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1 Introduction

The spectral analysis of scalar Schrodinger operators has witnessed a lot of progress in the last decades
thanks to the impulse of various techniques from perturbation theory and semiclassical and microlocal
analysis. We primarily refer to the monographs [DS, DZ, Ma, HS, Zw] and references therein. On the
contrary, in the case of systems of Schrodinger operators the literature is much less rich and only few
results are available. These systems play an important role in many problems in quantum physics and
quantum chemistry where they either represent the original Hamiltonian which describes the physical
system or a convenient model to simplify the study. A typical example arise in the framework of the
Born-Oppenheimer approximation of molecular dynamics which allows for a drastic reduction of problem
size when dealing with molecular systems. Roughly speaking, it states that the study of the molecular
Hamiltonian which describes the dynamics of systems of nuclei and electrons is reduced to that of a
N x N system of pseudodifferential operators of the form

Pi(h) 0 0
0 Py(h) --- 0
Ph)=1| . . : + hR(z; hD,),
0 0 Pn(h)
where each P;(h) := —h*A + Vj(z), j = 1,...,N, is a scalar Schrodinger operator with potential V;

corresponding to an electronic energy-level and R(z; hD,) is a N x N matrix pseudodifferential operator
of order less than one. In this context the semiclassical parameter h > 0 represents the square root of
the quotient between the electronic and nuclear masses.

In the literature there has been some works devoted to the study of the spectral properties of systems
of coupled Schrédinger operators most of them concern the study of quantum resonances. Martinez
[Mal] obtained exponential bound on the widths (imaginary parts) of resonances for a two-level system
without crossing at the classical level, i.e., in the phase space. This happens when the two potentials
do not cross or the energy considered is lower than that of the crossing. This result has been improved
in the one-dimensional case in [Ba, Nal. See also [GM1, GM2]| for recent results in this direction. In
[FLN] the authors studied the resonances of a two-level matrix Schrodinger operator in dimension 2 with
linear conical intersection. They established a generalized Bohr-Sommerfeld quantization condition and
an asymptotic description of the set of resonances using a decomposition of this model into a direct sum
of first order systems on the real half line and the exact WKB method. In a serie of recent works, Fujiié,
Martinez and Watanabe [FMW1, FMW2, FMW3] and Ashida [As] studied the asymptotic distribution
of resonances near a given energy-level for a model of one-dimensional two-by-two system of coupled



Schrodinger operators with energy-level crossing of the form (1.1). They established precise asymptotics
on both the real and imaginary parts of the resonances in the semiclassical limit A — 0. We also refer
to the recent work of Higuchi [Hi] where an absence of resonances result was proved for a two-by-two
system with crossings.

In this paper we review the recent results of [AF] where the asymptotic distribution of the eigenvalues
in the semiclassical limit of a one-dimensional 2 x 2 matrix Schrédinger operator was studied. The

considered Hamiltonian is of the form
P(h) = (Pl(h) IR ) (1.1)

hR*  Py(h)

acting on the Hilbert space L?(R) @ L?(R), where the diagonal elements

2

Py i= 0 Vi) (1=12),
are semiclassical Schrodinger operators on the real line with smooth real-valued potentials, and the anti-
diagonal elements, R and its formal adjoint R*, are first-order semiclassical differential operators which
play the role of the interaction (see (2.2)). We fix an energy-level E € R, say E = 0, and we assume that
each potential Vj, j = 1,2, admits a simple well at this level, denoted ]e;(0), 3;(0)[ with «;(0) < 5;(0)
(we refer to the next section for the precise assumption). Under this assumption, in the phase space
Ri,g = T*R, the characteristic set

Dj(E) = {(2,€) € R%EZ + V() = B} (j=1,2) (1.2)

for E near 0 is a simple smooth closed curve. In this case, the spectrum of each scalar operator P;, j = 1,2,
is discrete near 0, consists on h-dependent eigenvalues subject to the Bohr-Sommerfeld quantization rule
(2.4). If the interaction is absent, i.e., R = 0, then the spectrum of P(h) near 0 is just the union of the
spectra of P; and P,. Under the interaction, one naturally expects that the eigenvalues of the system
are approximated in the semiclassical limit by the union of those of P, and P,. We studied the accuracy
of this approximation in the case where the two characteristic sets I'1(0) and I's(0) cross to each other,
which in particular implies an energy-level crossing at the level of the potentials. Assuming that the
energy-level crossing occurs at x = 0 and setting Ey := V1(0) = V5(0), we studied the following two cases:

e Tangential case: I'1(0) and I'y(0) intersect tangentially at one point (see Figure la).
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Figure 1: Tangential case



e Transversal case: I'1(0) and T'2(0) intersect transversally at two points (see Figure 2a).
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Figure 2: Transversal case

At the level of the potentials, the tangential case corresponds to the degenerate
crossing level coincides with 0, i.e, Ey = 0 (see Figure 1b), while the transversal cas

situation where the
e corresponds to the

situation where the crossing level is below 0, i.e., Ey < 0 (see Figure 2b). In these cases, the interaction

between the two wells is stronger than in the case without crossing. This intera
eigenvalue splitting when the two action integrals along I'y (£) and I's(E) coincide.
splitting is of polynomial order in A in both cases and gave precise estimates for

ction is observed as
We proved that the
it. In particular we

computed explicitly the leading coefficients which reflect the geometry of the crossing.

For the background of this study and the detailed proofs, we send the readers to [AF]. Here we only
state the main results and we give a very brief sketch of the method. One can also finds an account
on the existing literature in relation with the eigenvalue splitting phenomena in the introduction of the

above paper.

2 Main results

2.1 Precise assumptions

We suppose the following conditions on the potentials Vi, V5 and the interaction operator R.

Assumption 2.1. For each j = 1,2, we assume that

(i) V; is smooth and real-valued on R, and it admits limits as © — +oo such that

lim V;(z) > 0.

r—+oo

Moreover, there exists 69 > 1 such that

2 — —do . «
Vi(@)* + V(@) =O(lz|"") (j=1,2), as |z| = +oc.

(it) There exist two real points oj < B; such that

Vi(z)

m>0» Vz € R.

(2.1)



Assumption 2.1 (ii) is the so called simple-well condition. It means that V; admits a simple well ]o;, 5;]
at the energy-level E = 0. In the following, when E varies near 0, we denote by «;(E) and §;(E) the
zeros of Vj(x) — E near o and §; respectively. These are the so-called turning points.

Assumption 2.2. R is a first-order semiclassical differential operator of the form

1d
R = R(z;hD,) =ro(z) + ir1(x)hD,, D, = T (2.2)
idx
with ro,r1 smooth real-valued functions bounded together with all their derivatives on R.
For € > 0 possibly depending on h, we set I(¢) := [—¢,¢]. Under the above assumptions, the operator

P(h) is self-adjoint in L*(R) & L?(R) and its spectrum is discrete in I(e) for sufficiently small £ > 0.
For FE € I(¢), we define the action integrals along the characteristic sets I';(E) defined by (1.2)

Bj(E)
A (E) = %/F‘(E) §da::/ JE-V(dt (= 1.2). (2.3)

5 ()

The functions A; and Ay are smooth and strictly increasing near 0. It is well known (see e.g. [Ol, Ya])
that the eigenvalues of the scalar operator P; in I(c), for € > 0 small enough, are approximated by the
roots of the Bohr-Sommerfeld quantization rule

cos (@) =0 (j=1.2). (2.4)

Set
Un(e) = U () UUP (e), U (e) := {E = E(h) € I(¢), E satisfies (2.4)}  (j = 1,2).

The elements of Uy () will play the role of reference points near which the eigenvalues of the operator
P(h) are localized. In the following, we assume without loss of generality that the energy-level crossing
occurs at ¢ = 0 and a4 (0) < as(0) < 0. We set

EO = Vl(O) = ‘V/’Q(O)7 'Uj = ‘/JI(O), j = 1,2.

2.2 Tangential case
Throughout this paragraph, we assume the following condition on the characteristic sets I'; (0) and I'y(0).

Assumption 2.3 (Tangential case). I'1 (0) and I'2(0) intersect tangentially at one point (z, &) = (0,0),
and their interior domains are disjoint (see Figure 1).

Remark 2.1. Under the assumption 2.1 (ii), this condition is equivalent to that the two potentials
Vi and Vi cross at the origin with value 0 and with derivatives of different signs (see Figure 1b), namely,

ﬁl(O) = CYQ(O) =0, FEy=0, v1>0, va <0.

The first result is the following Bohr-Sommerfeld type quantization condition which determines the
cigenvalues of P(h) on any interval centered at 0 of size O(h?).

Theorem 2.1. Let Assumptions 2.1, 2.2 and 2.3 hold and fix Cy > 0.

(i) There exists a smooth function m(E;h) of E defined in I(C’oh%) for sufficiently small h and satis-
fying the estimate ,
m(E;h) = O(h3),
such that

" . >—m(E;h). (2.5)

E= E(h) co (P(h)) N I(C(Jh%) Z_[f COS <M) CcoSs (M



(ii) Assume moreover that A;(E) = Ax(E). Then we have
m(E; h) = Dyang(E)2hE + O(R),  Dyang(E) := 2|ro(0)pa(h~ 3 E)], (2.6)

uniformly for E € I(Coh%), where

@)= [ 3 (o oen =) A (~leal s +)) a.

Here Ai(t) is the Airy function solution to the Airy equation u”(t) = tu(t) defined by

+o0 3
Ai(t) = l/ cos <l + tn) dn.
O 3

™

This result entails the following one about the location of the eigenvalues of the operator P(h) and
the eigenvalue splitting in the case A;(E) = Aa(E).

Corollary 2.1. Let Assumptions 2.1, 2.2 and 2.3 hold and fiz Cy > 0. Then, we have
(1) The eigenvalues E € I(Coh?) of P(h) satisfy

dist (E,uh(ooh%)) = O(h%).

(2) Assume moreover that Ay (E) = Ax(E) =: A(E). Then, the operator P(h) has exactly two eigen-
values Ey (k) and E_(h) in a neighborhood of size h3 of each element E € Uy(Coh?), and they

satisfy
Diang(E)

— — g tang\ ) p 3 5 — 0t
|Er(h) — E_(h)| =2 "(B) hs +O(h3) ash—0T".
2.3 Transversal case

Now, we consider the transversal crossing case, namely, we assume that

Assumption 2.4 (Transversal case). I'1(0) and I'2(0) intersect transversally at two points p+(0) =
(0, ++/|Eo|) (see Figure 2).

Remark 2.2. Under the assumption 2.1 (ii), this condition is equivalent to that the two potentials
Vi and Va cross transversally at the origin with negative value Eg (see Figure 2b), namely,

a1(0) < a2(0) <0< 51(0) < B2(0), Eo <0, v >ws.

Remark 2.3. Notice that under the assumption 2.4, for E close enough to 0, I'y(E) and T's(E) still
cross transversally at two points py(E) = (0,£+/E — Ey). Notice also that in this case, the derivatives
of Vi and Va at x = 0 dont have to be of different signs.

We shall also need the following microlocal ellipticity condition on the interaction operator R at the
crossing points p4(0). Let r(x,&) = ro(z) + ir1(2)€, (2,€) € R?, be the symbol of the operator R.

Assumption 2.5. 7(p.(0)) # 0.

The following Bohr-Sommerfeld type quantization condition determines the eigenvalues of P(h) in
any interval centered at E = 0 of size O(¢), for € > 0 sufficiently small.

Theorem 2.2. Let assumptions 2.1, 2.2, 2.4 and 2.5 hold.



(i) There exists a smooth function m(E;h) of E defined in 1(e) for sufficiently small h with
m(E;h) = O(hs), (2.7)

such that

E=EMh)co(P(h)NIE) iff cos (“‘“}EE ) > cos <@) =m(E;h). (2.8)

(i1) Assume moreover that Ay (E) = Az(FE). Then, we have m(E;h) = O(h), more precisely,

m(E; h) = Diypans(E)*h + O(h?), (2.9)
uniformly for E € I(g), where
i _ 1 _ B(E) m
Drne(B) = [ (8 = B Wy )] cos (524 T ang(Wo(80) )| 210)

where B(E) is the action defined by
B1(E)

B(E) = /O(E) VE-Vidt+ [ VE=Vi@. (2.11)

As a consequence, we get the following result.
Corollary 2.2. Let assumptions 2.1, 2.2, 2.4 and 2.5 hold. Then, we have
(i) The eigenvalues E € I(e) of P(h) satisfy

dist(E, Uy () = O(h13).

(ii) Assume moreover that A1 (E) = Ax(E) =: A(E). Then the above estimate holds with h* instead
of hiz. More precisely, the operator P(h) has exactly two eigenvalues E(h) and E_(h) in a
neighborhood of size h2 of each element I € Uy, (), and they satisfy

- _ Dtrans(E) g % +
B4 () = B ()| = 2=k + O(bE),as b 0%,

Remark 2.4. The condition A;(E) = A2(E) near E = 0 holds for example when Vi (z) = Va(—x)
and when Vi(z) = Va(z + a), for some a € R.

3 Outline of the proofs

In this section we give the main ideas of the proofs of the previous results. The core of the proofs relies
on two steps. We consider the eigenvalue problem

(P(h) — E)Yw =0, E = E(h) near 0. (3.1)

In the first step we construct two L? solutions to the system (3.1) on the half-line (—o0,0] and two other
L? solutions on the half-line [0, +00). We denote these solutions by

wi,war € LA(R2) @ LA(R_), wigr,war € L*(Ry) ® L*(Ry). (3.2)



This construction is made by means of the method of successive construction of serie solutions established
in [FMW1, FMW3] starting from suitable solutions to the underlying scalar equations

(Pi(h) — E)u=0 (j=1,2). (3.3)

The eigenvalues of P(h) are characterized as the energies such that the four solutions (3.2) are linearly
dependent. More precisely, the quantization condition is given by

Whi(E) =0,

where W, (E) stands for the Wronskian of w1, w2 ., wi,r and we p. The asymptotic behavior of W, (E)
with respect to h depends on the behaviors of the solutions to the scalar equations (3.3) which in theirs
turn depend on the case, that is, the tangential case (near the crossing-level) or the transversal case
(above the crossing-level):

e Tangential case: In this case, estimates on the first terms of the constructed series solutions are
sufficient to get the precise quantization condition (2.5). The result in this case is achieved only by
means of this tool.

e Transversal case: In this case, due to the existence of a region where both potentials V; and V5
are below E = 0 (see Figure 2b), the solutions to the scalar equations (3.3) are both oscillating
in this region which makes the convergence of our series solutions slower and then requires many
terms computation for a satisfactory quantization condition for the eigenvalues of the system. At
this step we content ourselves with a quantization condition with a rough error estimate. This in
particular ensures the existence of the eigenvalues but only give a rough estimate on their location.

To obtain a precise quantization condition in the transversal case, we use a microlocal approach that
relies on the study of the behavior of the corresponding eigenfunctions microlocally near the characteristic
set

Char(P(h) — E) =T1(E)UTy(E), FE €I(e). (34)
The key point in this method consists in the computation of the microlocal transfer matrix that link the
microlocal data at the crossing points of Char(P(h) — E). In [AF], we derived this microlocal transfer
matrix in the framework of a general non necessarliy self-adjoint pseudodifferential system. We present
this result in details in the next section. We send the readers to the end of section 5 in the above paper
for the details of the derivation of the quantization condition from the microlocal connection formulae.

4 Microlocal transfer matrix at a crossing point for a general
pseudodifferential system

We send the reader to the textbooks [DS, Ma, Zw] for the details of the different notions of semiclassical
and microlocal analysis used in our study. We introduce the class of symbols

50 = {q = q(+,;h) € C¥(T*R; C); |020¢ q(x, & h)| = Oa5(1), Vo, B € N} :

w

For a symbol ¢ € S°, the corresponding h-pscudodifferential operator denoted Q(h) = Op}’(q) can be
defined using the h-Weyl quantization by

OMu(z) = —— [ eite—wering (

2mh T*R

Tty
2 )

¢ h) u(y)dyde, u € CEE(R).

Let Q1, Q2, Ry and Ry be four h-pseudodifferential operators with symbols ¢1(z, ), ¢2(z, &), r1(z, &) and
ro(x, €) respectively. Consider, microlocally near py = (0,0) € T*R, the two-by-two h-pseudodifferential
system
Q1 hRy
Q(h) := ) (4.1)
hRy Qo



We study the microlocal solutions near pg to the system
Q(h)u = 0. (4.2)
We make the following assumptions on the symbols ¢1, ¢2, 1 and ro.

Assumption 4.1. The symbols q1,q2 € S° are real-valued, and satisfy the following conditions:

q1(po) = g2(po) =0, (4.3)

0¢q1(po)9eq2(po) #0 and {q1,q2}(po) # 0, (4.4)
where {q1, @2 }(z, &) := (0¢q102G2 — 0:¢10¢q2)(, &) denotes the Poisson bracket of qi,q.

Assumption 4.2. The symbols r1,ro € SO satisfy the ellipticity condition at pg:

ri(po) #0  (j=1,2). (4.5)

Let I'g be the characteristic set of Q(h) given by
I'g=T, Uly, with [y ={(z,§) € T"R;q;(z,§) =0} (j=1,2).

The condition (4.4) means that I'y, and I'y, intersect transversally at pg. Since the operator Q is microlo-
cally elliptic outside I'g, it follows from standard arguments of microlocal analysis that the solutions to
the system (4.2) are microlocally supported in a neighborhood of I'g. First, we study these microlocal
solutions away from the crossing point pg, that is, near the four curves

Ly ={(,8) €Ty qa(z,6) > 0}, T, =={(2.8) €Tyy5 qa2(x,6) <O},

F:;z ={(z,§) € Lgo: qi(x,§) > 0}, P;Q = {(z,§) € Lgss q1(z,§) < 0}

In the following proposition we give a basis of WKB microlocal solutions to the system (4.2) on each of
the four curves (I‘g; )j=1,2-

Proposition 4.1 (WKB basis of solutions). Let j € {1,2}. On each of the curves I‘ffj, the space of
microlocal solutions to the system (4.2) is one-dimensional and there exist f;jt_ such that

Qf;; ~ 0 microlocally on F;—;,
and f;j have the following WKB form

Qg (‘75; h) )
fqi; (z;h) ~ %4 @/" microlocally on I‘qij, (4.6)
by, (3 h)

where the phase function ¢q; is defined as the unique solution of the eikonal equation

{ 4@, 9}, () = 0,

(blh’ (O) =0, (47)

and ag,, by, are symbols of the form agq, (x;h) ~ 3o hFag, 1 (2), by, (x5 h) ~ 350 hFbg, 1 (x) with leading
terms given by - -

B © 0a0cq1(t, 85, (1) + 05, (DOZau (8, ¢, (1))
ag,,0(7) = exp (—/0 q28€q1(t,;{h o) E dt) ;



ra(z, ¢, ()

bg0(@) =0 5 bga(x) = —qz(%,(x;)aql,o(z%

and
© 0, 0:qa(t, (1)) + & (D)O2qa(t, ¢! (
) = e [ ) S OBl 1)),

0 20¢q2(t, ¢5, (1))
r1(z, g, ()

g, 0(x) =0 ; ag1(x)= —qu ;

Q2,0( ) q211( ) CI1( (l‘)) q2,0 ( )

On F;—L], the operator Q; is of real principal type while Qs is elliptic, and the same is true on Fi by

interchanging Q; and Qs. Hence microlocally on each of the four curves (F ) j=1,2, the system (4. 2) is
reduced to a scalar one-dimensional equation. Thus, the space of mlcrolocal solutions on each of these
curves is one-dimensional. The construction of the f + is based on formal computations using standard
pseudodifferential calculus. We refer to [AF] for the detalls of this construction. The main result of this
section is the following;:

Theorem 4.1 (Microlocal transfer matrix). Let Assumptions 4.1 and 4.2 hold, and let u(x;h) €
L*(R) @ L3(R) be a solution to the system Qu = 0 microlocally in a small neighborhood of po such that

+ o+ : +
un~t ; qu microlocally on I‘qj,

for some scalar complexr numbers t;t = tji(h), j = 1,2. Then, there exist classical symbols of order 0,

p=p(h) ~ > k>0 R* . and i = fi(h) ~ > k>0 h* iy, such that

tf tl_ Kl’l(h) h%_ih“/’il’g(h)
=T(h) with T (h) = , (4.8)
ty ty hé*ihﬁfle(h) ki2,2(h)

where kj (k) ~ ano h”/-i}‘)k are symbols with leading terms given by

. 270 3 20
domoot () e ()
€41191, 92 (@:6)=po £42191, 92 |(2,€)=po

where o := fsgn(i)g(Ilag%Kx,g):po)-

The rest of this paper devoted to the proof of Theorem 4.1 which relies on many steps. The first step
consists in the reduction of the system (4.2) to a scalar equation using the ellipticity condition (4.5) and
then to solve this equation by means of a normal form in the spirit of [Sj, CdvPal.

Step 1: Reduction to a scalar equation and normal form

Setting u = *(u1,u2) and using the ellipticity of R; at py according to assumption (4.5), the system (4.2)
is reduced microlocally near the origin to a scalar equation of u;. More precisely, there exists a small
neighborhood V C R? of pg such that microlocally in V, the system Qu ~ 0 is reduced to

L’ul ~ 0,
{ up ~ —h IR Quug, (4.9)

where Rl_l denotes a parametrix of Ry in V and L is the h-pseudodifferential operator defined by

L:=Ri1QR; Q1 — h*RiRy,



with semiclassical Weyl symbol £(z,&;h) = 3755, hitj(z,€). In particular, by the pseudodifferential
symbolic calculus, we have o

i
lo=qq ; ti(po) = §{q1,Q2}(ﬂo)-

The crossing point pg is a hyperbolic fixed point of the Hamiltonian vector field of £. We set

a = 0:q1(po), B:=0eq1(po), 7= 02G2(po), 0 := Jeqz(po), D = {q1,92}(po)- (4.10)

Without loss of generality, we assume that 6 > 0 and D > 0.
In our one-dimensional case, we have the following normal form for the quantization L:

Lemma 4.1. There exist a small neighborhood Q C R? of (0,0), a Fourier integral operator U
with associated canonical transformation k sending V to Q and k(po) = (0,0), and a classical symbol

F(t;h) ~ 3 50 h*Fy(t) € C defined near t = 0, with
F(0;h) = —%h+uh2, (4.11)

where 1= i(h) ~ > 15 hEpy, is a classical symbol of order 0, such that

1

UF(L;n)U 1t~ G = 5

(yhDy + hDy -y) microlocallyin €. (4.12)

Proof. The normal form (4.12) is due to [Sj]. Notice that in this work, this result was proved for
self-adjoint operators, but it still holds for our non-self-adjoint operator £ which is self-adjoint at the
principal level Opj!(¢). In the following, we prove (4.11).

The FIO U is associated with the canonical transform & : (z,£) — (y,7) satisfying

F(l(z,&h) = yn.
In particular, we can choose

1

H(I,f) = "’60(175) + O((T*€)2)~ Ko(I,f) = ﬁ (fyx + (Sf,Oé;L’ + Bf) .

After a normalization, we can write U1 in the form
U o(aih) = [ e el hyely)dy
R

where c(z,y;h) ~ > 5ock(z,y) is a symbol with ¢9(0,0) = 1 and the phase function ¢(z,y) is a
generating function of 571, in the sense that £~ : (y, —V,4) — (2, V,¢). In particular, near (x,y) = po,
we have

1
¥(2,y) = 55(=72® +2VDay — By*) + O((x,9)°). (4.13)
At the levels of principal and sub-principal symbols, the relation (4.12) implies that
Fo(to(x™ (y.m))) = ym,

Fi(lo(5™ (y,m)) + (5™ (y,m) Fo(bo (s (y,m))) = 0.

In particular, the first equation at (y,n) = (0,0) implies that F(0) = 0 and F}(0) = 3, and the second

one gives ‘
i
F1(0) = ~ti(po) Fp(0) = =3,

since £1(po) = 2. Thus the symbol F(0; 1) has the form (4.11). |
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Step 2: Microlocal solutions near the crossing point
Setting 4y := Uuy, the equation Lu; ~ 0 microlocally in V is equivalent to
Gy ~ F(0;h)4; microlocally in Q, (4.14)
which can be rewritten as
Y@y ~ iphty  microlocally in Q.

The space of microlocal solutions of this equation is two dimensional and a basis is given by the two
functions

gr ) = H)y™", g, (y) = H(—y)ly"", (4.15)

where H denotes the Heaviside function, i.e., H(y) =1 for y > 0 and H(y) = 0 for y < 0. In particular,
we have
FS(g,) = {#y > 0,n =0} U{y =0}.

Thus, uljE =U"! gi are solutions to the equation Lu; ~ 0 microlocally in V, and we have
FS(uf) NV c (If Uly,) NV.
More precisely, we have the following asymptotic formulae for uli

Proposition 4.2. There exist symbols o (v;h) ~ 3, o0 hFoif(r), nE(w;h) ~ 3o BFniE (), with
leading terms given by - -

oy = (| mi% . oy _ 419

such that, modulo O(h*>) as h — 0%, we have

(14 0(2)),

ut (ehy = § V2RROT (@ )ettn O/ g ity (g et (2 >0
1 ) - hl+iuh Ny (IL'; h)ei¢q2 (z)/h <0

=

—
=

and ) .
pitinh (g h)eida(@)/h (x>0

up (w3h) = { \/ﬂ(f—(l’; h)eia (@)/h 4 pltinhy (w5 h)eiPa (@)/h (<0

= =

Proof. We only prove the formula for u;. By definition, we have

+0oo
uf (w:h) = U™ g (a3 h) = / M e(, s by dy, (4.16)
0
where the phase function 1 satisfies (4.13). The right hand side of (4.16) is an oscillatory integral and
up to O(h™), its asymptotic behavior as h — 0 is governed by the contributions of the critical points of
the phase function y + v (z,y) and the end point y = 0 of y —» y*".
For z > 0, the function y — ¢ (x,y) has a positive non degenerate critical point y.(x) which behaves

like y.(z) = ‘/Tﬁx + O(2?%) as * — 0. The critical value 9 (z,y.(x)) coincides with the generating
function ¢g, (z) of T'y,, and ¥ (z,y.(x)) = —%:}:2 + O(z®) as © — 0. Moreover, we have 979 (z, y.(z)) =
—% + O(z) < 0. Then, for a cutoff function x(y) € C§°(R) identically 1 near 0 and supported in a small
neighborhood of y = 0 so that y.(z) ¢ supp x, we have, by the stationary phase theorem (see e.g. [Ma]

Corollary 2.6.3),

oo
/ ew(m’y)/hc(:ﬂ, Y; h)yi“h(l —x(y)dy =V orho™ (3 h)ew‘“ (x)/h, (4.17)
0
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where ot (z;h) ~ 32, 5o hFoyf (2) is a symbol with leading term

- 0 _ym
of(x) =" |(‘9,3’d)(:1;,yc(:l;))|_%(:0(:1;,yc(:l;)) = \/;e_24 + O(x). (4.18)
On the other hand, we have
+m . . . .
| e el g g )y = g s e
0

where 11 (23 h) ~ > 15 hEnt () with

0 0
VD" Dz
For the study of this contribution from the endpoint, we develop v (z,y) in Taylor expansion at y = 0:
(r,y) = ¢g, (z) + (35@ + (’)(:1:)) y + O(y?). Then using the fact that D # 0, we reduce the integral to
a Laplace integral after a change of variable which eliminates the term O(y?). The above asymptotic
formula results from the term by term integration which is known as Watson’s lemma.

For z < 0, there is no positive critical points of y — % (z,y), and hence on this side, the asymptotic

expansion of uf comes only from the endpoint of the integral, which can be computed similarly as above.

a

o (z) = co(x,0) = (1+0(x)).

Now, we construct another pair of solutions v+ = (vli, vy J) to the system (4.2) that are microlocally
zero on one of I‘(‘]‘; and ' ). To do this, we proceed in a similar way as above but now by reducing the
system (4.2) to a scalar equation of vy instead of v;. Setting v = *(v1,v2) and using the ellipticity of R

at pg, the system Qu ~ 0 is reduced microlocally near py to

E’Ug ~0
! 4.19
{ v1 ~ —h7 IRy Qova, (4.19)

where Ry ! denotes a parametrix of Ry in a neighborhood of py and L is the h-pseudodifferential operator
defined by N
L= R2Q1R2_1Q2 — h?RQRl.

As before, we can construct two microlocal solutions Uziusing a normal form reduction.

Proposition 4.3. There exist microlocal solutions UQi to Lvs ~ 0 in a neighborhood of py such that,
modulo O(h*) as h — 0%, we have
o (1) = RYFER G (25 h)etbar (@)/h (x> 0)
2Tl V2rh Tt (2 h) et @)/ 0 pltiihy (g p)etta (/b (3 < 0)
and

() = d V2Th G~ (z; h)ePa (@)/h L pIHEhG (g0 p)eida (@)/h (1 > 0)
Uy (JJ, )_ h1+mh’\ (l‘ h) idg, (x)/h (1’ < 0)

where 5% (@3 h) ~ Yo W67 (2), TE(ih) ~ Y pmg WA (2), BiR) ~ Ymg ¥k with

o~ B i ~ i3
G5 (2) = ﬁe +0(2), T (z) = \/—m(1+0(fﬁ))~

12



Summing up, we have then constructed 4 microlocal solutions to the system (4.2) microlocally in a

small neighborhood V of pg
u® :t(uliau2i)7 vE :t(vit7v2i)7

with
FS(uF)nV c (TL UTy,) NV, FS@Hnvc (T uly,)nV,

where uf and vi are defined above and

uf ~ —h7IRTTQuuT, v~ —h 7Y (R2)T1Quu5.

Step 3: Connecting the solutions to the basis elements and conclusion

Now we connect our microlocal solutions u* and v* to the WKB solutions f;j, j = 1,2, given by
Proposition 4.1 and we deduce the transfer matrix at the crossing point. The following result is an

immediate consequence of Propositions 4.2 and 4.3.

Proposition 4.4. There exist symbols

5 S e +,+ 3
AZ (h) ~ Z WEAZ o ATE(R) ~ Z WFA e, B E(h) ~ thBq] o Ba(h) ~ Z WeB .,
k>0 k>0 k>0 k>0
with leading terms
270 _.x ivD
+ - T gt A At A
Afh,o - A(JhO - 76 ) A<12,0 - A(Iz»o - _AQZ»O — T g0 — rl(po)’ (420)
218 .z ivD
Bf =B, ,=1/——¢%, —BI'{=-B =B t=B"j=— 4.21
q2,0 q2,0 5 e, q1,0 q1,0 q1,0 q1,0 7'2([)0)’ ( )
such that
AL b3 ff on I', NV 0 on [}t Ny
w0 onLpny ) Aghifr on [y NV
Ag?jhf“z f;_; on r&_g ny -’ Aczz’fhéﬂz ;_Z on r;]_; ny
A7k on TNV A7 fo on TNy
B;;h% o on I'f NV 0 ] on r;m/
ol 0 on ', NV o B hz fg, on 'y, NV
B;;*h’ﬁﬁf(;g on I'f Ny’ B;*h’_’:if;; on 'y NV
Bl —h#hfo on T, NV Bomh#h o on T, NV.
We set
t1 (h) s1a(h) s12(h)\ [t1(h)
t5 (h) s2.1(h)  s22(h)) \t5(h)

Observe that if 7 (k) = 1 and ¢5 (h) = 0 then u should be equal to (B;rl’_hiﬁh)_luJr microlocally near
po, and therefore we have

_ B (h)
h) =t (h) = h2 Fhygy | (h) with B) = 2
s2,1(h) = t5 (h) ri21(h) with rg1(h) BI ()
B+7+(h)
Slyl(h) = t+(h) = QI—_
' B (h)
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Analogously, if £ (h) = 0 and t; (h) = 1 then u should be equal to (Af-~h*")~1uT microlocally near
po, and therefore we have

s12(h) = t1 (h) = h2 70k 5(h) with k1 2(h) = A h) ;
’ ’ ’ AL (h)
A (h)
sa2(h) =t3 (h) = —2——.
’ AL (h)

This ends the proof of Theorem 4.1.
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