The dual (Dy) has a mazimum value M = ¢ at a path
2n+1
V= (U], Vsy ooy Vpy wovy Vs 1 Us)
c
- F (F2n7 FQ?’L—l) "'7F2n—k+1a ceey FZ, Fl)
2n+1

Both optimal solutions (point and value) are identical:
r=pu*, m= M.
Further both are Fibonacci.

Thus Fibonacci Identical Duality (FID) holds between (P) and (Dy) [15-17].

We remark that the 2n-variable pair is a transliteration from n-variable one (Py),
(Dy).

2 Identical Dual 2

Next we consider the following pair

3
—

F
minimize (o1 — z)® + 23] + (@1 — ) + F—Hxi
(Pr) . = )
subject to (i) z€ R", (ii) xg=c
n—1 F
Maximize 2cp1 — > (7 + (e — pir)*] — o — 412
(D ) =1 Fm+1

subject to (i) w € R",
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where {F, } is the Fibonacci sequence. The identity (C;) is enhanced to

n—1

(Cm) ctn = Z[(fﬁk—l — @) i+ T (e — perr)] + (T — T i +

Fm—l—l Fm
T, ™ Mn
Fm Fm—l—llu

where m > 1. This identity is called F,,-complementary.
Furthermore the complementary identity implies that

—_

n—

Fm-l—l 2

[(Tpo1 — 2)® + 23] + (o — 20)* + 7 Tn

1

e
Il

+ [ + (e — prgr)®] + iz +
1

3
—

F,
iy, — 2cq
Fm+1 '

e
Il

QL)

n—

1
Ik L — Tk — pg)° +(Ik—,uk+,uk+1

e (e ).

This is an identity on R"xR"™, which is called quadratic.
Now we define three functions f, g : R* — R', h: R"xR"™ — R! by

F,
fla) = > [(wnor — @) + 23] + (w01 — 20)7 + - Ftl i
k=1 »
n—1 F
g(p) = 2cpm = Z [”i + (e — ,Uk-i-l)ﬂ — iy~ E mlﬂi
k=1 m—+
n—1
h,(ﬁE,[l) = [(Zlfk 1 — Tk — Mk) —+ (xk -+ ,Uk+1
k=1
(B — 0 — 1a)? (\/T \F )
Fra

They are called primal, dual and gap functions, respectively. Then (QI,,) is summarized
as follows.

Lemma 4 [t holds that
(QL,)  f(z) —g(p) = Az, p).

We consider a linear system of 2n-equation on 2n-variable (z, u):
C—T1 = M1, L1 = M1 — M2
(ECh)  @p—r —xp = pgy Tk = p — 1 2<k<n-—1

_ Fogr
Tpn-1— Tpn = Hn, Tn = Hn.

Fr,




Lemma 5 It holds that
(i) h(x,u) >0 V(z, u) € R"XR"
(i) h(z,pu) = 0<= (z,u) satisfies (EC,,).

Corollary 2 [t holds that
(i) flx)=g(u) V(r, p) e R'<R"
(ii) fz) = g(p) <= (2, ) satisfies (ECp,).
From Corollary 2, it turns out that (P,,) and (D,,) are dual to each other, and (EC,,)

is an equality condition. The equality condition (EC,,) is a linear system of 2n-equations
on 2n-variables (z, ).

Lemma 6 Let (z, p) satisfy (ECy,). Then both sides become a common value with five
ETPTessions:

flz) = clc—z1) = g(p)

n—1

(5Vim)

Fr,
= (g + (ke = paeyn)?] + iy + I fy = ctin.
k=1 m—+1
The primal (P,,) has a minimum value
m = f(x) = c(c— 1)
at x, while the dual (D,,) has a mazimum value
n—1 F
M = g(p) = [MZ (e = pesd)? |+ o+ T = o
k=1 m+1
at p.
Lemma 7 (EC,,) has indeed a unique solution:
T = (xlu Zo, ..y Tky -+ Tn-1, xn)
c
= W(Fm—ﬁ—an?u Fm+2n747 ) Fm+2n72k7 ceey Fm+27 Fm); (7)
H = (/Lla M2y oo Pky o5 M1, Nn)
c
= Ja ) (Fm+2n—17 Fm+2n—37 LRI Fm+2n—2k+17 R Fm+37 Fm—l—l)- (8)
m+2n

Proof.  From (EC,,), we have a pair of linear systems of n-variable on n-equation:

c= 31— X9 c = 21 — g
T = 3xy — I3 pr = 3z — p3
E . .
( Qm) Tp—g = 3Tp_1 — Tp Hn—2 = 3,U/n—1 — Hn
Fm_;,_g Fm+3
Tpn—1 = Tn n—1 — n-
1 F Hn—1 Fror H



The left system has a solution z in (7), while the right has a solution p in (8). O

Let us define two sequences y = {y.}3", v = {}3" from =z = {24}8, p = {p}?
through

Y =C— X1, Y2 =21, Y3 =1 — T2, Yg = T2, Y5 = T2 — T3

vy Yop—2 = Tp—1, Yon—1 = Tn—-1 — Tn, Yon = Tn

Vy = M1, Vo2 = 1 — H2, V3 = g, Va = [lg — I3, Vs = [43

cey Vop—2 = Un—1 — Hn, Vopn—1 = HUn, Vonp = HUn

, respectively. Then an identity

2n—1
(Ch)  an = Z YrVe + \ F m+1 “
k=1 m+1

holds under a constraint — a linear system of 4n-variables (y, ) on 2n-equations —

C= Y1 +Y2 =t
Yo = Y3+ Ys V3 = Vg + Vs
(ny) . .

Yon—a = Yon—3 + Yon—2 Vop—3 = Vap—2 + Vo1

Yon—2 = Yon—-1 + Yon Vop—1 = Vop.

An equality (C7,) with constraint (C¥) is called a 2n-variable conditional complementar-
ity. This is simply written as (C},) under (C¥).

Now let y = {yp}3", v = {1 }?" satisfy (C¥). Then the elementary inequality with
equality yields

2n—1

F,
2em <) (Ui T V) v, +
k=1 m

F, 2
2n*
Fm+1

Thus we have an inequality

2n—1 2n—1

2cvy — Z Vi —

The sign of equality holds iff

m—l—l

(ECm> Y = Vk 1 S k S 2n — 17 Fm+1y2n = FmVQn- (10)

We remark that an equivalence

Fm+1 m+1 o
Ia Yon Von < an = Vo
m m+1




yields the last equality.
Hence we have a pair of conditional optimization problems:

minimize yi +ys + -+ Yo,y + F—“ygn

subject to (1) y1+y. =c
(2) ys+ya = y2

(n—1) Yon—3+ Yon—2 = Yon—u
(n) Yon-1 + Yo = Yon—2
(n+1) yeR™

F,
Maximize 2cv — <V12 R SRR N V- S —1/22n>
Fm+l

subject to [1] o +uv3 =14

[2] Vy+ Vs = Vs

[n—1] von o+ Vo1 = Von_3
[n] Vo = vana
[n+1 veR™
Let (AC,,) be an augmentation of the system (C¥’) with the additional equality condition
(ECy):
C= 1Yty VG = Vy+ 13
Y2 = Y3+ ya V3 = Uy + Us

(AC,,) Yon—a = Yon—3 + Yon—2 Vop—3 = Vap_o + Vop_1

Yon—2 = Yon—1 + Yon Von—1 = Vap

Yy =1 1< k<2n—-1, Foi1Ym = Flon.

The linear system (AC,,) is of 4n-variables on 4n-equations. Let (y, v) satisfy (AC,,).
The system (AC,,) has indeed a unique solution:

Y=Y, Y2, -5 Yk» > Yom2, Yon 1, Yon)
c
= Ja (Fm+2n—17 Fm+2n—27 ---aFm+2n—k7 LI Fm+27 Fm—l—lu Fm);
m+2n
V:<V17 Vo, ooy Viy -, Von—2, Vop—1, VQ'n,)
C
= F—(Fm+2n—17 Fm+2n—27 ---aFm+2n—k7 LI Fm+27 Fm—l—lu Fm—l—l)-
m+2n

10



Note that only the last elements are different, as underlined. However, in Case m = 1,
both solutions are identical:

Y= (Y1, Y2, - Uk» > Yon-2, Yon-1, Yon)
:V:<V17 Vo, «vvy Viy -+ Von—2, Von—1, V2n>
C
= F (an, FQTL—17 "'7F21’L—k+17 -"7F37 F27 ﬂ)
2n+1

We note that F, = F} = 1.

E
_ . +2n—1
Theorem 3 The primal (P,,) has a minimum value m = ——="-c* at a path
Fm+2n
Y= (yla Y2, -5 Yky -5 Y2n—2, Y2n-1, y2n)
c
- F (Fm+2n—1> Fm+2n—2a ey Fm+2n—ka ey Fm+2> Fm+la Fm)
m+2n
. Fm+2n71 2
The dual (D,,) has a mazimum value M = ————c* at a path
Fm+2n
x * * * * * *
vi= (U1, Vs ooy Vi oos Vanogs Vano1s Vap)
c
- (Fm+2n—1a Fm+2n—2> sy Fm+2n—k> sy Fm+2a Fm+1> Fm+1)-
Fm+2n

Both optimal solutions (point and value) are identical except for the last element:
U =v; 1<k<2n-1, m = M.

Further both are Fibonacci:

N Fm+2n—k 1<k<2 1 ~ o Fm * Fm—l—l
Yp =V = —clsks2n=1 4 = 50 1y, = 5 ¢
m—+2n m+2n m+2n
Fm+2n—1 2
m=M = ———=c".
Fm+2n

Thus Fibonacci Identical * Duality (FID) holds between (P,,) and (D,,) [15-17].
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