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Abstract

We consider an N x N system of semiclassical differential oper-
ators with N Schrodinger operators in the diagonal part and small
interactions of order h”, where h is a semiclassical parameter and v is
a constant larger than one. We study the absence of resonance near
a non-trapping energy for each Schrodinger operators. The width of
resonances is estimated from below by Mhlog(1/h) and the coefficient
M can be taken propotional to v — 1.

1 Introduction

We are interested in the resonance free domain for the semiclassical N x N
matrix Schrodinger operator

P(h) =Po(h) +h"W, Po(h) = diag(P1(h), P2(h),...,Py(h)) (1.1)

where
Pj(h) = —h* A +Vj(x), z € R™, (h\,0),

is the semiclassical Schrodinger operator, and v > 1. Here W = W (x, hD,,)
is a symmetric N x N-matrix valued first-order semiclassical differential op-
erator. Such an operator appears in the Born-Oppenheimer approximation
of molecules, after reduction to an effective Hamiltonian (see e.g. [KMSW]).
For each semiclassical Schrédinger operator Pj(h) (j =1,2,...,N) with C*
potential Vj(x), it is well known that there are no resonances with imagi-
nary part of order hlog(1/h) around an energy level Ej satisfying the non-
trapping condition (see [Mal, SjZw]). We recall that an energy FEj is said
to be non-trapping if for all compact K C p;l(Eo) there exists Tk > 0 such
that

(7,§) € K = exp(tH),)(z,§) ¢ K, |t| > Tk, (1.2)



where p;(z,€) = |£|? 4+ V;(x) is the classical Hamiltonian corresponding to
Pj(h). Here Hy, = 2¢ -0, — (0Vj)(x) - 9¢ denotes the Hamiltonian vector
field, and exp(tHy;)(,&) the corresponding Hamiltonian flow. It is well-
known that (see [GeMa]) the non-trapping condition (1.2) is equivalent to
the existence of an escape function Gj(z,§) in a neighborhood of pjfl(Eo),
that is, a function G; € C*°(R*"; R) satisfying

H,,(G;) > 6 on {|p;(x,€) - Eo| < ¢} (1.3)

for some 6, € > 0.

Assume that (1.3) holds for j =1,--- , N. It follows from the Martinez’
result that for all integer M there are no resonances with imaginary part
of order hlog(1/h) for the non perturbed operator Py(h) (see also [SjZw]).
The aim of this note is to study the stability of this resonance free domain
under the perturbation h¥W. Recall that the real part and the negative
imaginary part of a resonance respectively give the frequency and the expo-
nential decay rate of the associate resonant state. In particular, resonance
close to the real axis give information about the long term behavior of the
solution of the wave equation (87 + P(h))u = 0. Thus, it is of interest to
study semiclassical resonance free regions. On the other hand, it is well
known that the scattering phase (or the spectral shift function, see (2.5))
has a meromorphic extension and its poles are the resonances. Using this
facts, we will deduce an asymptotic expansion of the spectral shift func-
tion with remainder depending on the resonance free region from our main
results (Corollary 2.2 and Theorem 2.1).

2 Main Result

Let Hy be the space of Hermitian N x N matrices endowed with the norm
| - l[nxn, where for A € Hy, [|Al[Nxn = SuDgyern;juj<1} [Av]. Here, we
recall some basic notions of semiclassical and mirolocal analysis, referring to
the books [DiSj, Iv, Ma2, Zw] for more details. Let S™(R?*";Hy) (m € N)
be the space of symbols a € C°°(R?"; H ) satisfying the inequality

on whole (z,¢) € R?" for any multiindices a, 8 € N* with N = {0,1,2,...},
(&) = (14 |¢)?)Y2. The h-pseudodifferential operator corresponding to a
symbol a € S™(R?*";Hy) denoted a¥(z,hD) is defined on Sobolev space
H™(R";CN) by

. (m—181)/2
o aga(x,ﬁ)”NxN < Crul€)

(@, hD)u(x) = zﬂlh)n / /R el (”” : f‘/,g) w(y)dyds (2.1



for u = u(z) € H™(R"™; CN).

We study the absence of resonances in the semiclassical limit A — 04 in
a neighborhood of an energy Fy € R. For that, let us introduce the following
assumptions :

(A1) For j =1,...,N, Vj(z) is a real-valued smooth function on R", satis-
fying following conditions:

1. It extends to a holomorphic function in an angular complex domain
near infinity 8™, where S is given by

S={z€C; [Imz| < (tanbp)|Re 2|, [Re z| > Ry}
for some constants 0 < 6y < w/2, Ry > 0.

2. It admits a limit different from Ey as x — oo in S™.

(A2) For any j € {1,--- , N} there exists G; € C>°(R?";R) such that (1.3)
holds.

(A3) W = WY(xz,hD,) is a symmetric N x N-matrix valued first-order
semiclassical differential operator, where W (z, &) = (ai; ()¢ + bi;(2)))1<; j<y -
We assume that = — a; j(x),b; j(x) are bounded with all their derivatives,
and extends to a bounded analytic function on S™.

Under the above assumptions, P(h) is self-adjoint with domain H2(R™; CV),
and the resonances of P(h) can be defined, e.g., as the values E € C_ =
{Imz < 0} such that the equation P(h)u = Eu has a non trivial outgoing
solution u, that is, a non identically vanishing solution such that, for some
small positive (probably h-dependent constant) € > 0, the function wo (. is
in L?(R; CV) where (.(z) = x + ieo(z) with (o € C®(R) satisfies (o(x) =0
for |z| < Ry and (o(z) = x for |z| > 2Ry (see, e.g., [AgCo, DyZw, ReSi]).
Equivalently, the resonances are the eigenvalues of the operator P.(h) =
U-P(h)U-! acting on L2(R™; CV), where U.u = |§é(3:)|n/2 uo ((-®In) (see,
e.g., [HeMa]). Note that there is no essential spectrum in some complex
neighborhood (depending only on ¢) of Ey due to the assumption that the
limit of V; is not equal to Ey for any j = 1,2,..., N. We denote by Res(P(h))
the set of these resonances.

Theorem 2.1 Under the assumptions (A1-3), there exists a positive con-
stant M (independent of v and h) such that

Res(P(h))N{z € C_; |2 — Ey| < M(v — 1)hlog(1/h)} =0 (2.2)

holds for v > 1 and for h small enough.



Corollary 2.2 Fizv > 1. Assume (Al), (A3), and suppose that there exists
an escape function G € C®(R*";R) (independent of j) such that (1.3) holds
forallp;, j=1,--- ,N. Then for any M > 0, there exists ho(M) > 0 such
that for 0 < h < ho(M) we have

Res(P(h)) Nn{z € C_; |z — Ey| < Mhlog(1/h)} = 0. (2.3)

2.1 Comments and applications

Here, as in [Di] and [DyG] we give an asymptotic expansion of the spectral
shift function with remainder depending on the resonance free regions given
in Corollary 2.2 and Theorem 2.1. The proofs are quite similar to those of
[Di] and [DyG]. For this reason we omit the details.

First let us recall the notion of the spactral shift function (SSF for short).
Let Vj o be the limit as |z| tends to infinity of the potential Vj(z), and put

Poo(h) = diag(P1,00(h), Proo(h), - .., Pnoo(h)),

where Pj oo (h) = —h?*A+Vj . We assume that there exists § > n such that
for all & € N” there exists Cy, > 0 such that

Y 10%ais@)] 4 192bi5(2)] + 102 (Vi (2) = Vieo)| < Calz) 7oL (2.4)
1<4,5<N

Inequality (2.4) enables us to define the SSF, s(\, h) € D'(R), related to
operators P(h) and Py (h) following the general theory (see [DyZw] and the
references given there) by the equality

tr[f(P(h) — f(Po(h))] = —(s'( 1), f()) = /Rs(/\;h)f’(/\)d/\, (2.5)
for any f € C§°(R). In the scalar case N = 1, it is well known that s'(A; h)
has a complete asymptotic expansion in powers of h near a non-trapping
energy Fy. Under the assumption of Corollary 2.2, this result has been
generalized in [ADF] for P(h) with N > 1. As indicated above, we will
improve and generalize this result as a consequence of Corollary 2.2.

Formulas relating the scattering resonances and the SSF was considered
by many authors. In [Me], Melrose has studied how the location of reso-
nances is reflected in the asymptotic behavior at high energies of spectral
shift function in obstacle scattering through the trace formula (2.5). A more
general local trace formula relating the derivative of the SSF and the reso-
nances has been established in [Sj] (see also [BP]). The case of a system of
h-pseudodifferential operator was treated in [Ne|. In particular, under the
conditions (A1) ,(A2) and (2.4), it follows from Theorem 4.1 in [Ne] and



Theorem in [BP] (see also [Di]) that if Ey & {Vicc, -, VNoo} then there
exist a simply connected complex (h-independent ) neighborhood 2 of Ej,
a holomorphic function g on ) and a small positive constant hg such that
for all A € I :=RNQ and all h €]0, hy] we have

s’(A,h):Img()\,h)—% 3 AIL""P+ Y s —w),

weRes(P(h)NQ A - weINRes(P(h))
Imw<0

(2.6)

l9(z,h)| < CR™™. (2.7)
Combining this with Theorem 2.1 (resp. Corallary 2.2), we obtain

1 Imw
w€ERes(P(h))NQ
Imw<(hlog(h)

with ( = M(v —1) (resp. ¢ > 0 arbitrary).

Now let § € C§°(] — &, &[;R) be equal to one on | — % 36|, and let F0
be its semiclassical Fourier transform. Let f € C5°(R) be equal to one near
Ey. Assuming (Al), (A2), (A3) and (2.4), it follows from (2.7), (2.8) and
the fact that ¢’ =0 on | — 5, 5[ that

Falx f5' (0 h) = FONS (A h) + O(h3c ™), (2.9)

On the other hand, it follows from Theorem 2.6 in [ADF] (see also [DiSj]
and [Iv]) that Fp,0* fs'(A; h) has a complete asymptotic expansion in powers
of h near A = Ej provided that Ej satisfies (1.3) and C' > 1. Combining
this with (2.9), we obtain :

Theorem 2.3 Fiz Ey & {Vi 00, Vaoo, ** , VN, }» and assume (A1-3), (2.4),
and (2.9). There exits n > 0 (independent of v and h) such that s'(-,h) has
an asymptotic expansion of the form

SOVR) = @rh) ™ [ S0 (VR¥ + O(h3e) |, as kN0, (2.10)
3>0
uniformly for X\ €|Ey — n, Fg + n[. Here ¢ is any arbitrary integer if (A2)
holds with G1 = -+ = Gy, and { = M(v — 1),v > 1 for the general case
where M is given in Theorem 2.1. The coefficients v2;(\) can be computed
explicitly. In particular

n—2 n—2

Yo(A —M”Z/ (A= Va(@) 2 — (A= Vioo)s? )da, (2.11)

where wy, is the volume of the unit sphere S*™1 and A4 := max (), 0).



In general, the conclusion in the above theorem is of interest only when v is
small enough. If G; = --- = Gy, (2.10) was proved in [ADF].

3 Proof of Theorem 2.1 and Corollary 2.2

Throughout this section we fix Ey € R, and we assume (A1-3). Let (y(x), Ue
and P: be the function and the operators as introduced above. For simplicity
of the notations we ignore the dependence of the operators P(h), Po(h), P;(h),
etc on h and we denote it P, Py, P;, etc.

For M > 0 (to be fixed later), we denote
U:= diag(e_aéﬁu/h, e ,e‘sé%/h). (3.1)
and
Pei=Poc+ W, = UP.U (3.2)

where € = Mhlog(1/h) and (~¥j = Gj — (o(x) - £ Notice that, by assumption
(A1)-(2), the operator Pj(h) tends to —h?A + Const. when |z| tends to
infinity. Thus, we may assume that G;(z,§) = = - £ for |z| large enough.
Combining this with the fact that (o(z) for |z| > 2Rp, we deduce that G €

C§°(R?™; R). This implies that the operator e~/ is well defined as an h-
pseudodifferential one in an exotic class S°(R?") for some 6 > 0 (see chapter
7 and chapter 12 in [DiSj]). In particular, eiEG%U /h s a bounded linear
operator from L?(R™) into L?*(R™). Hence that U and U~! are bounded

from L?(R™;CY) into L?(R™; CY).

Let us now prove Theorem 2.1 and Corollary 2.2. Under the non-
trapping condition (1.3), it follows from [SjZw] that (Py. — Ep)~ " is well
defined, and there exists ¢y > 0 (independent of M and h) such that

’(75075 - Eo)_l

C
<2
£(L2) €

Therefore, for E € By (M) ={z € C_; |z — Ey| < c1e} with ¢ < %, the
operator (Py. — E) is invertible and

(75075 - E) o <&, (3.3)

L(L2) 2¢e

Let Wk e(z,hDy) = e_aé;)/herij(x, th)Ua_leEé?/h be the (j, k)-element
of the operator W,. A standard result on h-pseudodifferential calculus yields

H@j,k,e(xv hDI)Hﬁ(H2_>L2) < Cj’keM“Gk—Gj”oolog(l/h)

=C; kh—Mllék—éjlloo. (3.4)



On the other hand, for A < —1, standard elliptic estimates and the
above inequality yield

HW€ (Poe = /\)_IHE(B) < Ch

where k := maX1§j,k§NHék — éjHoo. Consequently

w W (. - B)7 .
W -8 (35)
~ ~ -1 - —1
< h” € ((7)0,&‘ - )\> + (E - El) (7)0,&‘ - >‘)_1 (7)076 - E) )
L(L?)
o hu—l—/{]\f
< V—Kk
=G sy
uniformly for E € By, (M). Therefore, if v — 1 — kM > 0 then
v {[A _ 1 —
 |D. (P — E) Hﬁ(p) o(1).
Combining this with the obvious equality
(P — B) = (I+ KW.(Po. = E)™") (Po.. — B), (3.6)

we deduce that (75€~—E) is invertible for £ € Bj,(M), and hence that (P:—E)
is bijective, since (P. — E) = U(P. — E)U~! and U,U~! are bounded. This
ends the proof of Theorem 2.1.

To prove Corollary 2.2, assume that G; = Gy, holds for all j, k € {1,--- , N}.
Since G — Gy, = Gj — Gy, it follows that £ = 0. Therefore, from (3.5) we
deduce that for all M > 0 and all v > 1, we have

hl/

- . B
We(Poe = B) Y|, = ol), (3.7)
uniformly for E € By(M). Now, as in the proof of Theorem 2.1, Corollary
2.2 follows from (3.6) and (3.7).
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