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Abstract

Spectrum and scattering theory for the quantum system with time-
periodic magnetic field is very important problem not only mathemat-
ically but also physically. Nevertheless as for such problems, only few
models were considered and many open problems are still remaining.
Moreover, in such model, there are many interests in the advanced
studies such like nonlinear analysis, resonances and so on. Since the
time-periodic magnetic field has the expected to developments in some
research fields, we summarize the obtained result and introduce some
advances studies.

1 Introduction

The Hamiltonian for Schrodinger operator with time-periodic magnetic fields
Hy(t) is written as

1 B(t S | B(t 2
Ho(t):%<p1+q2<)$2) +%(p2—q2()$1) ;

where & = (z1,22) € R?, p = (p1,p2) = —iV, ¢ # 0, m > 0 are position,
momentum, charge and mass of a particle, respectively. Magnetic field is
B(t) = (0,0, B(t)) and B(t) denotes the intense of magnetic field in ¢. In this
paper, we assume the periodic condition B(t +7T') = B(t) on magnetic field.
In such case, the quantum scattering theory were considered by Korotyaev



[12] and Adachi-Kawamoto [1]. As far as we know, except for these two
papers, there are no results associated to the quantum scattering for time-
periodic magnetic fields. The key approach of them is to deduce the limiting
absorption principle for Hy, the Floquet Hamiltonian generated by Hy(t), and
extend this result to perturbed Hamiltonian H = Hy(t) + V (t) by employing
the stationary scattering theory due to e.g., Kato-Kuroda [6]. However, only
for this approach, one can not prove the non-existence of singular continuous
spectrum of H , and hence, Kawamoto [7] proved the absence of the singular
spectrum through by proving the Mourre theory.

In this paper, we let H(t) = Ho(t) + V(t), and assume the following
log-decay condition on the potential V' (¢, z),

Assumption 1.1 Potential V € L®(R; C*(R?)) satisfies V(t + T,x) =
V(t,z) and

0V (t,2)] < Co ()7 (log(1 + 2]))~* (1)

for some positive constant p, C, and for all multi-indexr o« € N?, where
()= (1+ 22

We let Up(t, s) and U(t, s) are propagators for Hy(t) and H(t), respectively.
The aim of this paper is to consider the spectrum and scattering theory for
this system. In order to consider such issue, the following lemma acts very
important role;

Lemma 1.2 (e.g., Kitada-Yajima [9] and Enss-Veselié¢ [3])
L*(R?) = L.(U(T,0)) & L,(U(T,0)),

where L.(U(T,0)) C L*(R?) and L,(U(T,0)) C L*(R?) are the subspace of
continuous spectrum of U(T,0) and the subspace of pure point spectrum of
U(T,0), respectively.

By this Lemma, in order to consider the spectrum and scattering theory for
this system, it is enough to investigate the properties of spectrum of U (T, 0).
However, such operator is unitary and complex-valued, and it seems difficult
to analyze the spectrum of U(T,0) directly. To get over this difficulties,
Howland [10] and Yajima [14] considered alternative approach with using
Floquet Hamiltonian. In order to introduce Floquet Hamiltonian, we set the
energy space by # = L?(T; L*(R?)) with T = R/TZ, and for f € # define

(Loof)(t) = Uo(t, t — o) f(t —0),
(Lo f)(t) =U(t,t —0)f(t —0).



Here we notice that for o1, 09 € R,

(Lo (Loosf)) () = Loo, (Uo(t,t — 02) f(t = 02)) (1)
= Uo(t,t — Jl)UQ(t — O'l,t — 01 — O_Q)f(t — 01 — 0'2)
=Up(t,t — oy —09)f(t — o1 — 09)
= (£0¢Ul+0'2f) (t)v

and which means Ly, (resp. L,) is the l-parameter strongly continuous
unitary group on .. Hence Stone’s theorem leads there exist selfadjoint
operators H, and H such that

(Lood) (1) = e Hop(t),  (L,0) (1) = e T o(1).

We call Hy and H Floquet operator generated by Hy(t) and H(t), respectively.
Let —i0, be the derivative operator in ¢ with boundary condition

{¥(t) € L*(R*) | ¥(t) and (8;)(t) are absolutely continuous and 1(0) = (7))} .
Then it is seen (e.g., by Mgller [13]) that
Hy = —id, + Ho(t), H = Hy+ V(¢).
To consider the spectrum of U(T,0) the following lemmas are very useful;
Lemma 1.3
H = He(H) & Ay (H),

where JH( H) C # and H(H) C A are the subspace of continuous spectrum
of H and the subspace of pure point spectrum of H, respectively.

Lemma 1.4 (e.g., Yajima [15]) Let Hf = \f. Then f = f(t) is L>(R?)-
valued continuous function and satisfies f(t) = eMU(t,0)£(0). In particular,
U(T,0)f(0) = e T £(0). Conwversely if ¢ satisfies U(T,0)p = e~ T, then
by letting f(t) = ¢ U(t,0)p, we have f € D(H) and Hf = \f.

The following lemma is so called Howland- Yajima method,

Lemma 1.5 If the wave operators in the sense of the Floquet Hamiltonian

WE =s— lim e it
o—t00



exist and complete that is

Ran (Wi) = %QC(I:I),
where %QE(I:I) C X indicates the subspace of the absolutely continuous spec-
trum of H. Moreover, the usual wave operators

W* =s— lim U(t,0)*Uy(t,0)

t—+o0

exist. Then the usual wave operators W+ are complete that is
Ran (W) = L.(U(T.0)),

Lae(U(T,0)) C L*(R?) indicates the subspace of the absolutely continuous
spectrum of U(T, 0)

Thanks to this lemma, one can prove the completeness of W* by proving the
completeness of W*, alternatively.

Constant magnetic field B = (0,0, B) make the classical trajectory of
a quantum particle on the plane R? which perpendicular to magnetic filed
the circular orbit, and the particle is trapped by constant magnetic field.
On the other hand, we oscillate the magnetic field periodically in the time,
the particle is not always trapped and under the some suitable condition,
scattering states appear, which is characterized by Lae(U(T,0)) or Hac(H).
The particle is trapped or not is determined by so-called discriminant of
Hill’s equation D; If D* < 4, we have L*(R?) = L,(U(T,0)), and if D? > 4,
at least one can prove L,(Up(T,0)) = 0, i.e., L*(R?) = L.(Uy(T,0)). Here we
define Hill’s equation for this system as follows

G0+ (%) G -0 {2823 {C?(O):(f’

and we also define the discriminant of Hill’s equation as follows
D = G(T) + G(T).

For the special case in the case of D? > 2, the solution of Hill’s equation
can be represented as

Q) =ealt), Gt) =eMxa(t), (2)

where Y1 and ys are periodic or anti-periodic functions, respectively. By us-
ing such representation, [12] proved the existence of wave operators and these
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completeness with the potentials V' which satisfies slowly decaying condition,
that is, for some p > 0,

[Vt 2)] < OO+ [])~". (3)

In the paper of [12], the approach due to [14] (see also Kato [5]) was employed,
which uses the following representation of resolvent of Hp; Let z € C\R_,
¢ € and f € L*(T;Cs°(R?)), and define X (2)¢ := f(Hy — 2) "' fo

(Xp(2)0)(t.2) = if (t,0) ) / NIt + NT, 5) () (s)ds

+if(t,x) /Ot =2 (t, 8)(fo)(s)ds.

In the case of time-periodic magnetic fields, in order to use this approach,
the integral kernel of Uy (t, s) was found by [12], [1] and [7], and by employing
the representation of integral kernel of [7], we get

(fUO (Tv ‘S)fd)) (Tv “L)

o m? , o /
— i(Q(1)—Q(s))L ,—ia(T)z Lo (7,8,2,y)
= , e e t,r e s,y)dy,

<m|F1(ﬂ S)I) 2(mi)2Co (1) 2 (s) f(t,x) (9)(s,9)dy

where g(s,y) = e OV f(s,y)¢(s,y) with a(s) = m(1 = ¢(s))/(26(5)),
[i(7,8) = Ci(8)/C(s) — Cu(T)/Ca(T)

and

Lo 5, 2,y) = 2mrf<r, ) (5523 - 4221;))2 i m7 (% - %) '

Hence the following LP — L? estimate can be obtained

10U, )6l ey < C 11 (E)Ga(s) = G TP 6]l ygey  (4)

for 1/p+1/g =1with 1 < ¢ <2 < p < oo, which was firstly obtained by [12]
and extended by [7] for more general magnetic fields. However, dealing with
the right-hand-side of (4) for general time-periodic fields is very complicated
and hence to this easier, [12] assumed the condition (2). Under this condition,
one can prove

/1 VU (t,0) gy dt < C IV pogey [0l Lo oy > e 227177

NEZ



with 1/p+1/¢g=1/2and 1/¢+1/¢ =1 (but even the case of (2), to deduce
which demands long and complicated calculations), and this inequality indi-
cates the wave operators exist under the potential satisfying ||V|| 2y < oo.
Since the term )\, e~2MI/P is summable for any 2 < p < oo, one can
take p enough large. This is the reason why one can prove the existence and
completeness of wave operators for the weak decaying potentials such like

(3).

After in [1], under the pulsed condition of B(t), the scattering theory was
considered. In this case, by the virtue of the pulsed condition, we can obtain
the explicit representation of (; (t) and (,(t), and by using this representation,
asymptotic completeness was proven under the only two conditions that D? >
4 and (»(7T") # 0 but with pulsed condition (this condition includes not only
the model of [12] but also more generalized model but with pulsed condition).

In papers [12] and [1], to prove the absence of singular spectrum of H
is difficult for some technical reasons. In the current approaches, the well-
used approach for to prove such issue is to deduce the Mourre estimate. The
Mourre theory for time-periodic magnetic field was open problem and [7]
proved this. As the corollary, the absence of singular spectrum has been
proven. The approach of [7] is firstly reducing the Floquet hamiltonian H,
to the more simplified form. We let

alt) = (Gt)p — G(t)r)”
and call pseudo energy. Then it follows that
Doy ((t)) = 0
holds, where D.(-) indicates the Heisenberg derivative, and that yields
i[Ho, a(t)] = 0.

Hence a(t) can be regarded as the alternative energy of Floquet energy H.
Here we remark that a(t) can be rewrite as

a(t) = i (1)2? /(262 (1)) (G (t>p)2e—i(§(t)x2/(2(2 (t)

Hence we see that the energy Uy(7,0) can be divided into the form such
like Uy(T,0) = eioe?=i(SOMe Operator ) —iaz® " anq [7] found corresponding
result in Lemma 1.4. of [7]. From such decomposition, we obtain the unitary
operator _#p(t) which reduces H, to

Iot) Hy Zo(t) = —id, + AP (p* — BP2?) + CPL + E”,



where AP and BP are constants which satisfy AP, CP #£ 0, BP £ 0if D? > 4
and BP =0if D* =4, and EP =0if D > 0 and EP = 7/T if D < 0, see
[7]. Noting the case where D? > 4, one can see that the reduced operator
can be written as the form

Hy = —id, + o?p* — 22> +~L

with a, 8,7 # 0 (here we remove EP for simplicity), and the operator ap? —
Bx? is called repulsive operator, the mathematical aspects for which were
considered by Bony-Carles-Héfner-Michel [2]. In this paper, they considered
the Hamiltonian

Hp:=p* — 2>+ Vg (5)

with Vg = Vg(x) € L>®°(R?) satisfies (1) with || = 0 and p > 1, and found
that the conjugate operator for Hg is

%:10g<¥> —log (p — ).
Indeed by the simple calculation, the commutator i[Hg, o7| satisfies

. p2 1,2
i[Hp, o) = (1+p2 + 1+m2) +K

1
>
> S+ K,
where K(Hg + i)' is compact. Thanks to the condition
i|—i0, | =L, ] =0,

one can also obtain the positive commutator
P |
Z[Ho, fQ{] Z 5 —|— ’C
with
~ 1
o = aflog <§JZ + %p> — afflog <p — §1>

By the virtue of this positive commutator, we find the following Mourre
estimate



Theorem 1.6 Define ¢ € CF(R\opy(H)). Suppose Assumption 1.1, and
suppose also that D* > 4 and ((T) # 0. Then there exists a compact
operator K such that for all ¢p € &,

+ (Ko, o(f))
holds.

As the sub consequence of this Theorem, we have the following corollary

Corollary 1.7 Under the same assumptions as in Theorem 1.6, H has at
most countable pure point spectrum and which singular continuous spectrum
18 empty.

This theorem and corollary can be proven by employing the approach due
to [7]

2 Proof of Theorem 1.6
Lemma 2.1 Under the assumption 1.1, V(t)(Hy 4 i)~" is the compact one.

This lemma can be proven as the direct consequence of Theorem 4.1. of [7].
Indeed, by replacing f(|z|) in [7] to f(t,z) € L*(T; C5°(R?)), we have the
operator

(Xs(2)0)(t ) = f(t,0)(Ho — 2) 7' f(t, 2)o(t, ),

is compact one, where z € C,. Hence in order to prove Theorem 1.6, it is
sufficient to prove

ilV, o]

is a relatively compact operator. On the other hand, by the virtue of §5.1 of
[7], we have that o is written as

o =log (01(t)x + O5(t)p) — log (Os(t)x + 04()p)

for bounded and periodic functions 60;(t), 7 € {1,2,3,4}. Let Fr € Ci°(R)
with Fg(s) =1 for |s|] < R and = 0 for |s| > 2R. Define

B = (017 + Oyp)?



and
L(B) = %FR(,@) log(1 + B)).

Then for any fixed R, by the Helffer-Sjostrand formula, we find there exists
Ir(2) € C§°(C) such that

La(B) = % [C Duln(=)(z — B)\dzdz.

Then the commutator [V, log(1 4 %)/?] formally will be

R—o0

lim <% /C Duln() (= — B) [V, B (= — %)‘%lzdz) |

Noting [V, B] = 2605 (612 + 5p) - VV + VV - (12 + 65p))) and (log(2+22)) 20 (H)
for 6 > 0 is the compact operator, we can prove the relative compactness for
i[V, log(1 + %)'/?] by proving

||VV - (012 + Oop) (2 — B) H(log(1 + x2))5H < C|Imz|_3/2,

and which can be proven just by imitating the approach of [7].

3 Future works

Thanks to the result in [12] and [1], one can see that Ran(W#) = L,.(U(T,0))
under the potential satisfying (3) and specialized B(t). To extend this result
to more general B(t) is not so complicated since the important properties for
asymptotic behavior of (;(t) in order to consider the scattering theory has
been obtained by [7], and which implies scattering theory can be considered
all B(t) with conditions D? > 4 and (»(T') # 0. Hence as the future works,
under the above assumption of B(t), to consider the following issues are very
interesting and important;

(I). Absence of embedded eigenvalues for H. Even the strong decay condi-
tion (3), this has not been proven yet. Recently Itakura [11] considered the
absence of embedded eigenvalues for generalized hamiltonian including Hpr
with (1). However, to imitate the approach of [11] is not easy. Because, our
model demands to deal with the potential #p(t)~'V _#p(t) which is not just
multiplication operator but pseudo differential (like) operator.

(IT). Spectral and scattering theory for H with (1). This is very interesting
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problem. However to imitate the approach of [12] and [1] is impossible since
for all 1 < p < oo, ||V @2y = co. Hence it is better to deduce the propa-

gation estimate for e~ by using Mourre estimate. As for Hg, [2] deduced
this but in our model, the situation is completely different.

(III). To investigate the lifespan of resonances. As the same reason as above,
it is difficult to consider the resonances for . However, even for Hpg, this
issue has not been considered. Hence, as the first step for this, we need to
investigate the resonances for Hg. Probably redefining Hp = p? — ¢,2% + Vg,
the lifespan of resonances is characterized by ¢, and such lifespan is com-
pletely different from those for H = —A + V.

(IV). Nonlinear analysis . Recently, the nonlinear problem for the general-
ized equations including time-decaying harmonic oscillators (similar to the
time-decaying magnetic fields) was considered by Kawamoto-Muramatsu [§]
and the asymptotic behavior of solutions to nonlinear equations was investi-
gated. To imitate the approach of [8] directly is difficult since the case (;(t)
with time-decaying B(t) has no 0-point for all ¢ > 1 but which is not true for
time-periodic case. For the periodic solution, Hani-Thomann [4] considered
the similar issue for constant magnetic field. Hence combining the results
in [8] and [4], one may investigate the asymptotic behavior of the case of
time-periodic magnetic fields.
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