Uniform convexity on a complete geodesic space
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1 Introduction

A Banach space is a generalization of Hilbert spaces and we often assume additional
conditions for the space when we obtain results for nonlinear analysis. Uniform con-
vexity is one of such conditions and, for instance, the following convex minimization
theorem is obtained for uniformly convex Banach spaces.

Theorem 1 ([3]). Let E be a uniformly convex real Banach space and let f : E —
|—00,400] be a proper lower semicontinuous convez function such that f(z,) — o0
for {zn} C E satisfying ||z,|| — oo. Then, there exists a point xo € E such that

= inf .
f(@o) = inf f(z)

On the other hand, we know that a Hadamard space is another generalization of
Hilbert spaces. It is defined as a complete metric space having a particular convexity
structure and it also has various useful properties that Hilbert spaces have. We can
also obtain the following convex minimization theorem.

Theorem 2 ([1]). Let X be a Hadamard space and let f : X — |—00,+00] be a proper
lower semicontinuous convex function such that f(z,) — oo for {z,} C X satisfying
d(zp,w) — oo for some w € X. Then, there exists a point xo € X such that

f(xo) = inf f(x).

zeX
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In this work, we obtain a similar result as above under the assumptions that are
satisfied for both Banach spaces and Hadamard spaces.

2 Preliminaries

Let E be a real Banach space. Then we know that the following propositions are
equivalent:

e F is uniformly convex;
e Ifr>0,z€F and {x,},{yn} C E satisfy

. . 1 1
Jim lzg — 2] = Tim [ly, — 2] = lim [[(Gen + 5y0) — 2] =1,
then
lim ||z, — y.| = 0.
n—o0

Moreover, we can prove the following lemma on uniformly convex real Banach
spaces.

Proposition 1. Let E be a uniformly convex real Banach space. Then,
[tz + (1 = t)y) — 21> < tlla —2[* + (1 =) [ly — 2|
for x,y,z € X and t € [0,1].

Let E be a real Banach space. Then the following propositions are equivalent:

e F is reflexive;
e (o2, C, is a nonempty set for any sequence {C,,} C 2F of nonempty bounded
closed convex subsets which is decreasing with respect to inclusion.

We know that if E is uniformly convex real Banach space, then E is reflexive and
strictly convex. For more details about the properties of uniformly convex real Banach
spaces, see [2, 3, 4].

Let (X, d) be a metric space and x,y € X. A geodesic path from x to y is an isometry
¢ :[0,d(z,y)] — X such that ¢(0) = z, c(d(z,y)) = y and d(c(s),c(t)) = |s — t| for
every s,t € [0,d(x,y)]. If a geodesic exists for every z,y € X, then we call X a
geodesic space. The image of a geodesic path from x to y is called a geodesic segment
joining = and y. A geodesic segment joining x and y is not necessarily unique in
general. When it is unique, this geodesic segment with endpoints z and y is denoted
by [z,y]. For x,y € X and t € [0, 1], there exists a unique point z € [z, y] such that
d(z,z) = (1 —t)d(z,y) and d(y, z) = td(x,y). We denote it by z = tx & (1 — t)y.
A geodesic triangle with vertices z,y,z € X is the union of geodesic segments [z, y],
ly, z] and [z, x]. We denote it by A(x,y, z).



For A(z,y,2) in a uniquely geodesic space X, there exist points Z, 7,z € R? such
that d(z,y) = [|Z — Jl[re, d(y, 2) = [|§ — Z||re, d(z,2) = ||z — Z[|r2, where [| - ||g2 is the
Euclidean norm on R2. The triangle having such vertices Z, ¥ and Z in R? is called
a comparison triangle of A(x,y,z). Notice that it is unique up to an isometry of
R2. For a specific choice of comparison triangles, we denote it by A(Z,7,2). A point
P € [z, 7| is called a comparison point for p € [z,y] if d(x,p) = ||T — p||ge.

Let X be a uniquely geodesic space. If for any p,q € A(z,y,z), and for their
comparison points p, § € A(Z, 7, Z), the CAT(0) inequality

d(p,q) < [|p — ql|re

holds, then we call X a CAT(0) space. If X is complete, then X is said to be a
Hadamard space. A subset C' of X is said to be convez if tx @ (1 —t)y € C for every
xz,y € C and t € [0,1]. For a subset S of X, a closed convex hull of S is defined as
the intersection of all closed convex sets including S, and we denote it by clco S.

Let X be a CAT(0) space. From the CAT(0) inequality, it is easy to see that

dtz ® (1 —t)y, 2) < td(z,2)* + (1 — t)d(y, 2)* — t(1 — t)d(z,y)*

for every x,y,z € X and t € [0, 1].
The following proposition shows that a CAT(0) space has a similar property to the
uniform convexity.

Proposition 2. Let X be a CAT(0) space, let {x,},{yn} C X, let z € X and let
re€l0,00[. If

1 1
lim d(x,,2) = li_>m d(yn,z) = lim d(ixn D =Yn,2) =T,

n—o00 n—o00 2
then
lim d(zn,yn) =0.
n—oo

Proof. For {z,},{yn} C X, z € X and r € ]0, 00, we suppose that

: : . 1 1
nh_{lgo d(xp,z) = nh_)rglo d(yn, z) = nh_{lgo d(ixn ) S Yns z) =r.
Then,
1 1 1 1 1
d(éxn S §yn7 2)2 S §d(xn> Z)2 + §d(yn7 2)2 - Zd(xnayn)za
1 1
d(@n,yn)* < 2d(wn, 2)° + 2d(yn, 2)° = 4d(5T0 © SYn, )",
Letting n — oo, we have
nh_)ngo d(pn,yn) = 0.
This is the desired result. U

For more details about the properties of Hadamard spaces, see [1].
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3 Uniform convexity of a complete geodesic space
Let X be a uniquely geodesic space. If

dtz @ (1 —t)y, 2)? < td(z,2)* + (1 — t)d(y, 2)?

for z,y,z € X and t € [0, 1], then X is said to satisfy the condition (D).

Let X be a uniquely geodesic space. X is said to be sequentially uniformly convex
if X satisfies the condition (D) and, for » > 0, z € X and {z,},{y,} C X, it holds
that

lim d(z,,y,) =0

n—oo

whenever

. . ) 1 1
nh_{lgo d(xp,z) = nh—>r2<> d(yn, z) = nh_{lgo d(ﬁxn ) S Yns z) =r.
Uniformly convex real Banach spaces and Hadamard spaces are sequentially uni-

formly convex complete uniquely geodesic spaces.

Theorem 3 (Strict convexity). Let X be a sequentially uniformly conver uniquely
geodesic space. Forr >0 and x,y,z € X with x # vy, if

d(z,z) =d(y,z) =,

then

1 1
d(éx & 3 z) <.

Proof. For r > 0 and z,y,z € X with x # y, we suppose that d(z,z) = d(y, z) = r.
Ifr < d(%x & %y, z), then, since

1 1
r?<d(zze -y, 2)? <

1
2 1 2 2
5 5 d(z,z)” + 2al(y, z) =1,

N —

we have d(%x o %y, z) = r. From sequential uniform convexity, we have d(x,y) = 0.
This is a contradiction. Therefore, we have that

1 1
d(éx & S z) <.
This is the desired result. O

Let X be a metric space and let T': X — X be a mapping. We denote the set of
fized points of T by F(T), that is, F(T) ={x € X : Te = z}. If F(T) # @ and

d(Tz,u) < d(x,u)

for x € X and u € F(T), then we say that T is quasi-nonexpansive.
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Theorem 4. Let X be a sequentially uniformly convex uniquely geodesic space and
let T: X — X be a quasi-nonezxpansive mapping. Then F(T) is closed and convex.

Proof. First, we show that F(T) is closed. Let {z,} C F(T) be a sequence such that
T, — xo. Since T’ is quasi-nonexpansive, we have
d(zo, Txo) < d(zo, Tn) + d(xn, Tzo)
< 2d(xp, o).
Therefore, since x,, — ¢, we have d(zg, Txg) = 0 and thus xg € F(T'). Hence, F(T)
is closed.
Next, we show that F'(T) is convex. Let z,y € F(T), a € [0,1] and z = az®(1—a)y.
Since T is quasi-nonexpansive, we have
d(z,Tz) < d(z,z
d(y, Tz) <d(y,z

)
).
Moreover, since

d(z,y) < d(z,Tz) + d(y, Tz) < d(z,z) + d(y, z) = d(z,y),

we have d(z,Tz) = d(z,z) and d(y,Tz) = d(y, z). we suppose that z # Tz. Then,

d(z,Tz) =d(z,z) = s,
dy,Tz) =d(y,z) =t.

From Theorem 3, we have

1 1
d(§z & §Tz,x) < s,
1 1
SL@aT
d(QZ@ 5 z,y) <t
and thus
1 1 1 1
d(z,y) < d(éz & §Tz,x) + d(§z ® éTz,y) <s+t=d(z,2)+dy,z) =d(x,y).
This is a contradiction. Therefore, z = Tz and z € F(T). Hence, we have F(T) is
convex. 0

Let X be a metric space. For a point x € X and a nonempty subset C' C X, the
distance between them is defined by d(z, C) = infycc d(x, y).

Theorem 5 (The nearest point theorem). Let X be a sequentially uniformly convex
complete uniquely geodesic space and let C be a nonempty closed convexr subset of X.
Then, for x € X, there exists a unique point yo € C' such that d(z,yo) = d(z,C).



Proof. Forz € X, letd = d(z,C). Then, for n € N, we can take a sequence {y,} C C
such that

d <d(z,yn) §d+%.

Then, we have d(x,y,) — d. We suppose that {y,} is not a Cauchy sequence. That
is, we suppose that there exists € > 0 such that for any ¢ € N, there exists m;,n; > 1
such that d(ym,,yn,) > €. In this way, we take two sequences {ym. }, {yn,} C {yn}-
Then,

lim d(z,ym,) = lim d(z,yn,) =d

11— 00 11— 00

and we have

2 2

1 1
d2 S d(.f, Ym; D _yni)2
1
< d(x,ymi)2 + §d(x,ym)2 — d2.

1
2
Hence, from sequential uniform convexity of X, we have
lim d(ym,, yn;) = 0.
1—> 00

This is a contradiction and thus {y,} is a Cauchy sequence. Since X is complete and
C' is closed, there exists yg € C such that y,, — y9. Therefore, we have

Az, yo) = lim d(z,y,) = d = d(x,C).

Next, we show the uniqueness of yy. We suppose that yo, zg € C satisfying yo # 2o
and d(x,y0) = d(z, z9) = d(z,C). Then, from Theorem 3, we have

1 1
d(ﬂj‘, 5?}0 @ 520) < d(l‘, C)
This is a contradiction. Therefore, for x € X, there exists a unique point yy € C such
that d(x,yo) = d(z,C). O

Let X be a sequentially uniformly convex complete uniquely geodesic space and let
C' be a nonempty closed convex subset of X. Then for x € X, there exists a unique
point y,. € C such that

d(JJ, ym) = d(JJ, C)
We call such a mapping defined by Pox = y,., the metric projection of X onto C.

Theorem 6 (Reflexivity). Let X be a sequentially uniformly convex complete uniquely

geodesic space and let {C,} C 2% be a sequence of nonempty bounded closed convex

subsets which is decreasing with respect to inclusion. That is, C1 D Cy D --- D Cp D
-« Then, .—, Cy, is nonempty.



Proof. Since C), is nonempty bounded closed convex subset for n € N, for x € X,
we can take a sequence {x,} C X by x, = Pc,x. Then {d(z,z,)} is bounded and
increasing real sequence and hence {d(z,z,)} has a limit ¢ € [0, co[. That is, we have

lim d(z,z,) = c.
n— oo
First, we show that {x,} converges to some point zop € X. If ¢ = 0, since

d(z, Pc, x) — 0, we have z,, — x¢ as 9 = x. Hence, we suppose that ¢ > 0. Suppose
that {z,} is not a Cauchy sequence. That is, there exists ¢ > 0 such that for any
i € N, there exists m;,n; > i such that d(x,,,, x,,) > €. Without loss of generality, we
can suppose that m; > n;. In this way, we take two sequences {ym. }, {yn,} C {yn}-
Then,

lim d(z,z,,) = lim d(z,z,,) =c

11— 00 11— 00
and we have
1 1 1 1
d(zx, 5%m; &) 596,%)2 < §d(x,xmz)2 + éd(x,xnzf
and thus
) 1 1
limsupd(z, =&, ® —x,,) < c.
1—00 2 ‘ 2 ’
Since Ty, Tpn, € Cp,, we have
1 1
d(z,xp,) = d(z, Pc, ©) < d(z, 5T &) §xm)
and hence we have
.. 1 1
¢ <liminfd(z, =xm, © =z, ).
1—>00 2 ¢ 2 ¢
Therefore, we have
) 1 1
Zlggo d(z, 5 Tm; @ 590,%) =c.

From sequential uniform convexity of X, we have lim; o d(x,,,z,,) = 0. This is a
contradiction. Therefore, {x,} is a Cauchy sequence and thus there exists o € X
such that x,, — xg.

Next, we show that xg € (), —; Cp. For ng € N, if n > nyg, since {x,} C Cp,, we
have that z¢ € C,,,. Therefore, ¢ € ﬂflozl C,, and it completes the proof. O



4  Minimization theorem for a convex function

In this section, we prove a minimization theorem for a convex function defined on
a uniformly convex geodesic space. we obtain the following lemmas.

Lemma 1. Let X be a sequentially uniformly convex complete uniquely geodesic space
and f : X — ]—00,4+00] be a proper lower semicontinuous convex function. Then, f
18 bounded below on a bounded set.

Proof. Let S C X be a bounded set and let C' = clco S. If inf,c¢ f(x) = —o0, then
we can define a sequence of subsets {Cy} C 2% by

Cr={2€C: f(z) < -k}

and C}, is bounded closed convex set for every k € N. Moreover, we have C; D Cy D
- D Cf D +--. From Theorem 6, (;—; Ck is nonempty. This is a contradiction.
Therefore,

—oo < inf f(x) < inf f(x)

zeC zeSs
and it completes the proof. Ol

Lemma 2. Let X be a sequentially uniformly convex complete uniquely geodesic space
and let f: X — |—00,4+00] be a proper lower semicontinuous convex function satis-
fying f(zn) — oo for {z,} C X such that d(z,,w) — oo for some w € X. Then, f is
bounded below on X.

Proof. Let M = inf,cx f(x). Since f is proper, we have M € [—oo,+0o[. Then,
there exists a sequence {z,} C X such that f(z,) — M. If {z,} is not a bounded
sequence, then there exists a subsequence {z,,} C {z,} such that d(w, z,,) — o
for w € X. From assumption of f, we have f(z,,) — oo. This is a contradiction.
Therefore, {z,} is a bounded sequence. From Lemma 1, we have {f(z,)} is bounded
below. Hence, we have M > —oo and it completes the proof. O

Theorem 7 (Minimization theorem). Let X be a sequentially uniformly convex com-
plete uniquely geodesic space and f : X — |—o00, +00| be a proper lower semicontinu-
ous convex function and f(z,) — oo for {z,} C X such that d(z,,w) — oo for some
w € X. Then, there exists a point xy € X such that

f(xo) = inf f(z).

reX

Proof. Let M = inf,.cx f(x). From Lemma 2, we have M € R. Then, we can define
a sequence of subsets {C,, } C 2% by

Cn:{zeX:MSf(z)SM-F%}
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and C), is a nonempty bounded closed convex set for any n € N. Moreover, {C),}
satisfies that C; D Cy D ++- D Cy, D -+ -. Then, from Theorem 6, we have (|, C,, #
@. Therefore, f(zg) = M for zo € (), —, Cy, and hence

f(xo) = inf f(z).

zeX

This is the desired result. O
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