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ABSTRACT. We introduce existence and convergence theorems on two modified
proximal point algorithms for convex functions in Hadamard spaces.

1. INTRODUCTION

Let (X,d) be an Hadamard space and f a proper lower semicontinuous convex
function of X into (—oo,00]. Then we study the problem of finding a point u € X
such that

f(w) = inf £(X).
We denote by argminy f or argmin, ¢ x f (y) the set of all solutions to this problem.

A well-known method for approximating a solution to this problem is the so-
called proximal point algorithm first introduced by Martinet [10] in the case when
X is a real Hilbert space. The proximal point algorithm generates a sequence {x,, }
by z1 € X and

1
Tpy1 = argmin {f(y) + —d(y,xn)2} (n=1,2,...),
yeX 2/\n
where {A,} is a sequence of positive real numbers.
We know the following results on the proximal point algorithm:

e If X is a real Hilbert space and inf,, A,, > 0, then {x,} is bounded if and
only if argminy f is nonempty. In this case, the sequence {x,} is weakly
convergent to an element of argmin y f; see Rockafellar [12];

e if X is a real Hilbert space, 220:1 An = 00, and argminy f is nonempty,
then {x,} is weakly convergent to an element of argminy f; see Brézis and
Lions [3];

e if > ° A\, = oo and argminy f is nonempty, then {z,} is A-convergent
to an element of argminy f; see Bacdk [1].

Bacak [1] generalized the weak convergence theorem for {z,,} by Brézis and Lions [3]
to the case where X is an Hadamard space. However, the equivalence condition
that {x,} is bounded if and only if argminy f is nonempty was not proved in
the Hadamard space setting. This equivalence condition holds true as we see in
Corollary 4.2.

In this paper, we introduce existence and convergence theorems for two modified
proximal point algorithms in Hadamard spaces which was proved by Kimura and
Kohsaka [8]. One of these algorithms is a generalization of the proximal point

2010 Mathematics Subject Classification. 47TH10, 47J05, 52A41, 90C25.
Key words and phrases. Convex function, fixed point, Hadamard space, minimizer, proximal
point algorithm, resolvent.

1



2 F. KOHSAKA

algorithm. These algorithms were studied by Kamimura and Takahashi [7] for
maximal monotone operators in Hilbert spaces.

2. PRELIMINARIES

Throughout this paper, we denote by R and N the sets of real numbers and
positive integers, respectively. We also denote by R? the two dimensional Euclidean
space with norm |- |g..

A metric space (X,d) is said to be uniquely geodesic if for each z,y € X, there
exists a unique mapping c: [0,1] — X such that ¢(0) = z, ¢(I) = y, and

d(c(s), c(t)) = |s —t|
for all s,¢ € [0,1], where [ = d(z,y). In this case, we define the convex combination
of z and y by
az ® (1 —a)y =c((1—a)l)
for all & € [0,1]. A metric space (X,d) is called a CAT(0) space if it is uniquely
geodesic and

d(az @ (1 - a)y, fr @ (1 - )2) < |aZ + (1 - a)g — (B2 + (1 = 5)2) |4
whenever o, 3 € [0,1], x,y,2 € X, Z,7, Z € R?,
d(x,y) = |‘/Z. - g|R2 ) d(yu Z) = |g - Z|]R2 9 and d(Z,.’L') = |Z - ‘/Z.|]R2 .
A complete CAT(0) space is called an Hadamard space. See [2,4] on geodesic spaces
for more details.

Let {x,,} be a sequence in a metric space (X, d). The asymptotic center A({z,})
of {z,,} is defined by

n—00 y€X nooco

A({z,}) = {z € X :limsupd(z,x,) = inf limsup d(y,xn)} .

The sequence {z, } is said to be A-convergent to p € X if

A({zn,}) = {p}
for each subsequence {z,,} of {z,}. In this case, the sequence {z,} is bounded
and every subsequence of {x,} is A-convergent to p. If X is a real Hilbert space,
then {z,} is A-convergent to p if and only if {x,} is weakly convergent to p. If
X is an Hadamard space and {x,} is a bounded sequence in X, then A({xz,}) is
a singleton and there exists a subsequence of {z,} which is A-convergent to some
point in X; see [2,5,9] for more details.
Let (X,d) be a CAT(0) space and f a function of X into (—o00, c0]. The function

f is said to be

e proper if f(a) € R for some a € X;

e lower semicontinuous if {z € X : f(x) < A} is closed for each A € R;

e convex if

flax® (1 —a)y) < af(z)+(1—a)f(y)
whenever z,y € X and a € (0,1).
We also denote by argminy f or argmin,cy f(y) the set
{ueX: flu)=inf f(X)}

of all minimizers of f. In the case when argminy f is a singleton {p} for some
p € X, we sometimes identify argminy f with p.
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If f is a proper lower semicontinuous convex function of an Hadamard space
(X, d) into (—o0, 0] and z € X, then there exists a unique point & € X such that

1)+ gdte. o = int { 10) + a7}

The resolvent Jy of f is defined by J¢(z) = & for all x € X. We know that
F(Jy) = argminy f, where F(J;) denotes the set of all fixed points of J;. For each
A > 0, the function A\f is proper, lower semicontinuous, and convex. In this case,
we have

Inta) = avgmin {A7(0) + gy, 2)? } = anganin { 1(0) + 5000
yeX yeX

for all x € X. See [2,6,11] on resolvents of convex functions for more details.
A subset C of a CAT(0) space is said to be convex if

ar®d(1l—a)yel

whenever z,y € C and a € [0,1]. If C is a nonempty closed convex subset of an
Hadamard space (X,d) and z € X, then there exists a unique point & € C such
that

d(z,z) = ylrelg d(y, x).

The metric projection of X onto C' is defined by Po(z) = & for all x € X. The
indicator function ic of C' is defined by

. 0 zeC);
io(z) = ( )
o (xeX\C).
This is a proper lower semicontinuous convex function of X into (—oo, oc] satisfying
Jic = Pc.
3. FUNDAMENTAL PROPERTIES OF RESOLVENTS

In this section, we state some fundamental results on resolvents of convex func-
tions in Hadamard spaces.

Lemma 3.1 ([8, Lemma 3.1]). Let X be an Hadamard space and f a proper lower
semicontinuous convez function of X into (—oo,00]. If \, x> 0 and z,y € X, then
the inequalities

d(Ixgz, Jupy)® + d(Iapz,x)? + 2X(f(Iapz) — F(Jupy)) < d(Jupy, x)?
and
N+ @ d(Iapz, Jupy)* + pd(Inpz, )2 + Md(Jpy, v)?
< MN(Jrpx,y)? + pd(J,py, o)?
hold.

Corollary 3.2 ([8, Corollary 3.2]). Let X be an Hadamard space and f a proper
lower semicontinuous convex function of X into (—oo,00|. Then

2d(xpz, Iapy)? + d(Jagz, 2)® + d(apy,y)? < d(Ixz,y)? + d(Iagy, z)°

and

d(JIapx, Iapy) < d(z,y)
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forall X >0 and z,y € X.
Using Lemma 3.1, we can prove the following lemma.

Lemma 3.3 ([8, Lemma 3.3]). Let X be an Hadamard space, f a proper lower
semicontinuous convez function of X into (—oo,00], {A\,} a sequence of positive
real numbers, and p an element of X. Then the following hold.
(i) If inf, Ay > 0 and A({zn}) = {p} for some sequence {z,} in X satisfying
d(JIx, 2n,2n) — 0, then p is an element of argminy f;
(ii) if limp A, = 00 and A({Jx,s2n}) = {p} for some bounded sequence {z,}
in X, then p is an element of argminy f;

We need the following minimization theorem.

Theorem 3.4 ([8, Theorem 4.1]). Let X be an Hadamard space, f a proper lower
semicontinuous convex function of X into (—o0,00], {zn} a bounded sequence in
X, {Bn} a sequence of positive real numbers such that Y .- | B, = oo, and g the
real function defined by
1 n
9(y) = limsup =7—— )  Brd(y, 21,)*
21 B ;

n—o0
for all y € X. Then g is a continuous and convex function on X such that
argminy g ¢s a singleton.
4. TWO MODIFIED PROXIMAL POINT ALGORITHMS
The following is one of our two main results in this paper.

Theorem 4.1 ([8, Theorem 4.2)). Let X be an Hadamard space, f a proper lower
semicontinuous convez function, and {x,} a sequence in X defined by x1 € X and

Tot1 = apTp & (1 —ap)Jdr, jzn (n=1,2,...),

where {an} is a sequence in [0,1) and {\,} is a sequence of positive real numbers
satisfying

NE

(1 —an)h, = 0.

n=1

Then the following hold.
(i) The sequence {Jx, rxn} is bounded if and only if argminy f is nonempty;
(ii) i sup, a,, < 1 and argminy f is nonempty, then {z,} and {Jy, sx,} are
A-convergent to an element T of argminy f.

Corollary 4.2 ([8, Corollary 4.3]). Let X be an Hadamard space, [ a proper lower
semicontinuous convez function, and {x,} a sequence in X defined by x1 € X and

Tpp1 =, 5T, (Rn=1,2,...),

where {\,} is a sequence of positive real numbers satisfying

i A, = 00.
n=1

Then the following hold.

(i) The sequence {x,} is bounded if and only if argminy f is nonempty;
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(i) of argminy f is nonempty, then {x,} is A-convergent to an element of
argminy f.
Remark 4.3. The result (ii) was obtained by Bac¢dk [1, Theorem 1.4].

Corollary 4.4 ([8, Corollary 4.5]). Let X be a real Hilbert space, f a proper lower
semicontinuous convez function, and {x,} a sequence in X defined by x1 € X and

Tpt1 = Ty + (1 —on)Jdn, g2, (Rn=1,2,...),

where {a,} is a sequence in [0,1) and {\,} is a sequence of positive real numbers
satisfying

oo

Z(l — Qp) A, = 00.

n=1
Then the following hold.
(i) The sequence {Jx, rxn} is bounded if and only if argminy f is nonempty;
(ii) if sup,, ap < 1 and argminy f is nonempty, then {x,} and {Jx, jx,} are
weakly convergent to an element T, of argminy f.

Remark 4.5. The result (ii) for the special case when lim,, \,, = co was obtained
by Kamimura and Takahashi [7, Theorem 3].

The following is the other of our two main results in this paper.

Theorem 4.6 ([8, Theorem 5.1]). Let X be an Hadamard space, f a proper lower
semicontinuous convex function, v an element of X, and {y,} a sequence in X
defined by y1 € X and
Yn+1 = QU D (1 —Oén)J,\nfyn (n: 1,2,...),
where {ay,} is a sequence in [0,1] and {\,} is a sequence of positive real numbers
satisfying lim,, A, = oo. Then the following hold.
(i) The sequence {Jx, fyn} is bounded if and only if argminy f is nonempty;
(ii) 4flim, o, =0, D07 | v, = 00, and argminy f is nonempty, then {y,} and
{Jx, ryn} are convergent to Pv, where P denotes the metric projection of
X onto argminy f.

Corollary 4.7 ([8, Corollary 5.2]). Let X be a real Hilbert space, f a proper lower
semicontinuous convex function, v an element of X, and {y,} a sequence in X
defined by y1 € X and

Ynt1 =00+ (L — ) dn, pyn (n=1,2,...),
where {an} is a sequence in [0,1] and {\,} is a sequence of positive real numbers
satisfying lim,, A\, = co. Then the following hold.
(i) The sequence {Jx, ryn} is bounded if and only if argminy f is nonempty;
(ii) 4f lim, o, = 0, D07 @y = 00, and argminy f is nonempty, then {y,}
and {Jx, syn} are strongly convergent to Pv, where P denotes the metric
projection of X onto argminy f.

Remark 4.8. The result (ii) is also a corollary of a strong convergence theorem
for maximal monotone operators in Hilbert spaces obtained by Kamimura and
Takahashi [7, Theorem 1].

We can also obtain the following convergence theorem to the case when {c,}
and {\,} satisfy conditions which are different from those in Theorem 4.6.
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Theorem 4.9 ([8, Theorem 5.4]). Let X be an Hadamard space, f a proper lower
semicontinuous convex function, v an element of X, and {y,} a sequence in X

defined by y; € X and
yn+1:anv€l§(1—an)J,\nfyn (n:1,2,...),

where {a, } is a sequence in (0,1] and {\,} is a sequence of positive real numbers
satisfying

n—oo

lim o, =0, Zan =00, and infA, >0.
n=1

Then {yn} and {Jy, ryn} are convergent to Pv, where P denotes the metric pro-
jection of X onto argminy f.
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