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1 Introduction

In this paper, we present the result [Fukl9, Theorem 5.2.1]. Let p be an odd prime. In
[Hsil7], Hsieh constructed three-variable p-adic triple product L-functions attached to triples
of Hida families. We generalize the result [Hsil7, (1) of Theorem 7.1] axiomatically and con-
struct three-variable p-adic triple product L-functions in the unbalanced case attached to triples
(F,G® G®). Here, F is a Hida family and G(*) is a more general p-adic family for i = 2, 3.
For example, we can take Hida families, Coleman families or CM-families as G(%).

To state our theorem precisely, we prepare some notation. We denote by @, Q, and C the
fields of rational numbers, p-adic rational numbers and complex numbers respectively. Let Z
and Z, be the rings of integers and p-adic integers respectively. Throughout this paper, we fix
an isomorphism 4, : @p = C over Q. Here, Q and @p are the algebraic closures of the fields Q
and Q) respectively. We denote by A the adele over Q. Let A be a ring. We denote by a(n, f)
the n-th coefficient of a formal power series f € A[q], where n is a non-negative integer. Let
wp be the Teichmiiler character mod p. Let (N1, Na, N3) be a triple of positive integers which
are prime to p and (¢, %2, ¥3) a triple of Dirichlet characters of modulo (Nip, Nop, N3p) which
satisfies the following hypothesis.

Hypothesis (1). There exists an integer a € Z such that Y9tz = wga.

Let K be a finite extension of Q, and Ok the ring of integers of K. We denote by Ax :=
Ok [I'] the Iwasawa algebra over Ok, where I' := 1+pZ,,. Let I, be a normal finite flat extension
of Ag for i =1,2,3. We fix a set of non-zero Og-algebraic homomorphisms

X0 ={QW) : I, - Q, m>1

for i = 1,2,3. Let G® € I;[¢] be a formal series such that the specialization
GO (m) =" Q% (a(n,G"))q" € Qylq]

is the Fourier expansion of a normalized cuspidal Hecke eigenform of weight k’(i)(m), level

@ ;
k (’”)65,? which is primitive outside of p for each positive integer

Nipem (™) and Nebentypus iwp
m. Here, k) (m) and e (m) are positive integers and ¢ is a finite character of T'. Let Xy, be
the set of arithmetic points @ with weight kg > 2 and a finite part eg defined in Definition 2.0.1.
We take the pair (XY, G() to be the pair (Xy,, F), where F is a primitive Hida family F of
tame level N; and Nebentypus ¢ defined in Definition 2.0.3. We denote by F( the specialization
of F at Q for each Q € Xy1,. Let R := Il®@K Ig@@Klg be the complete tensor product of I, 1o
and I3 over Og. We define an unbalanced domain of interpolation points of R to be

ko, + k@ (mg) + k4 (m3) = 0 (mod 2),
%= {Q = (@0, Q) € 2n x 2@ x| 0 T k(2)((m22)) = k<3>(<m‘°;)) et } |



For each Q = (Ql, 53;, 531) € XE, we denote by (F, G@, )(Q) the specialization of
the triple (F,G®,G®) at Q. We define a representation HQ = 7o W
(GL2(A))3, where (7TQ],7TQ§§)2,
the triple (F,G®), G(S))(Q). Let (xq)a be the adelization of the following Dirichlet character

X 7 of
Q%) QW)

7TQ(3)) is the triple of automorphic representation attached to
m3

2a—kg, —k® (m E®) (m 1

Xq = w;( @ (ma)—k( 3))( Q]F%F%)Z
for each Q = (Ql,Q(Q),Q(3)) € XF. We set g = Hé@ (x@)a for each @ € xE. Let (s, 1lg)
be the local epsilon factor of IIg defined in [Tke92, page 227] for cach finite prime I. We set

N = N;N,N3. Let m; be the unique maximal ideal of I;. We summarize some hypotheses to
state Main Theorem.

Hypothesis (2). The residual Galois representation pr := pr mod m; : Gal(Q/Q) — GLx(F,)
attached to F is absolutely irreducible as Gal(Q/Q)-module and p-distinguished in the sense
that the semi-simplification of pp restricted to Gal(@p /Qp)-module is a sum of two different
characters.

Hypothesis (3). The number gcd(N1, Na, N3) is square free.
Hypothesis (4). For each Q € X% and for each prime I|N, we have a(1/2,1lg) = 1.

Hypothesis (5). Let ¢ = 2,3 and n a positive integer which is prime to p. There exits an
element (n)(") € I; which satisfies

i i i - O (m
QW (M) @) = ) (n)(nw, ! (n)) ™
for each positive integer m.

Hypothesis (6). Let i = 2,3. We have a(p,G(m)) # 0 or G (m) is primitive for each
positive integer m.

Hypothesis (7). For each prime l|N, the l-th Fourier coefficients of F,G? and G®) are non-
zero.

Let L(s,1lg) be the triple product L-function attached to Ilg defined in §3. Let Qp, be the
canonical period defined in [Hsil7, (1.3)] and Er,, ,(Ilg) the modified p-Euler factor defined in
[Hsil7, (1.2)]. Our main theorem is as follows.

Main Theorem. Let us assume Hypotheses (1)~ (7). Then, there exists an element Egm o €
R such that we have the interpolation property :

2 3 5 ]:[ T 1\ 2ka, 02
( lelONel >(Q)) FQl,P( Q) (\/__1)21@19%,@1

for every Q = (Q1, (2) (3)) € xk.

Let ( )ax : Zy — A) be a group homomorphism defined by (z)a, = [z2w, '(2)], where
[2w, ! (2)] is the group-like element of zw,(2)~' € T'in Aj. Let n be a positive integer which is
prime to p. We have Q((n)a, ) = eq(n)(nw, ! (n))*e for each arithmetic point @ € Xy,. Then,
if we take a Hida family as G, (n),,. satisfies the Hypothesis (5).



2 p-adic families of modular forms

Let K be a finite extension of Q, and Og the ring of integers of K. Let I be a normal finite
flat extension of the Iwasawa algebra Ak over Ok. In this section, we recall the definitions of
ordinary I-adic cusp forms, primitive Hida families and congruence numbers attached to Hida
families. Let N be a positive integer which is prime to p. Throughout this section, we assume
that Q,(x) C K for each Dirichlet character y modulo Np. Let A be a subring of Q. We
denote by Si(M,1, A) the A-module of cusp forms of weight k, level M and Nebentypus 1)
whose Fourier coefficients at oo are included in A, where k, M are positive integers and ¢ is a
Dirichlet character modulo M. We set Si,(M, 4, B) := Sk(M, %, A) ® 4 B for each A-algebra B.

Definition 2.0.1. We call a continuous Ok -algebra homomorphism Q : I — @p an arithmetic
point of weight kg > 2 and a finite part g : I’ — @; if the restriction Qlr : T — @; 18 given
by Q(z) = xkeeq(x) for each x € T. Here, e : T — @; is a finite character.

Let X1 be the set of arithmetic points of I. We denote by e the ordinary projection defined
in [Hid85, (4.3)]. We recall the definition of ordinary I-adic cusp forms defined in [Wil8§|.

Definition 2.0.2. Let x be a Dirichlet character modulo Np. We call a formal power se-

ries £ € I[q] an ordinary I-adic cusp form of tame level N and Nebentypus x if the spe-

cialization fg = ZQ(a(n,f))q" € Q(D)[q] of £ is the Fourier expansion of an element of
n>0

eSk, (NpeQ,xw;kQ €, Q(I)) with eq > 1 for all but a finite number of Q € X1.

Let S°*4(N, x,I) be the I-module consisting of ordinary I-adic cusp forms of tame level N
and Nebentypus x. Next, we recall the definition of the Hecke algebra of S°™4(N, x,I). For each
prime [ { Np, we define the Hecke operator 7j € Endg(S°™4(N, x,1)) at [ to be

Ti(f) =Y a(n,Ti(f))q"

n>1

for each f € S°"4(N, x,I), where

a(n, Ti(f)) = Y (B)ax(b)b alin/b?, f).

bl(n,l)

For each prime [|[Np, we define the Hecke operator 7; € Endy(S°™4 (N, x,I)) at [ to be

Ti(f) = alin, f)g"

n>1

for each f € S°™4(N,x,I). The Hecke algebra T°'4(N, y,I) is defined by the sub-algebra of
Endy(S*4(N, x,I)) generated by Tj for all primes I. Next, we recall the definition of primitive
Hida families.

Definition 2.0.3. We call an element f € S°4(N, x,1) a primitive Hida family of tame level
N and Nebentypus x if the specialization fg is the Fourier expansion of an ordinary p-stabilized
cuspidal newform for all but a finite number of Q € Xy.

Next, we recall the definition of the congruence number. Let F' € S°™(N, x,I) be a prim-
itive Hida family which satisfies Hypothesis (2). Let Az : T°"4(N,x,I) — I be an I-algebra
homomorphism defined by Ap(T) = a(1,T(F)) for each T € T*Y(N, x,I). Let mg be a unique
maximal ideal of T°*4(N, x, I) which contains KerAp. Let T*(N, x,I)m, be the localization of



TN, x,I) by mp. Let Ay @ TOYN, X, Dm, — I be the restriction of A\p to TN, x, I)m, -
By [Hid88a, Corollary 3.7], there exists a finite dimensional FracI-algebra B and an isomorphism

A TYN, x, 1), @1 Fracl = Fracl © B

such that (Prevacr © A)lmord (N, x 1), = Amp, Where pri, .y : Fracl @ B — Fracl is the projection
to the first part.

Definition 2.0.4. Let prp,,g (resp. prg) be the projection from FracI @ B to Fracl (resp. B).
We put h(Fracl) := prgacr © M(TUYN, x,Dm,) and h(B) = prg o (TN, x,D)m,). We
define the module of congruence for F to be

C(F) := h(FracI) @ h(B)/MNT"(N, x; Dmj)-

Let
1p € TYN, x, 1) m, ®1 Fracl

be the idempotent element corresponded to (1,0) € FracI@ B by A. Let Ann(C(F)) :={a €I |
aC(F) = {0}} be the annihilator of C'(F). By [Wil95, Corollary 2, page 482], T"4(N, x, I)m,
is a Gorenstein ring. Hence, by [Hid88b, Theorem 4.4], the annihilator Ann(C'(F")) is generated
by an element.

Definition 2.0.5. We call a generator ng of Ann(C(F)) a congruence number of F.

Next, we introduce general p-adic families of modular forms. We fix a set of non-zero
continuous Og-algebraic homomorphisms

X = {Qm I — @p}mZL

Then, we define the specialization of an element G = Za(n,G)q” € I[q], at @, € X to be
n>0
Go,, = ZQm(a(n, G))q" € Qm(D[q]- Let x be a Dirichlet character modulo Np.

n>0

Definition 2.0.6. We call an element G € I[q] a primitive p-adic families of tame level N and
Nebentypus x attached to X if Gq,, is the Fourier expansion of a cuspidal Hecke eigenform of
weight kg, , level Np®@m and Nebentypus Xw;kQ"‘eQm which is primitive outside of p for each

positive integer m > 1. Here, kq,, and eq,, are positive integers and €q,, s a finite character
of T.

3 Triple product L-functions

Let (g1, 92, g3) be a triple of primitive forms of weight (k1, ko, k3 ), level (M7, M2, M3) and Neben-
typus (X1, X2, X3). We assume that there exists a Dirichlet character y such that y1x2xs = x2.
Let (71,72, m3) be a triple of automorphic representations of GLa(A) attached to (g1, g2, g3). In
this section, we recall the definition of the triple product L-function attached to the automorphic
representation

I:=m @ (x)a Xmo X3,
where (y)a is the adelization of x. We define the triple product L-function L(s,II) to be

L(s,0) = [ Lu(s,10), Re(s) > 1,

v:place

where L, (s,II) is the GCD local triple product L-function defined in [PSR87] and [Ike92]. Let
I be a prime. The local L-function L;(s,II) at | can be written by the form 1/P(p~*), where



P(T) € C[T] such that P(0) = 1. By the result of [Ike98], the archimedean factor Lo (s,II) can
be written by the form

3
w *
Loo(s, 1) :=Te(s + 3) HFC(S +1—kp),
where w = ki + ko + ks — 2, kf = M — k; and I'c(s) = 2(27)7*I'(s). By [Ike92, Propo-
sition 2.5], the function L(s,II) is continued to the entire C-plane analytically and by [Tke92,
Proposition 2.4], the function L(s,II) satisfies the functional equation

L(s,II) = e(s,II) L(1 — s,10),

where €(s,II) is the global epsilon factor defined in [Ike92, page 230]. The epsilon factor (s, II)
can be decomposed by the product of the local epsilon factors

e(s, MM = J] eols.10)

v:place

and it is known that €,(3,1I) € {£1}.

4 Construction of p-adic triple product L-functions

Let K be a finite extension of Q, and I; a normal finite flat extension of Ax for i =1,2,3. We
fix a triple of Dirichlet characters (¢1, 12, ¥3) of modulo (N1p, Nap, N3p), where N; is a positive
integer which is prime to p for i = 1,2,3. Let F € S°™4(Ny,41,1;) be a primitive Hida family
defined in Definition 2.0.3. Let G € I,;[¢] be a p-adic family of tame level N; and Nebentypus
¥; attached to
%(l) = {QSL) : I, — @p}le

for ¢ = 2,3. In this section, we prove Main theorem and construct the p-adic triple product L-
function attached to (F,G®,G®)). For simplicity, we assume N; = Ny = N3 = 1. Further, we
assume that the triple (F, G(?), G®)) satisfies Hypothesis (1)~ (7). We set R := 1,00, 1280, I3
and

kg, + k@ (m2) + k4 (m3) =0 (mod 2), }

N @ OB @) » 1@
e {Q (Qu QR0 ) & X X XS X O S o) 4 K)o

We define a formal operator Ug , € Endr(R][q]) to be

Uno(f) = Y alon, g

n>0

for each f = ano a(n, f)g¢" € R[q]. Let © : Z — R* be a character defined by

O(2) = 1wy *(2)(2)1, 2 ({2) P (2)®) 73,

for each z € Z), where (2)1, is the image of (2), by the natural inclusion Ag < I;. For each

fe Za(n,f)q" € R[q], we define a ©-twisted form f|[©] € R[g] to be
n>0

flle1=> ") -a(n, f)g".

ptn



We set d := £ For each Q = (Q1,Q%), QW) € X, we have f[[0](Q) = d"2(f(Q)|[0¢)) with
the Dirichlet character

—a— 1 —1 _1
@szlwpa TQ€51€£3£ 265225 2,

where rq = 3(kqg, — k@ (m2) — k®(m3)). Here, f(Q)|[Og] is the twisted cusp form by the

Dirichlet character ©g. We regard G® and G® as elements of R[q] by natural embeddings

I, — Rand I3 — R. We set H := G? . (GP®|[O]) € R[q]. We define the Maass-Shimura
differential operator d; to be

5k:—ﬁ<%+ﬁﬁm(z)>

for each non-negative integer k. Further, we set 67" := dg2m—2...0k+20k, where m is a non-
negative integer. We denote by H the holomorphic projection from the space of nearly holo-
morphic modular forms to modular forms defined in [Shi76]. Let mpg be the maximal ideal of
R.

Lemma 4.0.1. Let Q@ = (Q1, %l &32) € XE. We fix a finite extension L of K such that

O, contains Ql(Il),le (I2) and QQQ(I?,) Then, the sequence {U{{{pH(g)}nZl converges in

OLlg] by the mpg-adic topology and the limit of the sequence equals to the Fourier expansion
T k .

of eH(G®) (m2)5k<%>(m3)G(3) (m3)|0qQ) € €Sk, (P°1, h1wp° €, , L), with eq, = max{1,mc, }.

Here, me,, is the p-power of the conductor of €q, .

Proof. It is known that H(Q) is a Fourier expansion of a p-adic modular form and by [Hid85,
Lemma 5.2], we have

H(Q) = H(GP (m2)6, 5, ., G (m3)|Oq) + dlgg) € Lldl,

where g, € L[q] is a p-adic modular form. By [Hid85, (6.12)], ed = 0 and we have eH(Q) =

eH(GD (my) 2 G(3)(’ITL3)|@Q). Further, by [Hid85, (4.3)], the sequence {Ugpr(Q)}nzl

£®) (m3)
converges in Op[q] by the mg-adic topology and the limit of the sequence equals to eH(Q).
We have completed the proof. O

To construct a triple product p-adic L-function Lg<2>,a<3> € R, we prove the following lemma
and proposition.

Lemma 4.0.2. There ezists a unique element H™d € R[q] such that the specialization of
H gt each Q= (Ql,le, Sig) € .’{g equals to the Fourier expansion of the modular form
eH(G(Q)(mg)é,:%)(mS)G(3)(7ng)|@Q).

Proof. Let I5 be the ideal of R generalized by KerQl,KerQ(mQZ and Kenggl for each Q =

(@1, Q%l, Sii) € XE. We denote by B the set of finite intersections of I for Q€ X%, Then,

we can easily check that Nyeq.J = {0}. Further, we have the natural isomorphism R = Jim (R/
Jes
J). In particular, we have

Rlq] = lim Rq] ©r (R/J).
JeB

For each J = Ni’ Iqg € B, it suffices to prove that there exists a unique element Hyd e
Rlq] ®g (R/J) such that the image of H$"d by the natural embedding i; : R[g] ®r (R/J) <



m
m

H(R[[q]] ®r R/1g ) equals to [e(H(Q))} . The uniqueness of Hy*d is trivial. We prove the
i =i =1
i=1
existence of H$™.
Let p; : R[g] — R ®g (R/J) be the natural projection. If J = I for Q € xk, we

have nlLH;OpJ(UEpr) = ¢H(Q) by Lemma 4.0.1. We assume that there exist elements Hy™d =
le pJ(U}%SpH) € Rl¢] ® (R/J) and H3Y = lijn pJ/(UE{pH) € Rlq] ® (R/J') for a pair
(J,J") € B x B. We define the R-linear map:

(Rlg) @r (R/)) x (Rlql @ (R/T) % (Rlg) @r (R/T +.J))
w w .
(a7 b) — a—2>b

Then, we have iy (H4, H$Y) = lim iy (ps(UR,H),py(UR,H)) = 0. Further, since
n—00 > ’

Ker iy = Rlq] ®r (R/J N J'), there exists a unique element HY,, € R[q] ®r (R/J N J")

such that the image of H3'Y,, in (R[g] ®r (R/J)) x (R[q] ®r (R/J")) equals to (HSd, H$4). In

particular, we have H3¢,, = lim meJ/(UEIpH). Then, for each J = N2, Ig € B, there exists
n—oQ0 ’ —i

a unique element H3*Y € Rq] ®r (R/.J) such that the image of H$*d by the natural embedding

iz : Rlg @ (R/) — [ (Rla) 95 R/Iq) equals to [e(H(gi))]

proof. O

m
1=

. We have completed the
1

Proposition 4.0.3. The power series H*® is an element of S°4(N, @bl,Il)@IlR.

Proof. We identify the Iwasawa algebra Ax with Ok [X] by the isomorphism [1 +p] — 1+ X
and we regard I; as the normal finite flat extension of Ok [X;] for i = 1,2,3. Let ay,az,...,an
be a base of R over Ry = Og[X1, Xs, X3]. We put

Hord _ i H(Z)Ozl
i=1

where H") € Ry[q] for each i = 1,...,n. We put L = FracR and Ly = FracR,. Let Trr/p, :
L — Ly be the trace map and af, a3, ..., o) be the dual base of a;,as ..., a, with respect to
Try,r,-Then, we have

HO(Q) = Te(H(Qe; (Q)
for all but a finite number of @ = (Q1, Q%i, QS;;) € X§;. Further, Tr(H(Q)o; (Q)) is the Fourier

expansion of an element of eSk, (Np®e ,tewlw;le ,Q(R)). Tt suffices to prove

H® € 81,41, O [X1]) B oy [x:] Ro

foreachi=1,...,n. ‘

For each positive integers mg,ms, let Hfﬁ)zm? € Ok [b(ﬁl,bﬁﬁi]ﬂxlﬂ [g] be the specialization
of H® at (Q2),Q%)), where b2 := Q) (X;) and b3 := Q%) (X3). First, we prove HS . €
Sord(1,41, Ok [b%l,bﬁil][[Xl]]). We define a subset X1, of arithmetic points of I to be

mo,m3

X,y = {Q e,

(Q.Q2), Q) € X5}

For each positive integer k, there exists an arithmetic point @ € X1, with kg = k. Then, we have
#XE =o0. Let SO = C Ok [bgl, bgi][{Xl]][[q]] be an O [bgﬁl,bggi][[Xl]]—module consisting

m2,ms3 m2,ms3



of elements f € Ok [bgl, bgg][[Xl]][[q]] such that, for all but a finite number of @ € X[ .., f(Q)

m

equals to the specialization of an element of S°™(1,v1, Ok [bgl , bgg][[Xl]]) at Q. Then, we have
sord(1,w1,OK[b%l,bgl][[Xl]]) c sgd . and Hffl)z,ms € Sprd .. It suffices to prove that we
have S°d(1, 1)y, (DK[bgl,b(msl][[Xl]]) = Sord Let g1,...,gq be elements of SO'4 = which are

mo,ms3 " ma,m3

Ok [b(mQZ , bgl]ﬂX 1]-linear independent. Then, there are positive integers my, ..., mg such that

d = det(a(ms, g;))1<ij<a # 0 € Ok b, b [ X1].

m2? Y ms3

Since #xF = 00, there exists an element Q € ¥ such that d(Q) # 0. Then, we have

mo,m3 ma,ms3

rank,, @ o oS Sor(1, 41, O b2 bP [ X1]).

ord
= rank
O [b3) b1 [X1] Fma,ma Ok bR} bIIX1]

Then, if we take an element f € S2d . there exists an element a € OK[bgl,bgg][[Xl]]\{O}
such that af € Sord(l,wl,OK[b(mQZ,bggi][[Xl]]). Since a has only finite roots, we have f €
Sr(1, b1, O b, bS] [X1])- Then, we have S7(1, o1, O [ba), B[ X1]) = S ,...

For each positive integer ms, let H®™ma € O [b) ][ X1, Xa] be the specialization of H() at
8) | Next, we prove H(0)ms ¢ Sord(l,wl,(’)K[bg;][[Xl]])@Ome](’)K[bgl][[Xg]]. We define an
m3

OK[bgi][[Xl,Xg]]—module Sord OK[bgl][[Xl,Xg]] consisting of elements f(Xi, X2) such that

F(Xq, bg)) € So'(1, 41, O [X1]) R0k Og. for each positive integer m. We have already proved

that H™s € Sod. Tt is clear that S74(1, 41, O [BEL][X1])B, o0, Oxbin][X2] C S5
: nb

ms*
Further, if g1,...,94 € S%g are linear independent, there exist positive integers myq,...,mq
such that

d = det(a(m;, gj))i<ij<a # 0 € O [ [ X1, Xo].

e . (2) d
We can take a positive integer mo such that d(Xi,bm;) # 0. Then, rankok[bgsé][[xl 7X2]]S%3 =
rank (3

o 1S (1 61, Ok BE[XA]). We take an element a € O [bi][X1, X2]\{0} such
that a H(")™s ¢ Sord(l,zpl,OK[bﬁfl]ﬂXl]])éok[bm]OK[bﬁii][[XQ]]. Since we have a(X1,p™) # 0
14
for almost all positive integers m, there exists a positive integer &, such that H (1),ms (X 1,pm/) €
Sord (1,41, O [bgl]ﬂXl]]) for each positive integer m' > k.
We put H(gl)’ms = H®™s and ¢, = pPmst™ for each non-negative integer m. We define a
power series aims e o K [bgl][[X 1, X2][¢] inductively for each positive integer m to be

H™3 (X0, Xo) = (HOT (X0, Xa) — HOT (X0, em)) (X2 — c) L € Ox [bE)1[X1, Xo][g]-

m—1

By the induction of m, we have H)"™ (X1,¢1) € S°4(1,91, Ok [bgg] [X1]) for each non-negative

integer m and | > m + 1. In particular, if we put H,(Ti?n:nfl = gL (X1, ¢m+1), we have

HOms = 3 Hﬁi?ﬁﬁl (X — ¢;) € S (1,4hy, O [bgﬁl][Xﬂ])@cok[bﬁg](’)f([b(m:ii][[Xg]].
m=1 j=1

Next, we prove H®) ¢ S4(1, 41, O [X1]) R0, Ok [X2, X3]. By the same way as above,
we can take a non-zero element a € Ox[X;, Xa, X3]\{0} such that « H® is an element of
Sord (1,491, O [[Xﬂ])@ok Ok [ X2, X3]. Further, there exists a positive integer k£ which satisfies
HO(X1, X, p™) € S(1, 1, O [X1])Po, Ok [X2] for each m > k. We put H := H® and
¢l = p**™ for each non-negative integer m. We define a power series HY € Ok[X1, X2, X3][4]
inductively for each positive integer m to be

HY = (HY (X1, X5, X3) — HY (X1, Xo, ) (X3 — &)™ € Ok [ X1, Xa, X3][q].



Then, we have

HY = 3 HD (X1, Xa, ) 1) [ [(Xs = ¢) € S74L 01, Ok [X1]) B0, Oxc [ X2, X,

m=0 Jj=1
We have completed the proof. O

Definition 4.0.4. We define an element Lg(z) o € R to be

Lg(z)yg(:s) =a(l, 7]F1F(H0rd)).

Here, 1 is the idempotent element defined in §2 and nr is the congruence number defined in
Definition 2.0.5.

By [Hid85, Proposition 4.5] and [Ich08, Theorem 1.1] , we have the interpolation formula of
L) g . However, we omit the detail of the proof of the interpolation formula. Let Fo, be
the canonical period defined in [Hsil7, (1.3)] and Er, ,(Ilg) the modified p-Euler factor defined
in [Hsil7, (1.2)]. B

Proposition 4.0.5. We assume Hypotheses (1)~ (7). Then, there exists an element ‘Cgu) oo €
R such that we have the interpolation property :

L(35,1g)
(,CF (Q))2:5F ’(H)#

a@ qe (& Q1P \1Q (\/__1)%&21{2%,(2]
for every Q = (Ql,le: gg) € Xp.

5 Examples

In this subsection, we give examples of the triple (I;, X, G()) which satisfy Hypothesis (5), (6)
and (7). As a first example, we can take families of CM forms of weight 1. Let L be a quadratic
imaginary extension of Q with a discriminant D. We assume that D is square-free and prime
to p. Let §f be an integral ideal of Oy, such that f is prime to Dp. We assume that N(f) is
square-free, where N is the absolute norm. Let €(f(p)’) be the class ray group modulo f(p)’
over L for each j > 0. By the class field theory, €(f(p)>°) = Jim €(f(p)?) is a Z,-module of rank
320
2. Let Aj be the torsion part of €(f(p)>°) and x : Ay — C* be a primitive character. Here, a
primitive character means that it is not induced by any character from Ay for § C f'. Let L /L
be the anticyclotomic extension of L. By the class field theory, the Galois group Gal(L, /L)
is a direct summand of the Z,-torsion free part of €(f(p)>). Let pr; : €(f(p)>) — Aj and
pr_ : €(f(p)>*) — Gal(LL,/L) be the natural projections to Ay and Gal(L_ /L) respectively.
Let E be a finite Galois extension of Q, such that the image of A; by x is contained in £. We
define a group homomorphism

U €(f(p)>°) — Op[Gal(Ly, /L)]*

to be ¥(a) = x(prj(a))[pr_(a)] for a € €(f(p)>). Let Jj,) be the group which consists of
fractional ideals a of L which is prime to f(p). For each finite prime ideal [, we denote by L the
completion of L by [. Let Or, be the integers of L; and 7| a generator of the maximal ideal of
Or,. We define a group homomorphism

U Jsy — OplGal(L,, /L)~



to be U*(a) = H U (m"), where ¥ = H‘I’l and a = H ™. We put
"i(p) ! f(p)

Fg = Z T (a)gN®

aff(p)

where a runs through integral ideals of L which are prime to f(p). Let ¢ : Gal(L%, /L) — Q" be
a finite character. We denote by P, : Og[Gal(Ly,/L)] — Q, the Og-algebra homomorphism
defined by P.([w]) = e(w) for w € Gal(Ly/L). It is known that for each finite character e :
Gal(Ly, /L) — Q" the series f, := P.(Fy) € P.(Og[Gal(Ly,/L)])[q] is the Fourier expansion
of a classical modular form of weight 1 and level (—D)N(f)p®, where e, is a positive integer
(cf. [Miy06, Theorem 4.8.2]). By the definition, f. is the CM-form. We remark that the p-th
coefficient a(p, Fy) € Og[Gal(Ly,/L)] of Fy is zero by the definition. However, if € : Gal(L,/
L) — Q" is primitive and the conductor is sufficiently large, it is known that f, is a primitive
form (¢f. [Miy06, Theorem 4.8.2]). Then, if we put X := {KerP. | f. is primitive}, the
cardinality of X is not finite, and the triple (Og[Gal(L /L)], X, Fy) satisfies the condition
(6). Further, it is not difficult to prove that the triple (Og[Gal(Ly /L)],X, Fy) satisfies the
condition (5). Let pryx : A* — €(f(p)*) be the natural projection defined by the class field
theory. We denote by j, : QF < A* the natural injection. If we put (n) = nw,(n) " ¥([pry« o
Jp(nwp(n)™ )71 € OE[[Gal(LOO/L)]]X for each positive integer n which is prime to p, (n)
satisfies the condition of (5). Since DN(f) is square-free, by [Miy06, Theorem 4.6.17], Fy
satisfies Hypothesis (7).

As a second example of (I;, X", G()), we give Coleman families. For an element 2 € K and
e € pY, we denote by B[z, €] x the closed ball of radius € and center x, seen as a K-affinoid space.
We denote by Apg[y ¢, the ring of analytic functions on B[z, €]k and by A% Bl x the subring of
power bounded elements of Ap(, ., We remark that if € € K, the ring A Blz,e]x is isomorphic
to the ring

Oxle (1~ 2)) = { S an (7T —2))" € Oxcle™ (T~ )] i fay ], =0
n>0

Let M be a positive integer which is prime to p and square-free. Let ej; be a Dirichlet character
mod M. Let f be a p-stabilized newform of weight kg, level Mp , slope a < ky — 1 and
Nebentypus epwi =% where 0 < i < p — 1. Further, we assume that a(p, f)? # e (p)p*o=" if
i = 0. Then, by Coleman in [Col97], there exists an element ¢ € p% N K and a series

G € Apiry o, ld]

such that the specialization G(k) of G at k is the Fourier expansion of a normalized Hecke
eigenform of weight k, level Mp, slope a and Nebentypus eMw;_k for each positive integer
k € Blko, €]k (K) which is greater than « + 1. Further, we prove in [Fuk19, A2.7] that we can
take a sufficiently small € such that G(k) is a p-stabilized newform for each positive integer
k € Blko, €|k (K) which is greater than « + 1. If we put X = ¢ (T — kg), we can regard
the Coleman series G as a series G(X) in O [[X]] Let k € Blko, €|k (K) be a positive integer
which is greater than o + 1. If we put by = e *(k — ko), G(bg) is the Fourier expansion of a
p stabilized newform of weight k, level Mp, slope o and Nebentypus € McuZ k. We denote by

% : Ok [X] — K the continuous Ok-algebra homomorphism defined by Pk( ) = bi. We define
.’{ to be the set consisting of Py for each positive integer k € Blko, €] x (K) which is greater than
a + 1. Then, the triple (Og[X], %, G(X)) satisfies Hypothesis (6). We check that the triple
(Ok[X],%,G(X)) satisfies Hypothesis (5). Let exp(z) and log(z) be the formal exponential
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series and log series in K[z] defined by

1
exp(x) :Zﬁx",

n>0

log(z) :Zﬂx".

n
n>1

We fix an isomorphism Ax = Og[X] defined by [1 4 p] — X + 1 and we define a formal series

(n)":= (), (1 + p)*exp(eXlog(1+p)) — 1)

for each positive integer n which is prime to p. We remark that since we have [p™|, < |m!|,
for each positive integer m, the series (n)’ is contained in Og[X]. Further, for each positive
integer n which is prime to p, the series (n)’ satisfies the condition of Hypothesis (5). Since M
is square-free, by [Miy06, Theorem 4.6.17], G(X) satisfies Hypothesis (7).
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