Limit circle problem for a Fuchsian differential
operator on a torus

Kouichi Taira

Abstract

In this short note, we study spectral properties of the simple operator P =
—0,(sin 0,) on the one-dimensional torus. We prove that P is not essential self-
adjoint and give its four proofs. Moreover, we prove discreteness of the spectrum of
its self-adjoint extension.

1 Introduction
In this short note, we consider the following second order differential operator:
P =—0,(sinxzd,) on T =R/2rZ.
We denote the symbol of P by p:
p(z,€) = (sinz)€?, (,) € T"T =T x R.
The main theorem of this note is the following:

Theorem 1.1. The symmetric operator P is not essential self-adjoint on C*°(T).

Remark 1.2. This theorem holds if we replace P by P + V, where V is a first order

symmetric differential operator. In fact, the method in Section 3 can be applied with
P+V.

The purpose of this note is to collect various proofs of Theorem 1.1. To prove Theorem
1.1, we construct the distributional eigenfunctions for P associated with the complex
eigenvalues in various ways. In Section 3, we use the method developed in [5], which is
an analog of the standard construction of generalized eigenfunctions in scattering theory.
In section 4, we use the a priori estimate (so-called the radial source/sink estimates) and
determine the regularity of eigenfunctions of P by using microlocal analysis. In Section 5,
we only use the Fourier analysis and directly compute the regularity of the eigenfunctions
from the recurrence formula which is equivalent to the eigenvalue equation for P. On the
other hand, in Section 6, we prove Theorem 1.1 just by using the integration by parts.

As an analogy of [5, Corollary 1.5], we obtain the following theorem.

Theorem 1.3. Each self-adjoint extension of Plce(my has a discrete spectrum.



The proof of this theorem is given in the end of Section 4. Its proof is essentially
due to the radial sink estimate and the fact that the radial sink for P is isolated in the
characteristic set of p. Although we can prove Theorem 1.3 by an alternative proof which
is similar to [5, Corollary 1.5], we omit its proof. While the proofs in Section 5 and Section
6 are very short, the proofs in Section 3 and Section 4 make the connection between the
classical trajectories and the quantum dynamics clear.

It is believed that the completeness of classical trajectories and essential self-adjointness
of the corresponding differential operators are closely related. This is because essential
self-adjointness of a differential operator P is equivalent to existence and uniqueness of
solutions to a time-dependent Schrodinger equation

i@tu + Pu = O, Ult:() € LQ.

Hence it seems important to prove essential self-adjointness or not essential self-adjointness
of differential operators from microlocal point of view.
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2 Pseudodifferential operators

Let (M, g) be a closed Riemannian manifold with dimension n and let us denote

L+1gP)2, 162 =" dH@)ga,

jk=1

where the left hand side is independent of the choice of the trivialization of T*M. We
denote by the Kohn-Nirenberg symbol classes by S*:

§* = {a € C(I"M) | 950; alx, )| < Cap(€)*}

(€ :

for £ € R. We also denote the sets of all pseudodifferential operators of order k by
OpS*. Moreover, we fix the quantization Op(a) of a € S* (see [1, Proposition E.15]). For
A € OpS*, we denote its principal symbol by o(A) € S* (see [1, Proposition E.14]).

Lemma 2.1. [1, Proposition E.23] Let A € OpS?* ™ with k € R and Re o(A) > 0. Then
there exists C > 0 such that

In our case (M = T), we can take Op such that Op(a) is formally self-adjoint for
real-valued symbol a.

We recall the definition of the radial source/sink from [1]. Let p € S* be a real-valued
symbol with k£ > 0. We denote the projection map by

§

k:T*M\O— S*M =0T"M, k(z,€) = (x, |£—|
g

)



We write the radial compactification "M = T*M U dT*M. Then it follows that M
becomes a manifold with boundary and that the vector field (¢)'~*H,, on "M generates
the complete flow

= O TN 5 T
Lemrrl% 2.2. [1, Definition E.50] We say that a non-empty mvariant set Lc{{&Fp=
0}NOT M is a radial source for p if there exists a neighborhood U C T M of L such that
k(pi(x,&)) = L, t— —o0,
lpelz,)ly = Ce™Migly, <0

uniformly in (z,€) € UNT*M with constants C,0 > 0. We say that L is a radial sink if
L is a radial source for —p.

Consider a formally self-adjoint operator P € OpS* with & > 0 and a real-valued
principal symbol p. We assume

(6)'"*H,, vanishes at L. (2.1)

Theorem 2.3. [1, Theorem E.52 and exercise 37] Assume that L is a radial source for
p and (2.1) is satisfied. Let s € R satisfy

1 — k. Hy(€)
s+ ——)—22L <0 on L. 2.2
s+ (22)
Then there exists a € C*°(T*M; |0, 1]) with a = 1 near the conic neighborhood of L such
that

[ Aul
for A=0p(a), N >0 and u € H**T(M), where sq satisfies (2.3) and s > so.

Theorem 2.4. [1, Theorem E.5j and exercise 36] Assume that L is a radial sink for p
and (2.1) is satisfied. Fix a conic neighborhood V' of L. Let s € R satisfy

L=k By >0 on L. (2.3)

> )

Then there exists a € C°(T*M;|0,1]) with a = 1 near the conic neighborhood of L and
be C™(T*M;[0,1]) supported away from a conic neighborhood of L and supp b C V' such
that

sy < C||Pul

Hs—k+1(01) + CHUHH—N(M)

(s +

[ Aul
for A=O0p(a), B=O0p(b) N >0 andu € D'(M).

ms—r+1ar) + C| Bul

ms(n) + Cllull -~ (an

3 First proof, the method in [5]

In this section, we apply the method developed in [5] with our operator P and prove
Theorem 1.1. We recall

p(z,€) = (sinz)€?,  H, = 2(sinx)£d, — (cos x)E*0k.
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3.1 Construction of an escape function

In this subsection, we construct an escape function which is needed for the definition of
the anisotropic Sobolev space. Let p € C*(R; [0, 1]) and x € C*(R; [0, 1]) satisfying

lift>1
= -2 > '(t) > i i !
p(t) {_1 1< -1, tp(t) >0, p'(t) >0, \t|1§1f/4 lp(t)] >0, |tﬂ§1f/4p(t) >0,
and
1ift>2
— — Y /t > 0
(0 {MKL NOE

We define

() =cosz,  x1(§) = x(&) = x(=€), m(x,&) = p(n(z))x1(§) € S°.
Lemma 3.1. There exists C' > 0 such that
Hy(m(z,§)log(€)) < —C(&)  for €] > 2.
Proof. We note £x1(£) > 0 and
(Hypn)(z,€) = —2(sin® )&%, Hy(p(n)) <0, mH,log(€) = —n(z)p(n(x))x1(€)E*(€) "> < 0.
In particular, we have
(Hpym)(x, &) log(€) <0, m(x,&)(Hy,log(s)) <0
for |€| > 2. For |n| > 1/4 and |{] > 2, we have

Hy(m(x, &) 1og(§)) =(Hym)(x, §)1og(§) + m(x, §)(H,log(§))
<m(z,&)(Hylog(£))

For |n| < 1/4 and |¢]| > 2, we obtain

Hy(m(z, ) log(§)) =(

This completes the proof.

3.2 Fredholm estimate

Let m be a symbol constructed in the above subsection and ¢ > 0. Take an invertible
1
operator A,, € OpS2T™@) satisfying (A.1):

atmt(x>§) = <§>%+tm($7€)7 Atm - Op(atm) € Ops—oo



Define
P = A PA L (3.1)
By the asymptotic expansion (see [3, Lemma 3.2] for the Anosov vector field), we have
Pim = P +itOp(H,(mlog(¢))) + OpS™P. (3.2)
The main result of this subsection is the following Fredholm estimates.
Proposition 3.2. Lett > 0. Then for any N > 0, there exists C > 0 such that

lull 3 gy SCN(Pim = 2)ull -y

<O (P = 2)"ull 3 gy + Clullir ey, (3.4)

, Cllull g1y, (3.3)

i

H3 (T (

for z € C and u € D'(T). Here P}, is the formal adjoint operator of P,,. Moreover, if
Im z >> 1, then the term ||u| g-~r) in (3.3) and (3.4) can be removed.

Remark 3.3. We obtain the Fredholm estimates uniformly in Re 2z, which is different from
[5, Proposition 3.4]. This seems reflect the property of H,: The trapped set of H, lies
only int the zero section of T*T.

Lemma 3.4. We consider the Banach space
Dy = {u € H2(T) | Pyu € H 2(T)}

equipped with the graph norm of Py,. Then it follows that C*(T) is dense in D,,.

Remark 3.5. This lemma holds if we replace P, by the general pseudodifferential operator
Q € OpS?. See [1, Lemma E.45].

Proof. Let x € C*(R; [0, 1]) satisfying x(t) = 1 on [t| < 1 and x(¢) = 0 on [t| > 2. Set
Ag = Op(X(ﬁR‘)) for R > 1. We note that [P,,, Ag| is uniformly bounded in OpT and
converges to 0 in OpS+0.

Now let u € Dy, and set up := Apu € C>*(T). Clearly, we have ug — u in H%(']I‘).
Moreover, we have

Pup = ApPu+ [P, Aglu — Pu in H2(T).

This completes the proof.

O
Lemma 3.6. There exits C' > 0 such that for u € C*(T),
—(u, Op(H,(mlog(§))u)2(r) = Cllull’ 4 — Cllullf+o.
Proof. This lemma follows from Lemmas 2.1, 3.1 and the formula (3.2).
0



Proof of Proposition 3.2. We only deal with (3.3). The inequality (3.4) is similarly proved.
By virtue of Lemma 3.4, it suffices to prove (3.3) for u € C*°(T). Lemma 3.6 implies

T (11, (P — 2)u) ey =t (1, Op(Hy(m log(€)))u) — Tm 23 gy + Ol sogs))
< — Ctflul? , —Im zljull3 + O(fullysopm)

for u € C°°(T). The Cauchy-Schwarz inequality and the interpolation inequality
||U||%1+0(T) < 5”“”2%@) + CHUH%{—N(Ty Ve>0, N>0,

we obtain

Ctlull? 4 +Im 2l|ull7> < CLl[(Pon — 2)ul? nT Cullull - z)-

(

This implies (3.3). Moreover, if Im z >> 1, the term Hu||§1_N(T) in the left hand side can
be removed. O

From Proposition 3.2 and the proof in [5, Corollary 3.6], we obtain the following
corollary.

Corollary 3.7. Consider a family of bounded operators
Pun — 2t Dy — H™2(T). (3.5)

Then it follows that the (3.5) is an analytic family of Fredholm operators with index 0.
Moreover, there exists a discrete subset S; C C such that the map 3.5 is invertible for

ZEC\St-

3.3 WKB solutions

In this subsection, we construct an approximate eigenfunction of P which wavefront set
lies in the incoming region (the radial sink) for p.
First, we consider the WKB state

u_(z) = x(2) / ao(€)dEde, (3.6)

where x € C°(R;[0,1]) and ay € C*(R)

x(x)z{l ) ao<£>={% o .7)

[SIERNE

0 for |z 0 for —¢<1.

We shall see that u_ is the approximate eigenfunction for P. By virtue of its support
condition, we can regard u_ as a smooth function on T. We note that u_ is a Lagrangian
distribution ([4, Definition 25.1.1]) associated with the conic Lagrangian submanifold

L_o:={(0,6) e TxR|¢ <0}

Moreover, we have

1

u_ € C®(T\ {0 NH="T), u_¢ H*(T), WF(u_)C L_,. (3.8)
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Lemma 3.8. We have Pu_ € H2°(T).

Proof. By the Taylor theorem, we have
P = —0,(x0,) + 0,(h(x)20,) on supp ¥, (3.9)

where h is smooth near supp y. A direct calculation gives 0,(z0,)(u_) € C*°(T). More-
over, since 0, (h(x)x3d,) is the second order differential operator which vanishes at 0 of
third order and since u_ is the Lagrangian distribution, then we have 9, (h(z)x*d,)u_ €
H27°(T). This completes the proof.

(I

Next, we shall construct the approximate eigenfunction for P — z for z € C. Let x be
as in (3.7) and consider

u-ale) = (o) [ aule)e s
R
where a, € C*(R) is supported in —¢ > 1 and is determined later. Moreover, we impose
a. € Sy, Spi={a € C®R)||9¢a(é)] < Cal&)F I} (3.10)

Then it follows that u_ . is a Lagrangian distribution associated with L_, and satisfies
(3.8). A direct calculation (as in Lemma 3.8, use (3.9)) gives

(P 2u_.(z) =i / (€060, (€) + £a.(€) + iza,(€)) €*Ede + HEO(T) for |2| < /4
R
and (P —2)u_, € C® on T\ {|z| < w/4}. If we take a, € C*(R) as

1 iz
a.(€) = E—i_&_g for —¢>2
0 for —¢<1,

then we have a, € S_; and £%0¢a,(§) + &a.(§) + iza.(§) € S_5. Consequently, we obtain
the following lemma.

Lemma 3.9. For z € C, we have (P — z)u_, € H379(T) and u_ ., satisfies (3.8). In
particular, u_ , # 0.

Remark 3.10. A finer construction gives existence of an approximate eigenfunction u_ ,
satisfying (3.8) and (P — z)u_, € C*(T).

3.4 Existence of generalized eigenfunctions

In this subsection, we construct a generalized eigenfunction of P. In order to show
Theorem 1.1, it suffices to prove the following proposition.

Proposition 3.11. Let t > 0 small enough satisfying Hz=°(T) ¢ Hz*+m@8(T) ¢ LX(T)
and let z € C\ S;. Then there exists u € L*(T) \ {0} such that (P — z)u = 0 in the
distributional sense.



Proof. By (3.1) and Corollary 3.7, it follows that the map
P—z: Dy, = {u e H2Hm@(T) | py e H2Hm@O(T)} — H-2Hm@O(T)  (3.11)

is a Fredholm operator with index and that z — P — z is analytic. Moreover, (3.11) is
invertible for z € C\ S;, where S, is same as in Corollary 3.7. We denote the inverse of
(3.11) by R.(z) for z € C\ S;.

Take u_ ., # 0 satisfying (3.8) and (P — 2)u_. € H2 °(T). Set

Uy, = =Ry (2)(P—2)u_,, Uy :=1Uj,+U_,.

Then we have u, € L*(T) and (P — z)u, = 0. Moreover, we have u, # 0. In fact,u_ , # 0,
its wavefront condition (3.8) and the construction of the escape function m imply u, =
Upz +u_. #0.

0

4 Second proof, via radial point estimates

In this section, we give another Fredholm estimate which is different from the last section
and is similar to the estimate in [6].

4.1 Hamilton dynamics

We recall p(z, &) = (sinz)€? for (z,€) € T*T =T x R. Set
Lio={(x,8§) €dT"T |2=0, { =xo0}, Lyi,={(2,) €dT"T|z=m, {==o0}.
Proposition 4.1. It follows that
o L_g and Ly . are radial sources for p, Ly and L_ . are radial sinks for p,
in the sense of Definition 2.2.

In the following, we prove that L_  is a radial sink only. The other part of Proposition
of 4.1 is similarly proved. Set

U={(z,6) e T*T |z € (—7/4,7/4), € >1} and H,= (&) 'H,.

We denote the integral curve of H, with a initial data (z0, &) by (2(t), ((t)):

{%z(t) = 2(sin 2(£))(C(1))1¢(1), {z(@) — 1, m
4e(t) = —(cos 2(£)){(C() (1) (0) =&

First, we prove that the any trajectory through {¢ = 0} must be constant.

Lemma 4.2. Let x € T and £ =0. Then z(t) = x and ((t) =0 for any t € R.

Proof. A pair (z(t),((t)) = (z,0) is a solution to (4.1). By the uniqueness of solutions to
ODE, we obtain our conclusion. O



Now the proof of Proposition 4.1 reduces to Lemma 4.3 and 4.4 below.

Lemma 4.3. There exists 0 > 0 such that for each initial value (x,&) € U,
(t) > Mg, for t <.

Proof. Let (x,€) € U. First, we show |z(t)] < w/4 for all t < 0. We set S = {t <
0| 2(t) € (—n/4,7/4)}. We note that 0 belongs to S. Suppose (—oc, 0]\ S # 0 holds.
Setting sy = sup(—o0,0] \ S, we have |z(sg)| = 7/4 and |z(s)| < /4 for all sy < s < 0.
This contradicts to

iz 2 = 22(s¢)(sin z(s ¢(s0) :\/§7T ¢(50)
2O = 22(s0)(sin 2(50)) 055 = Y57 50 0,

which follows from the equation (4.1) and Lemma 4.2. Thus we have S = (—o0, 0].
Then there exists ¢ > 0 such that

¢'(t) < —6¢(1)
for t < 0. From a simple calculation, we obtain

C(t) > eMe for t<o0.

Lemma 4.4. For each initial value (z,£) € U, we have z(t) — 0 as t — —o0.

Proof. Let (x,€) € U. As is shown in the proof of Lemma 4.3, we have |z(t,z,§)| < 7/4
for t < 0. Thus we have
d

£|z(t)|2 = 22(t) sin 2(t)

<)
(C(#))

for t < 0, where we use xsinz > ca? for z € (—7/4,7/4) with ¢ > 0. Thus we have

> clz(t)*

[2()* < [2(0)Pe " — 0

ast — —oo. O

4.2 Fredholm estimates in Sobolev spaces
The main theorem of this subsection is the following:

Theorem 4.5. For z € C, we define
d(z) = dimKer oy (P — z), d*(2) = dim Ker
Then we have d*(z) =2 for z € C and
d(z) =2 for z#0, d(0)=3.
Moreover, if (P — z)u =0 with w € D'(T) \ {0} and z € C, then we have

w is not a constant function = u € H%_O(T) \ H%J’O(T).
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Theorem 1.1 directly follows from Theorem 4.5. In the following of this subsection,
we shall prove Theorem 4.5. Let us define

* = {u e HY(T) | Pue HT)}, Y = H(T)

for s > —%. From the results of the last subsection, Theorems 2.3 and 2.4, we obtain the
following proposition.

Proposition 4.6. For s > —%, N >0 and € > 0, we have

lullxs <CI(P = 2)ully + Cllullg-~ery for uwe H(T) (4.2)
|| gr—s(ry SC|[(P = 2)ul| g-s-1(1y + Cllul|g-~(ry for ue DI(T). (4.3)

Remark 4.7. When applying the radial sink estimate (Theorem 2.4), we use the fact that
we can take the control region (supp b in Theorem 2.4) as supported in the elliptic set for
p.

Now we study the Fredholm property of P from X* to Y*. As a warm up, we prove P
is a bounded operator.

Lemma 4.8. The operator P : X* — Y*® is bounded.

Proof. 1t suffices to prove that P is a closed operator. Take a sequence u,, € X* such that
U, — u in X* and Pu, — w in Y*® for some u € X* and w € Y°. By the definition of X*,
we have Pu,, — Pu in H*(T) = Y*. This implies w = Pu and u € X*. This completes
the proof. O

Next proposition assures P is a Fredholm operator.
Proposition 4.9. P— 2z : X* — Y is an analytic family of Fredholm operators for z € C.

Proof. We take e > 0 such that s +1 > 3 +&. First, we prove Ker x:(P — z) is finite
dimensional. Take a sequence u,, € Ker s(P — 2) with |Ju,||xs = 1. It suffices to show
that u,, has a convergent subsequence in X*. Since the natural injection X* — H %JFE('I[‘) is
compact, u, has a convergent subsequence in H ate (T). We also denotes the subsequence
by u,. Using (4.2), we have

— 0

[tn — tmllxs < Clltin — |

Hite
as n, m — oo. Thus, u, is Cauchy in X* and hence converges in X°.

Next, we show that P — z has a closed range. By virtue of [4, Proposition 19..1.3],
it suffices to prove that any sequence u, € X* such that w, is bounded and (P — z)u,
is convergent has a convergent subsequence. Take a sequence u, € X® such that wu, is
bounded and (P — z)u, is convergent. By using the compactness of the natural injection
X < Hzt(T), it follows that u,, — u in H2=(T) for some u € Hz(T) for a sub-
sequence u,,. Due to (4.2), u,, is convergent in X*. It easily follows that u € X° and
Up, — u in X%,

Finally, we show that the kernel of (P — 2)* : (Y°)* = H*(T) — (X*)* is finite
dimensional. Note that if (P — 2)*u = 0 for u € H~*(T), then (P — Mu = 0 in the
distribution sense since C*°(T) C X*. Take a sequence u, € H *(T) such that (P —

10



2)*u, = 0 and |uy|| g+ = 1. If we take N > 0 large, the natural injection H~*(T) —
H=N(T) is compact. Then u, has a convergent subsequence u;j, in H V(T). By using
(4.3), it follows that wu;, is convergent in H*(T).

O

The next lemma specifies the regularity of eigenfunctions of P. From the next lemma,
it turns out that if (P — z)u = 0 with v € D'(T), then we have u € C*(T) or u €
H279(T) \ H21°(T).

Lemma 4.10. For A € C and s > —%,
Ker xs (P —z) = {ue C®(T) | (P — z)u =0},
Ker y—s(m (P — 2)*) = {u € H>"°(T) | (P — Z)u = 0}.

Proof. The first equality directly follows from (4.2). We show that the second equality. If
u € Ker g-s(r)((P —2)*), then (P — Z)u = 0 in a distribution sense since C*(T) C X°. By
using (4.3), we have u € H2~°(T). Conversely, suppose v € Hz"(T) and (P — X)u = 0.
Note that uw € H=*(T). Then, for w € C*>(T),

0= (u,(P—2)w)=((P—2)uw).
Using Lemma 4.11 below, we obtain (P — z)*u = 0. O
Lemma 4.11. C*(T) is dense in X*.

Proof. Let x € C®(R) such that x(¢) = 1 ont < 1. Let u € X*. Set ug(x) =
Op(x('%))u(x) € C(T) for R > 1. Then, ug — u in H¥"(T) and

Pug = [P, 0p(x( 1)) + Op(x(3) P

Since Pu € H*(T), then Op(x('%))Pu — Pu in H*(T). Moreover, since v € H*(T) and
[P, Op(x('%))] is uniformly bounded in OpS* and converges to 0 in OpS**°, we obtain
[P, Op(X(ER‘))]u — 0. Thus, ugr — w in X*. O

We can calculate the eigenfunctions of P with 0-eigenvalue.

Lemma 4.12. For Cy,Cy,Cy > 0, set
T
uo(x) = Co, ui(x) = C1H(x), us(z) = Cs log|tan§|,

where H(x) =1 on [0,7] and H(z) =0 on (w,27). Then Pu;(x) = 0 in the distributional
sense. Moreover, ug € Ker xs(P) and uy, uy € Ker g-sm)(P*).

Proof. This lemma follows from a direct calculation. O

Proposition 4.13. We have Ind(P — z) = =2, d(0) = 3 and d(z) = 2 for z # 0.
Moreover, if z € C\ {0}, then

dimKer y: (P — 2) = 0, dimKer -« (P — 2)*) = 2.

11



Proof. First, we prove Ind(P — z) = —2. If we write u = Y, , ¢**a), € D'(T), Pu = zu
is equivalent to

k(k —1Dag_1 — k(k + 1)agy = 2izay. (4.4)

In fact, we have

Pu=zu<s — i@x(w Z kape™™) = zu

21
keZ
@ax(z ka/kei(k_l—l)z — kakei(k_1)$> = —22u
keZ
=1 Z(k(k - 1)ak71 - k(k -+ 1)ak+1)€ikx = —22u
k€EZ

sk(k —Dag—1 — k(k + 1)ag, = 2izay.

This implies d(z) = 2 for z # 0 and d(0) = 3. Let z = 0. Note that (4.4) is uniquely
solved if ag, a;,a_; are determined. Moreover, any solutions to Pu = 0 with u € D'(T)
can be written as

o0 [e.9]

1 , 1 ,
— i(2k+1)x —i(2k—1)x
u(z) = ap + a; kE:O 2T 1¢ +a 4 ,;:0 T )

In particular, Pu = 0 has just three linearly independent solutions in D’(T). By Lemma
4.12, we conclude that IndP = 1 — 3 = —2. The stability of Fredhollm index under the
continuous perturbation implies Ind(P — z) = —2 for z € C.

Suppose z € C\R. Let u € dim Ker ys(P—2z). Since u € C°°(T) and P = P* formally,
then an integration by parts gives u = 0.

Next, suppose z € R\ {0}. Then (4.4) gives ag = 0. Moreover, {a}r~o is uniquely
determined by (4.4) and a; € C. Similarly, {ax }r<o is uniquely determined by (4.4) and
a_; € C. Consequently, (4.4) has just two solutions. Ind(P — z) = —2 implies that
Pu = zu also has just two distributional solutions. O

Proof of Theorem 4.5. Theorem 4.5 follows from Lemma 4.10 and Proposition 4.13. [

4.3 Discreteness of the spectrum
Proof of Theorem 1.3. By (4.3), we have

[ull y3-0 < CllPullzz + Cllul 2 (4.5)

for w € L?(T) if the right hand side is bounded. This implies that there is a continuous
inclusion Dyap = D((Ploso(r))*) € HY*7(T). Now fix a self-adjoint extension of P and
let D be its domain. By virtue of [5, Proposition 5.1}, it suffices to prove that the inclusion
D c L*(T) is compact. Then D C D,,q4, is a continuous inclusion. Since the inclusion
H'Y?79(T) ¢ L*(T) is compact, the inclusion D C L?(T) is also compact. O
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5 Third proof, via Fourier analysis

In this section, we give a shorter proof of Theorem 1.1 via Fourier analysis. We construct
1
u € Hz7%(T) \ {0} satisfying

(P —i)u=0. (5.1)
If we write u(z) = Y ;- are’™™, then the above equation is equivalent to
k(k —1Dag_1 — k(k + 1)ag41 = —2ay. (5.2)
For a proof, see after (4.4).

Lemma 5.1. Let {a,}5 . be a sequence satisfying (5.2). Then we have |a;| < C(k)™!
for k € Z. In particular, if u € D'(T) satisfying (5.1), then we have u € H%_O(T).

Proof. We only deal with the case of & > 0. Set by, = kaj. Then the equation (5.2) is
equivalent to
2

b2 = by + [CEE

bi41-
First, we prove that for each integer n > 1, we have
bi| = O(k") as k — occ. (5.3)

To see this, it suffices to prove that |b] < C1kY™ and |bryi| < Ci(k + 1)Y™ imply
|bri2| < CL(k +2)Y/™ for large k. We observe

2
bisal” = b+ bk " SCP(h7 + 20k +1)72)"
<CT(k+1)(1 "
—Cl( + )( +(k—|—1)2)
Thus, to prove |byia| < C1(k + 2)Y/", we only need to prove
1 k+2 1
1 "< =14+ -—- 4
(+(k+1)2) “k+1 +k:+1 (5.4)

Since the left hand side is 1 + O(m) as k — oo, the inequality (5.4) holds for large k.
Thus we have |by,o| < Cy(k + 2)/" for large k.
Next, we prove |by| = O(1) as k — oo. Set r, = 2by,1/(k + 1)% Using (5.3) with

n =1/2, we have )2 | |rg| < oo. This implies

2m—1 o) 2m—2 00

bomr = bil = D (bra = b)) <D [rels oo — bol = [ D (bryr — bi)| < D Il
k=1 k k=2 k

=1 =1

O

for m > 2. Consequently, we obtain |bx| = O(1) and |ax| = O(1/k) as k — oc.

Now we take a sequence {ay}3>_ satisfying a; = as = 1. Then the function u(x)
SO ape™ satisfies u € Hz2 O(T)\{0} and (P—i)u = 0. Moreover, we have (P+i)u =
with @ # 0. This completes the proof of Theorem 1.1.

0
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6 Fourth proof, via integration by parts

In this section, we prove 1.1 just by using integration by parts.

Proof of Theorem 1.1. Since the maximal domain of P is {u € L*(T) | Pu € L*(T)}, it
suffices to find u,v € L*(T) with Pu, Pv € L*(T) satisfying

(Pu,v)r2(ry # (u, Pv)ram).

Let u(x) = log |z|x(x) and v(x) = (H(x)+2H (—x))x(z) where x € C*((—73, 7)) is areal
valued function which is x(«) = 1 on |z| < §. Note that u,v € L*(T) and Pu, Pv € L*(T).
Then, a direct calculation gives (Pu,v)r2(r) — (4, Pv)2(my = —v(40) + v(—-0) =

—3
0. 0

Remark 6.1. Using the technique in the the proof above, we can easily prove that P =
—0,(x0,) is not essential self-adjoint on C°(R).

A Anisotropic Sobolev space

In this appendix, we recall the definition and some standard properties of variable order
Sobolev spaces, which are described in [2, Appendix].

Let (M, g) be a closed Riemannian manifold. For a real valued symbol m € S° and
p € (3,1), we set

(1, €) = (€)™, S/T(I’E) ={a € C*(T*M) | |6a86 (z,8)| < C(g)m@OFlalp=(=pI8IY

Then it follows that a, € Sy is elliptic in the sense of [2, Definition 8]. From [2,

m(*8) satisfying

Corollary 4], we deduce that there exists an operator A,, € OpS,
Ay — Op(an) € OpSytet)=Cr=h),

Moreover, the operator A,, is formally self-adjoint and invertible in C*(M) — C*(M)
(hence, also in D'(M) — D'(M)). If M admits the quantization Op such that Op(a) is
formally self-adjoint for any real-valued sybbol a (for example, M = T, see [7, §5.3]), then
[2, Lemma 12] implies that we can take A,, as

A,, — Op(a.,) € OpS™. (A1)
Now we define the anisotropic Sobolev space.

Definition 1. For a real-valued symbol m € S°, we define
H™@) = Ly € D'(M) | Apyu € L2(M)},  (u,w)gm = (A, Apw).

The Hilbert space H™®¢) with the inner metric (-, )= is called the anisotropic Sobolev
space of order m.
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