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0 Introduction

Siegel Eisenstein series are one of the most important and fundamental topics
in the theory of Siegel modular forms. We define the Siegel Eisenstein series
with level and characters as follows. Let [ be a positive integer and 1 a
Dirichlet character modulo I, that is not necessarily primitive. We write

rog) = {<g g) € Sp(g.Z) | C = 0 mod 1},

A B
I = {(0 D> € Sp(g, Z)}-
For an integer k > 0 such that ¢(—1) = (—1)*, we define
Ef(2) = > ¢ (det D) det(CZ + D)7,
(& D)Er\TE (W)
here Z € H, the Siegel upper half space of degree g. The right hand side
converges when k£ > g + 1, then E;’f(Z) € My(IF(1), ).
The Fourier expansion of Eg;f(Z ) are written as
EfN(Z)= > C(T)exp(2riTx(12)),
5¢(2)*31>0

here Sy(Z)* denotes the set of half integral symmetric matrices of size g.
The aim of this article is to give an explicit formula of C(T).

For that, first note that we may assume 7" > 0, since in the case of
rankT = r < g, C(T') coincides with the Fourier coefficients of EZTJZ(Z)
(z € H,). If T > 0, then C(T") has an Euler product expression

C(T) =¢&(T.k) T Spa.¢.7.k). (0.1)

p:prime

1



Siegel gave an explicit formula of £,(T', k) as

2-9(9-1)/2(_2xi)9k

det T)k—(+1)/2,
oy et

£(T7 k) =

Here we put T'y(s) = m9(9=1/4 Hg;é T'(s—7/2).

On the other hand the term S%(I,%,T,k) are called the Siegel series.
We refer the precise definition in [Tal, Definition 2.1]. We remark that the
properties are quite different during two cases whether p |l or p1 1.

In the case of p 1 I, S§(l,4,T,k) are independent of [, thus we simply
write S¥ (1, T, k). Moreover if | = 1 they are denoted by S¥ (T, k). It is known
that SP(T,k) are rational functions in p=*. If we write S5 (T, k) = R(p~*),
then S5 (¢, T, k) = R(¥(p)p~*), thus it suffices to consider the case | = 1,
i.e. the full modular case. An explicit formula of Siegel series are given in
the famous paper of Katsurada ([Kat]), as a consequence the case of p | [
remains.

For S% (1,4, T,k) with p | I, only several examples of calculations were
known in the case of small g (cf. [Mi], [Tal], [Gu2], [Gu3], [Di]). For higher
degree case, the computations seemed to be quite difficult. We note that
in [Ta2], Takemori calculated the Fourier coefficients of Eﬁf(Z) for non-
quadratic character . Precisely to say, he treated the case that [ is odd
and for the decomposition ¢ = Hp\ﬂ/’pv 1/)1% # 1 for all p | I. In that
case, the Fourier coefficients at S¢(Z)* > T > 0 becomes quite simple:
SE(1,4, T, k) are almost 1 except for the Euler factors of L-functions. In
[Ta2], first Takemori constructed Siegel Eisenstein series with such simple
Fourier coefficients, next he showed the coincidence of it with our Elgdlj(Z ).
However such a result does not hold for the case of quadratic or trivial
character.

In this article we treat the Siegel Eisenstein series with trivial or quadratic
characters, using the theory of genus theta series. In full modular case, it is
known as Siegel’s main theorem, that the genus theta series coincides with
the Siegel Eisenstein series. In higher level case the situation becomes more
complicated, but genus theta series belong to the space of Siegel Eisenstein
series. Moreover Katsurada-Schulze Pirrot ([KS]) or Bocherer-Hironaka-
Sato ([BHS]) showed that by taking suitable quadratic forms genus theta
series form a basis of the space of Siegel Eisenstein series for square free
level case. The Fourier coefficients of the genus theta series are known by
Sato-Hironaka ([SH]), thus combining above results we can get the Fourier
coefficients of Siegel Eisenstein series.

The above strategy is nothing new, however by the complicatedness of
the explicit formula of local densities (or the Fourier coefficients of the genus
theta series), taking liner combinations have not seemed to be an effective
way (cf. [Boe]). Here we first show a simple description to write the Siegel
Eisenstein series by the linear combinations of the genus theta series, next



by using the properties of the coefficients, we simplify the formula for the
Fourier coefficients.

1 genus theta series

We set S,(Z) = {Q € My(Z) | '*Q = Q} the set of integral symmetric
matrices, Sp,(Z)* ={Q = (gij) € Mn(Q) |'Q = Q,¢ii €Z, 2q;; € Z (i # j)}
the set of half integral symmetric matrices. We put S, (Z). = {Q = (¢i;) €
Sn(Z) | gii € 2Z} the set of even integral matrices, i.e. Q € Sy (Z)* if and
only if 2Q € S,,(Z).. Moreover S;7 (Z), S;F(Z)* and S, (Z). denote the subset
of positive definite matrices in Sy, (Z), Sp(Z)* and S, (Z). respectively.

Definition 1.1 (1) We say Q1, Q2 € Sp(Z)* are in the same class if there
exists U € GL,(Z) such that 'UQ U = Qs.

(2) We say @1, Q2 € Sp(Z)* are in the same genus if for every prime p
there exist U, € GL,(Z,) such that tUleU = (@2, and @1, Q2 have

same signs.

We write Q1 ~ Qs if Q1 and Q)5 are in the same class. Then the set
{S € Sp(Z)* | S is in the same genus as Q}/ ~

is finite, whose number A(Q) is called the class number of Q.
For Q € Sj,.(Z)* we define the theta series

99(Q:2) =9(Q:Z2) = Y exp(2riTe(NQNZ)) ZeH,,
NeMsy 4

that is a Siegel modular form of level [ and character x¢g. Here [ is the level
of 2Q), i.e. the least integer I > 0 such that [ - (2Q)™! € Sox(Z)e. xq is the
quadratic or trivial character, that satisfies

Xale) = (_(—1)’%2%(2@)

for an odd prime g. Note that if k is even and det(2Q)) is a square number,
then x¢ is the trivial character modulo /.
The Fourier coefficient of 9(Q; Z) at T' € Sg¢(Z)* is the representation
number
HQ.T) = N € My,(Z) | 'NQN =T},

that is not easy to handle. Instead of that if we consider the weighted
average of the theta series in the same genus, then its Fourier coefficients
has an Euler product expression, thus we can treat it using local theories.



Let Q1,...,Q be a representative set of the equivalence class in the
same genus as in (). Put

O(Q:) = {U € GLy(Z) | 'UQiU = @},

which is a finite group since each @); is positive definite. Then we define the
genus theta series

h ) L
0@i2) = 32 iy € MO w=3 i

Note that the constant term of the Fourier expansion of the genus theta
series are 1.

In order to write the Fourier coefficients of ©(Q; Z), we define the local
densities as follows. For a prime number p, put

rpe(Q,T) = 4{N € Mimg(Z/p") | 'NQN =T mod p"S4(Z)"}
for @ € Sy (Z)* and T € Sy(Z)*. We define

apy(Q,T) = lim p_”(mg_g(g+1)/2)7'pu(Q,T).

V—00

The right hand side is stable for sufficiently large v. Then the following
theorem is known as Siegel’s main theorem.

Theorem 1.1 ([Si, Sats 1, (72)] or [Ki, Theorem 6.8.1] )
Let Q € S5, (Z)*, T € SF(Z)*. For 2k > g+ 1, the Fourier coefficient of the
genus theta series ©(Q; Z) at T is given by

ao(@,T) [] (@, 7),
p:prime
with

0o (@ T) = (det Q)™9/2(det T)2h-9-1/22 Ly(k)

(1.1)
= % det(2Q) 792 £, (T, k).

Remark In Siegel’s original paper [Si] or [Ki], the value of ao (Q, T') differs
2909=1) from our result. However the definition of a,(Q,T) is also different;
they count the number of N such that *NQN = p”Sy(Z), thus the value of
a2(Q,T) is not equal to ours. By looking at [Ki, Lemma 5.6.5], we see that
the final results are correct.

The relation between Siegel series and local densities are given by the
following proposition.



Proposition 1.2 ([Sh, Lemma 3.5] ) Let Q € S, (Z)* and T € Sy4(Z)*.
For a prime number p (including p = 2) such that (p,det(2Q)) = 1, we have

ap(Q,T) = Sh(xq, T\ k)

The condition (p,det(2Q)) = 1 is equivalent to p t £(2Q), here £(2Q)
denote the level of 2¢). Combining the results above, we can compute the
local densities oy, (Q, 1) for p 1 £(2Q). In particular if det(2Q)) = 1 (it occurs
only when 4 | k), we have E9%(Z) = ©(Q; Z). Here E9*(Z) denote the
Eisenstein series of weight k for the full modular group Sp(g,Z).

In the case £(2Q)) > 1 such a simple result does not hold, since we have
several Siegel Eisenstein series corresponding to the 0-dimensional cusps.
However it is known that the following properties hold. Let

E(TE(1), xQ) = BV (Z) |y | v € T9,9)c N My(T (1), x@)

be the space of Siegel Eisenstein series, where v runs through the set of
Dirichlet characters modulo I such that ¢(—1) = (—1)*.

Proposition 1.3 For Q € Sy, (Z)* with det(2Q) = [, ©(Q; Z) are contained
in the space of Siegel Eisenstein series & (1 (1), x0)-

Our strategy is as follows: we choose suitable @’s such that {©(Q; Z)}
form a basis of the space of Siegel Eisenstein series. The Fourier coefficients
of ©(Q; Z) are given by local densities, and an explicit formula of local
densities are known by [SH], for general degree case and any odd primes.
Thus the Fourier coefficients of the Siegel Eisenstein series are written by a
linear combinations of known values.

Our aim is to find the local p-factor of the Siegel series, thus we may
assume [ = p is an odd prime.

From now on, we fix an odd prime p. Let x;, denotes the quadratic
character modulo p and x( denote the trivial character modulo p.

Assume k > g+ 1. For each j such that 1 < j < 2¢+ 2, we fix quadratic
forms Qg]k) € S5,.(Z)* such that

02Q9=p, det(2Q%)) = .

The existence of such Qéjk) will be discussed in the next section. Then

Xo J is even,
XoU) = ..
oY, Xp J isodd.

Proposition 1.4 The set {ngj_l)} (1 <j < g+1) form a basis of
Ek(IY (p), xp), and the set {Qgg)} (1 <j < g+1) form a basis of E (I (1), x0)-



This proposition is first proved by Katusrada-Shulze Pillot ([KS, Theo-
rem 5.1]) in the case of x = yx,, after that Bocherer-Hironaka-Sato extended
the result to the case including trivial character or the case of square-free
level ([BHS, Corollary 5.2]).

In both of the above papers they showed the linearly independence of
the local densities ap(Qng), T), as an function of T' € S,(Z)*. Here we give
an another proof of this proposition by using the theta transforms, i.e. not
local theory but global theory. From our proof we can easily find the way
to write the Siegel Eisenstein series as a linear combinations of genus theta
series.

First we recall the O-dimensional cusps of I'j(p)\H,. A representative
set of Iy (p)\I'9/I'% is given by

7 E, I
HGNTL = | My, M, = (; E) ,
7’:0 T T

with
E, = diag(0,...,0,1,...,1), I, =diag(l,...,1,0,...,0).
—— —— —— N——

r g—r r g-—r

0 _19). For F € My (I§(p), ),
l, 0

A, (F) denote the constant term of the Fourier expansion of F|;M,. For
k> g+ 1and x = xp or xo, the linear map

In particular Mg = 134 and My = J, = <

E(IY(p),x) =TI, F s (A(F)),

is isomorphic. In particular dim & (I (p), xp) = dim E (LY (p), x0) = g + 1.
Now we can show that the genus theta series satisfies

A (0(QF): 7)) = ((—1)Fp772)". (1.2)

Proof (Proof of Proposition 1.4) Change j — 2j — 1 or j — 2j in
(1.2), we consider the matrices

<((_i)kpl/2_j)r> o<r<g " (((—i)kp_j)r> rerey (1)

1<j<g+1 1<j<g+1

whose determinants are non-zero since those are Vandermonde matrices.
This shows our assertion. O

Our Siegel Eisenstein series Eg;';(Z ) (X = xp or xo) are characterized by
the condition

A (ESE(2) (1.4)

Il
——
S =
—
| I
= (an)
|
Ne)



Let (¢i)1<i<g+1 be the first column vector of the inverse matrices of (1.3) (it
is common for both matrices). Then ¢; satisfies

g+1
S prtic = {1 “=0 (1.5)
— 0 1<a<y.
gt+1
Explicitly we can write ¢; = H (p™~7 — 1)~ but we use only the properties
m=1
mj

of (Ci).
Now we can write the Siegel Eisenstein series by the linear combination
of the genus theta series.

Theorem 1.5 Assume k > g + 1, then we have

g+1 g+1
25—1 27
B (2) =3 ¢0(Z:05 ), B (2) = Y i0(Z:Q5)).
j=1 =1

In terms of Siegel series, the above theorem becomes as follows. For x = x,
or xo, S§(p, X, T, k) is simply denoted by S5 (x, T\ k).

Theorem 1.6 For k> g+ 1 and T € S (Z)*, we have

g+1

Pl ) = 9300 (O .),
j=1
g+1
o —qgi 27
SE(x0, Ty k) = 1% 3" p~9¢; 0, (Q5), T).
=1

The term i%% and p9(1/2=9) (resp. p=99) comes from (1.1).

2 Jordan decomposition of the quadratic forms

In this section, we show the existence of the Qgg, that we considered in
the previou section. It is well-known that an integral quadratic form is
diagonalized over Z, for each odd prime p. We also find the diagonal form

in the same 7Z, equivalent class of ng)

First we recall the Haase invariant of the quadratic forms. Let g be a
prime number. For any @ € S4(Z)*, there exist g € GLy(Qq) such that
tgQqg = diag(ai, ..., ay). Then we define the Hasse invariant invy(Q) by

invy(Q) = [ J(ai,a5), € {£1},

1<j



here (-, -)4 denote the Hilbert symbol. This value is independent of the choice
of g.

For 51,55 € Sy4(Z)*, we write S1 ~g Sy if there exist U, € GLy(Z) such
that thsqu = S5.

The existence of ngk) comes from the following proposition.

Proposition 2.1 Let d be a positive integer. Assume that for each prime
q, there exist S, € S;(Z,) such that det S; = d. Then there exist S € S;(Z)
with S ~¢ Sy for each ¢ if and only if [, inv(S,) = 1.

Note that inv,(S) = 1if (¢,2d) = 1, thus the infinite product is well-defined.
For the proof we refer [Ca, Chapter 6, Theorem 1.3 and Chapter 9, Theorem
1.2].

Since our Qé]k) € S5 (Z)* not in S (Z), we show the existence of 2@%112 €
Sy (Z)e. Our conditions are

£(2Qgé)) =p det(QQg,;)) =p, 2@%7,3 is even.

First we consider the Jordan decomposition in Zs. Since 2Qéjk) is even,
we have ' ,
2@9;3 ~9 Hj, or 2Qé]k) ~o (Hy—y L W),

0 1 2 1
Hk_HL-I;-LH, H_<1 0), W-(l 2)

with

The Hasse invariants are computed as
invo(Hy) = ()02 invy(Hpy L W) = —(=1)FE=D),

By comparing the determinants we have that if j is even then QQ%) ~9 Hp,
and if 7 is odd then

QQ%Q ~9 Hp <= p=+1mod8
ZQg‘Q ~9 (Hpy L W) <= p=+3modS8.

Next we consider the Jordan decomposition in Z,. Let

X]:dla‘g(17717p77p)7 Yj:dia’g(17'“7]‘777p7"‘7p7pﬂy)7
N e’ N’ N — N——
2k—j J 2k—j—1 j—1

here v is a fixed element in Z;, that does not contained in Z;Q. Then

it is known that Qg],;) ~p Xj or Y;. The Hasse invariants are inv,(X;) =
Xp(—1)707D72 inv, (Y;) = —xp(—1)7U~1/2. Thus we can show the existence

and the Jordan decomposition of QQg,;) by choosing X; or Y; so that the



product of the Hasse invariant becomes 1. Finally in order to find the
Jordan decomposition of Qg]k), we consider the condition that 2X; and Xj
are equivalent in Z,. If j is even then 2X; ~, X;, on the other hand if j
is odd then 2X; ~, X, if and only if 2 € Z;;Q, ie.p=1,7Tmod8. Asa
consequence we have the following result.

Lemma 2.2 (1) Assume that j is odd. If j = 1 mod 4, then
Q(j) X; k=0,1mod 4,
kP Y; k=2,3mod 4,
if j =3 mod 4 then

Q(j)w X; k=0,3mod 4,
2P Y; k=1,2mod4.

(2) Assume that j is even. If 7 = 0 mod 4,
G) X; k=0mod 4,
0 PY; k=2mod 4,
If 7 = 2 mod 4 then

) X; k=0,p=1mod4 or k=2, p=-—1mod4,
2k P Y; k=0, p=-1mod4 or k=2, p=1mod4.

3 An explicit formula of the Siegel series

Now we give an explicit formula of the Fourier coefficients of Siegel Eisenstein
series. Let [ be an odd integer and %) be a Dirichlet character modulo ! such
that 4> = 1. Then the Siegel series are given by

LI so@. k) T] S5, 0, T, k),

ptl plt
here e, = ord,l. For a prime p t I, SH(y,T,k) is calculated by Kat-
surada [Kat] as explained above. The case of p | [, it suffices to compute
SE(p®, x, T, k) with x = x,p or xo (see [Tal, Proposition 2.3]). The case of
ep > 2 we use the following lemma.

Lemma 3.1 Let % be a Dirichlet character modulo p, that is also regarded
as the Dirichlet character modulo p¢ (e > 2). Then

7k 7k c—
ES"(Z) = EX,(p° ' Z).
Thus we have

(1—e)(gk—g(g+1)/2) gP —e+17 1) T = 0 mod pt—!
_JP 9 (P k) = 0 mod p**,
PP\, T, ) = {0

otherwise.



Therefore it suffices to consider the case of level p. The following lemma
is essential for our method.

Lemma 3.2 Let p be an odd prime, T € S;(Z)*. Then we have

. g .
ap(Qg%{;)? T) = Z p7nj/2Rm(T7 k)7

m=0

here R, (T, k) depends only on T', k and j mod 2.

Remark Similar results are proved in [KS] or [BHS], where they treat the
quadratic forms of the type Ho,_; L pHj;. Our assertion is that, if we take

Qg{? instead of them, then R, (T, k) depends only on j mod 2.

We write Ry, (T, k) as Ry, (T, k). or Ry, (T, k), according as j is even or
odd. Then for example the case x = X,

g+1 )
S0, To k) =13 e 2Dy (QG . 1)
j=1
g+l g '
— i%k Z Z p(g—m)/2p—(g—m)JCij(T’ k)o
7j=1m=0

=% Ry (T, k),
by (1.5). As a consequence we have
S5 (xp: T, k) = i Ry (T, K)o, S§(x0. T, k) = i¥*Ry(T, k)e.

It means that the Siegel series are nothing but the partial sum of the local
densities.

For the proof of the lemma, we use the explicit formula by [SH]. We use
the same notation as [SH], but in order to avoid the confusion of letters, we
change a few notations. The size m of the matrix S is changed to 2k, the
matrix size n of T" is changed to g, also the notations n;, n(i) are change to
9i, g(i). The letters k in [SH] are changed to m in our notations.

Many invariants are contained in the explicit formula of «(Q,T"), but
there are a few invariants associated with (). We write

Qéjk) ~p diag(u1p™, ..., ugrp™?*).

Then the term of p-power that depends on j is of the form [], pI9/2 Here
g1 is the order of I; for the partition of I = {1,...,¢} into I = IpU---UI,.
The other contributions ofj are in the terms

Xp(_l)ﬁA(x\)Jr[tiA(/\)/?} H Xp (Um).- (%)
meA(N)

10



Here A runs through the finite set of negative integers,

A(N) = {1,2,..'.,2k—]} )\Tsodd
{2k —j+1,...,2k} \is even.

By using Lemma 2.2, we can compute that

i* = (=1)¥/2  jis even, 1 p=1mod4
(x) = " o here ¢, =
i"ep J is odd, i = 3 mod 4.

In particular (x) only depends on j mod 2, which proved our lemma

Our main result is as follows. In addition to the notation in [SH], we

define
G k)e =2 [ xp(vm)
meB;(\)
0 Bk A0, $Bi(A) : 0dd
(1- p—l)xp(_l)[ﬁBi(A)/Q} Bi+A>0, tB;()\) : even

Xp(—v)xp(—D)EBNZ g N = 1, £B;()) : odd

Bi(
_p—1/2Xp(_1)[ﬂBi(A)/2} Bi + A= —1, £B;()) : even,

fz )\(T k)o = 2 _1 H Xp vm

meB o)

0 Bi+A>0, §B;(\) : even
(1= p xp(~1)EBEN/2 8,4 X >0, £B;()) : 0dd
Xp (i) xp(—1) B N/2] Bi + A= —1, §B;(\) : even
—p VX (BB g N = 1, £B;(A) : odd.

Then we have the following.

Theorem 3.3 (Main theorem) We have

d

SP(x, T, k) = i%* Z 971(@)(1 — phyea(o) y=ealo) Z p- Dt (1))

€6y 1=IgU---Ul,
o2=1
r
§ : -S> gl = .
X p zl_o 19(1) H'—'l,yo+"'+ul(O-7T7k)*7
{v} 1=0

here * represents e or o according as x = xo or xp. We put

Eialo, T k), = pA 7T TT & AT k).

i€l
o(i)=t

11



with

~ I
AT R) = kgid+5 Y Y min{Bo + eoim + A, 0},

iel; m=1

and & A(T, k)e or & A(T, k), are given as above. Finally the index {v} runs
through the set

{(vo,v1,...,1p) €EZXN" | =by(0,T) <vg+u1+--+1 < -1, (0<VI<r)}.

Thus we can compute the Fourier coefficients of Siegel Eisenstein series
for odd level.
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