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1 Introduction

In this talk, we will present a construction of Maass forms, that violate the Ramanujan conjec-
ture, on 5-dimensional hyperbolic spaces. To provide some context, let us remind the reader of
another famous example of modular forms that violate the Ramanujan conjecture — the Saito-
Kurokawa lifts.

Saito-Kurokawa lifts: Let f € Sop o(SL2(Z)), with k even, and let h € S]j_l/z(l“o(ll)) be
the corresponding cusp form in the Kohnen plus space. Let {¢(n)} be the Fourier coefficients of
h. For T half integral, positive definite, symmetric 2 X 2 matrix, define

AT = Y c(det(zT))dk—l.

2
dlged(T)

1.1 Theorem. With A(T) as above, the function F(Z) =Y A(T)exp(2miTr(TZ)) is a Siegel
cusp form of weight k with respect to Spy(Z).

Let us list some of the properties of the Saito-Kurokawa lifts (see [2] for details).
1. Explicit formula for Fourier coefficients.
2. The map f ~ FYy is linear and injective.

3. Relation between L-functions
L(s,Fy,spin) = ((s =k +1)((s — k+2)L(s, f).

4. The map f +— Fy preserves Hecke eigenforms.

5. If F; is a Hecke eigenform, then let mp = ®,7, be the irreducible cuspidal automorphic rep-
resentation of GSp,(A) generated by Fy. Then, for every p < oo, the local representation
Tp is not tempered, i.e. F; violates the generalized Ramanujan conjecture.

6. Characterization of lifts as the Maass space: For T' = [:72 T{ﬂ, write A(T) = A(m,r,n).

Then a Siegel cusp form F' with Fourier coefficients A(T') is a Saito-Kurokawa lift if and

only if we have
— k—1 4 MmN T
Am,rn)= > d A(?,C—Z,l).



2 MAASS FORMS ON 5-DIMENSIONAL HYPERBOLIC SPACE 2

2 Maass forms on 5-dimensional hyperbolic space

Let B be a definite division quaternion algebra over Q. Let us make the assumption that the
discriminant of B is a prime number p.

Let G be the algebraic group such that G(Q) = GL2(B). Then G(R) = GLy(H), where H is
the Hamiltonian quaternions. We have the Iwasawa decomposition: GLa(H) = ZNAK, where
Z is the center, and K is the maximal compact, and

N={n(zx)=['%]:2eH},A={ay: [\/23\/@_1} cy e RTL

We have
G/ZK ~{[V]]:x e H,y e R},

a realization of the 5-dimensional hyperbolic space Hs. For a discrete subgroup I' C GLo(H)
and r € C we denote by M(I',r) the space of smooth functions F' on GLy(H) satisfying the
following conditions:

1 2
1. Q- F = —5(% + 1)F, where Q is the Casimir operator,

2. for any (2,7,9,k) € Z xI' x G x K, we have F(zvgk) = F(g),
3. F'is of moderate growth.

We will take I' = GL2(0), where O is any maximal order in B. Let O’ be the dual of O with
respect to trace map on B. For F € M(GL2(O),r), we have the Fourier expansion

F(n(xz)ay) = u(y Z A(B)y K\/jlr(27r|5|y)62”\/jltr(ﬁx)
BeO\{0}

3 The Maass lift
Let f € S(To(p), Tifl) be an Atkin Lehner eigenfunction with eigenvalue € € {—1,1}. Let

{c¢(n) : n € Z — {0}} be the Fourier coefficients of f. Let us define the primitive elements of ¢’
by

1
Oim ={8€0": Eﬁ ¢ O' for all positive integers n}.
Write 3 € O’ as
B = p“npo, U>On>0p+nand/80€(f)pr1m
Set
s_Jo itsgo
|1 ifByeo.
Define
2u+9
=181 3 > el 1d2 —o)". (1)
t=0 djn

The main theorem is the following.
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3.1 Theorem. Let f € S(I'o(p), T22'1) be an Atkin Lehner eigenfunction with eigenvalue € €
{—1,1} with Fourier coefficients {c(n)}. For B € O, define A¢(S) as above. Then the function
Ft o on GLa(H) with Fourier coefficients A¢(f3) is a cusp form in M(GL2(O),r).

One way to prove the automorphy is to use the converse theorem due to Maass.

3.2 Theorem. (Maass [3]) F given by the Fourier expansion is in M(T'p,r) if and only if a
family of twisted Dirichlet series are “nice”.

Here, Ty = <[1 ff], [_1 1] : 8 € O). Unfortunately, we have GLo(O) = TI'p if and only if
p = 2,3,5. We have used the Maass converse theorem to prove automorphy for p = 2 in joint
paper with Muto-Narita [4]. For general p, the strategy is to use Borcherds theta lifts.

4 Borcherds Theta lifts

In a nutshell, the idea for the theta lift is given by
Pn(@ay) ~ [ FD)O(rn()ay)dr.
SL2(Z)\b
To execute the strategy we have to do the following two things.
1. Replace f by a vector valued modular form with respect to SLa(Z).
2. Define the theta kernel.

Let us first define the vector valued modular forms. Define the discriminant form D =
O')O ~ (Z/pZ) x (Z/pZ). The group algebra C[D] is a C-vector space generated by the formal
basis vectors {e, : 4 € D} with product defined by e,e,s = e q,s. Let SLa(Z) act on C[D] via
the representation pp as follows:

oo(( 1 ew = e(®em o[, " Dew = —= 3 e(=( i))ep

p weD

Here e(x) = exp(2miz). Now, given f € S(Io(p), Tzzl), define Lp(f) : h — C[D] by

(Lo))(m) = Y FM()pp(M) (eo).

To(p)\SL2(Z)

The main result is

4.1 Proposition. Let f € S(Ty(p), Tt“

) be an Atkin Lehner eigenfunction with eigenvalue
e € {—1,1} with Fourier coefficients {c(n)}.

1. For all v € SLy(Z), we have
Lp(f)lv=pp(v)Lp(f).
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2. Write Lp(f) = ZMED fueu- Let c,(n) be the Fourier coefficients of f,,. Then we have

c(n) —ec(np) if p=0;
culn) = { —ec(n) it 0n =l (mod p);
0 otherwise.

Next, let us define the theta kernel. Let (O, |- |?) ~ (Z*, Ag). Set L := [Z, 0, 7]t ~ (Z5, A) with
1
A= —Ap . Let V= (R Q4) = L&R ~RY5. We have that the connected component of
1

SO(V) ~ SO(1,5) is isomorphic to GLg(H)/Z. Let D be the Grassmanian of positive oriented
lines in the quadratic space V. We can identify the 5-dimensional hyperbolic space Hs with the
connected component DT via

H 5 (2,y) = vl y) == %%y oy Q@) —y ey

— R-v(z,y) € DT.
Every v := v(z,y) defines an isometry
WiV oRvowhQal) ~RY, A= (A, A1)

Let p : R® — R be the polynomial given by p(z, -+ ,x6) = —2—255%. For 7 =u+iv e b, (z,y) €
Hs, define the theta function

Orir ey p) =3 (2 (e 0) 0 A)AQa)T +Qah )7 e

pneED  XeL+4p
Here, A is the Laplacian on R,
4.2 Proposition. (Borcherds [1]) For [¢ Y] € SLy(Z), we have

at +b
et +d’

L( V(x,y),p) = |CT+d|5ﬂD([gZ])@L(T:V(%y)ap)‘

For (z,y) € Hs, define
dudv

v

B o(v(r.y)) = / (Lo (f)(r). OLr (), P’
SL2(Z)\h

4.3 Proposition. For every v € GL2(O), we have
Prolw(z,y) = Prolv(z,y)).

Proof. ©p is invariant under a subgroup of GLy(O) that fixes O’/O. Action of GL2(O) preserves
norms on O’/0O, and Fourier coefficients of f,, u € O’'/O only depend on |u|?. L]
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Borcherds gives explicit formula for the Fourier coefficients of ®¢o(v(x,y)). We compute
this to show that the Fourier coefficients of ® ;o (v(x,y)) are exactly A;(5) defined in (1). Hence,
we obtain

(I)f,(’)(l/(l’ay)) == Z Af(ﬁ)yQK\/jlr<27T|ﬁ|y>62ﬂ-\/jltr(’8x)
peo\{0}

= Fro(n(z)ay),

which shows that Fyo € M(GL2(O),r). Cuspidality follows from the observation that the
Fourier expansion of ®fo at a different cusp corresponds to the Fourier expansion of the
Borcherds lift for a shift of @. This completes the proof of Theorem 3.1.

If f is a non-zero even Hecke eigenform, then ¢(—1) # 0. Hence Af(1) # 0, and we get
non-vanishing of Fro. To show that F'r o is non-zero for a general f, we use the fact that the
space of Maass forms f for a fixed p and r is finite dimensional. In addition, we need to show
that f — F o is Hecke equivariant.

If a prime £ # p, then B ® Q; =: By ~ M2(Qy) and GLa(By) ~ GL4(Qy). Hence, we can use
the well-known Hecke theory for GL4 and show that if f is a Hecke eigenform, then Fy o is also
a Hecke eigenform.

Now, let I’y o be a Hecke eigenform. Suppose 7o = @ is the irreducible cuspidal automor-
phic representation of GL(Bj ) corresponding to Ff . Let 0y = ®oy be the irreducible cuspidal
automorphic representation of GLa(A) associated to f. Then, for £ # p, the local representation
my is the spherical component of the induced representation Indgjg((gj)) (| det | ~120y x | det |1/20y).
We have ’

L(s,mro) = L(s +1/2,07)L(s — 1/2,0y),

i.e. Ffo does not satisfy the generalized Ramanujan conjecture. Note that the strong multi-
plicity one theorem for GLy(B,) implies that, if @7 and Oy are two maximal orders in B, then
TRO, = TF0,. Hence, Fr o, and Ff o, give two vectors in the same representation.

5 Maass space

Let us finish with the description of Maass space in the case p = 2. Let the Maass space
M*(GL2(0O),r) denote the subspace of cusp forms F' in M(GL2(O),r) with Fourier coefficients
A(p) satisfying the following.

1. If B = w¥nfy, then A(3) depends only on K := |3|%,u and n. We write A(S) as A(K,u,n).
2. A(K,u,n) satisfy the recurrence relation

o A(K,u,n) = (—=3¢/v2)A(K/2,u —1,n) — A(K/4,u — 2,n) for some € € {—1,1}.

o A(K,u,n) =3y, dA(K/d? u,1).

5.1 Theorem. (Wagh [5]) F € M*(GL2(0O),r) ifand only if F = F for some f € S(I'g(2), TQIl).

We plan to extend this theorem to p > 2 in the future.
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