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1 Introduction

The standard two-body Schrodinger operator added a constant electric field 0 #£ E € R", as
a self-adjoint operator acting on L?(R")

—R*A/(2m) — qF -z (1.1)

is called by the free Stark Hamiltonian. Here, x € R" is the position of the particle and
A = Z;Ll 8%1, is the Laplacian. We also denote the Plank constant, mass and charge of
the particle by i = h/(27), m > 0 and 0 # ¢ € R respectively. However, in the following,
by the suitable scale conversion and coordinate rotation, we let these physical constants be
E =e¢ =(1,0,...,0) and A = m = ¢ = 1 without loss of generality, and employ the next
free Hamiltonian

HS = |pl2/2 - 21, (1:2)

where p is the momentum operator —iV = —v/—1(0y,, ..., 0y, ).
Throughout this report, we assume that the space dimension n > 2, and denote the
pairwise interaction potential by V. Under Assumption 1.1, the full Hamiltonian

H® = Hj +V (1.3)

is also realized as self-adjoint by virtue of the Kato-Rellich theorem.

In this report, we will introduce the result of the inverse scattering [I]. By applying the
time-dependent method invented by Enss-Weder [EW], we can prove that the scattering op-
erator which is defined by the wave operators determines potential V' uniquely. In particular,
by comparison with the previous researches ([We], [N1], [AM] and [AFI]), we can allow that
the potential function V' belong to the very broad classes.

The assumptions for the potential V' are quite important in scattering theory. We state
the details of these assumptions below, roughly speaking, V' is the multiplication operator of
the real-valued function V' (x) which is represented by V = VVs+Vs+ V1€ ¥vs+ 95+ 9 U,
and its value vanishes at large distance. We use the following notations. The Kitada bracket
of x has the definition, (x) = /1 + |z|?. F(---) is the characteristic function of the set {-- -},
and || - || denotes the operator norm in L?(R™) or the usual L?(R")-norm.
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Assumption 1.1. V¥® € ¥¥% is decomposed into

V¥ (x) = V®(x) + V5" (@), (1.4)
where a singular part V' is |p|*/2-bounded with its relative bound less than 1, x V" is
|p|?/2-bounded, a regular part Vy*® is bounded, and V' satisfies

/OOO IV**(2)(p) *F(l2| > R)[|dR < oo. (1.5)

Vs e ¥® belongs to CH(R™) and satisfies
V3(2)| < C{z)™,  97V3(2)| < Cplz)™'7° (1.6)

for the multi-index 8 with |3| = 1, where 1/2 < v < 1 and 0 < a < . V! € ¥ belongs to
C*(R™) and satisfies
02V ()] < Cpl) e~ (L.7)

for |B] <2, where 0 < yg < 1/2 and 1 —y¢ < k < 1. Finally, V' € ¥ belongs to C*(R")
and satisfies
07V (@)] < Cla)m P12 (1.8)

for |B| < 2, where 3/8 < yp < 1/2.

2 Short-range interactions

We first consider the short-range case, that is, V! = 0. We see that the wave operators
defined by the following strong limits

. H S _; S
W = s-lim " e 1o (2.1)
t—+oo

exist. By using these wave operators W=, the scattering operator S = S(V) is defined by
S=WHyw-. (2.2)

The first theorem of this paper is the following.

Theorem 2.1. If S(V1) = S(Va) for Vi, Vo € ¥V + ¥, then Vi = V4 holds.

The Enss—Weder time-dependent method was developed in [EW] and, by applying its
method, Weder [We] first proved this theorem for v > 3/4. However, the borderline between
the short-range and long-range is 1/2. Nicoleau [N1] proved this theorem for V' € C*(R™)
which satisfied

08V ()| < Cpla) 17 (2.3)



under v > 1/2 with the additional condition n > 3. Thereafter, these results were improved
by Adachi-Maehara [AM] given 1/2 < a < . The behavior of the short-range part under
their assumptions was

V() = O(Ja]727), Vo V3(z) = O(|Ja|~*%7) (2.4)

with small € > 0. In this sense, a possibility in which the condition regarding the size of «
could be relaxed was left because the classical trajectory in the Stark effect is z(t) = O(t?)
as t — oo. Adachi, Fujiwara, and Ishida [AFI] considered the time-dependent electric fields

Hy(t) = pl*/2 = E(t) -z, B(t) = Eo(1+[t)™", (2.5)

where 0 < o < 1 and 0 # E; € R", and proved this theorem under &, < a < 7 with
1/(2—p) <y <1and

7—3p— /(1= p)(17 - 9p) f0< <12

G, = 42 - p) (2.6)
L if1/2<p<1
2(2 - p) '

The smallest @, is when g = 0, and in this case, (2.5) corresponds to the constant electric
field (1.2). Therefore, the result by [AFI] is one of the improvements of [AM] because

ao = (7T —V17)/8 < 1/2. (2.7)

Theorem 2.1 is a further improvement of [AM] and [AFI]. We prove that this @ is allow to
be equal to zero. This means that the tail of the first-order differential of the short-range
part behaves as

V.Vi(x) = O(Jz|179). (2.8)
Therefore, from the physical aspect and the motion of the classical trajectory, our assumptions
are quite natural, and relaxing the condition on « is one of the main motivations of this study.

The following reconstruction theorem yields the proof of Theorem 2.1.

Theorem 2.2. Let w € R" be given such that |w| = 1 and |w-e;| < 1. Put v = |v|w.
Suppose @, Uy € L*(R") such that their Fourier transforms F®q, FV, € C5(R™) with
supp F ®q, supp F VY, C {£ € R ‘ €] < n} for the given n > 0. Put ®, = eV*®y, T, =
evry,. Then

o9}

0115220 ) = [~ {0V + wtipya, W) = (V" + )., T0)

—0o0

+(1(0s, Vo) (2 + wt) Dy, \I/O)}dt +o(1) (2.9)

holds as |v| — oo for V¥s € ¥ and V® € ¥, where (-,-) is the scalar product of L*(R™)
and p; is the jth component of p.



The propagation estimate for the regular part V* is one of the main techniques in this
report, and is also one of the improvements on previous work.

Proposition 2.3. Let v and ®, be as in Theorem 2.2. Then

/_oo V(@) — V3(ut + e182/2) e D, ||dt = O(Jv|™) (2.10)

holds as |v| — oo for Vs € ¥5.

In [AM, Lemma 2.2], the right-hand side of (2.10) was O(|v|™®) for 1/2 < a < 1. This

order was improved in [AFI, Lemma 3.4] by giving O(|v|®(®)*€) with any small ¢ > 0 and
o(l —a

The number (7 —+/17)/8 in (2.7) comes from the inequality Oy(a) < —1/2, which is required
to prove the reconstruction theorem. As mentioned before, not only was the time-independent
case (1.2) treated by [AFI], but also the time-dependent case (2.5). For more details, see [AFI,
Lemma 3.4]. Our key ideas for further improvements are the efficient use of the well-known
propagation estimate for the free Schrodinger dynamics

lze™ 20| = O(t]) (2.12)

as |t| — oo and the Hoélder inequality.

3 Long-range interactions

We next consider the long-range case, that is, V! # 0. For V! € ¥, we find the existence
of the Graf-type (or Zorbas-type) modified wave operators which were proposed in Graf [G]
and Zorbas [Z]
Wé: — o lim ot o itHS i fg 1/1(e172/2)d¢7 (3.1)
t—=o0
and the Dollard-type modified wave operators introduced by Jensen and Yajima [JY] (see
also White [Wh] and Adachi [A])

. 3 S S ity 2
WS: _ tS_lzltm PIHH® o —ItHE ifo Vi(pr+eir?/2)dr (32)
—>=00

by virtue of the condition g + > 1. We find also the existence of (3.2), even if V! € #;.
Then, for V! € AU ¥4, the Dollard-type modified scattering operator Sp = Sp (V% Vs + V)
is defined by

Sp = (Wg)'Wg. (3.3)

The second theorem of this paper is the following.



Theorem 3.1. Let a V! € YAUYS be given. If Sp(V; Vi) = Sp (Vi Va) for Vi, Vo € ¥VS4+¥5,
then Vi = V4 holds. Moreover, any one of the Dollard-type modified scattering operators Sp
determines uniquely the total potential V.

When V! € ¥, a similar result to Theorem 3.1 was obtained in [AM] (Note that the
notation of g was denoted by ~p in [AM]), however, the decay condition of the short-range
part was 1/2 < a < 7. Therefore, Theorem 3.1 extends the short-range class introduced in
[AM] to the broader #*. For V! € ¥4, the uniqueness of the short-range interactions was also
proved in [AFI] for the time-dependent electric fields (2.5), in which « satisfied @, p < o <
with 1/(2 — p) <y <1 and

13 =5p — /(1 — p)(41 — 25
G = 8(2—p) (3.4)
" Lty if 5/7<p<1
— l s
2(2 - p) :

and vp satisfied 7, < yp < 1/(2 — p) with

1 L 1—p
202—p) A2
The smallest &, p and 7, are when u = 0, and this case corresponds to a constant electric field
(1.2). In comparison with our result, let us substitute ;4 = 0 for (3.4) and (3.5). Although

Ao = 3/8 says that the condition on the long-range class is the same as our assumption (1.8),
for the short-range class, Theorem 3.1 makes true improvement because

dop = (13 — V/41)/16. (3.6)

’~7u = (3-5)

We prove that this &g p is allow to be equal to zero.

The following reconstruction theorem yields the proof of Theorem 3.1.

Theorem 3.2. Let w € R™ be given such that |w| =1 and |w-e1| < 1. Putv = |v|w. Suppose
Dy, Uy € LA(R") such that F g, F¥y € C°(R™) with supp F Py, supp F¥, C {£ € R" ‘
€| < n} for the given n > 0. Put ®, = €V*®y, U, = €2W,. Then

[0(i[Sp, p;] P, W)

_ /_ - [V 4wty o, o) — (V™(a + ), p,Ty)

[ee]

F(1 (D, V) (2 + wt) B, Wo) + (i(0y, V1) ( + wt) Dy, \I!O)}dt +o(1) (3.7)

holds as |v| — oo for V¥s € ¥¥s, Vs € ¥5, and V' € Y& U 4.
We define a class of long-range potentials ”/;[1, as follows. V! € ”VB belongs to C*(R") and

satisfies that )
00V ()] < Cgla) 0112 (3.8)
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for || < 2, where 1/4 < 4p < 1/2. Clearly, %} C %, Moreover, we denote the Dollard-type
modifier Mp(t) by
Mp (t) _ efifg Vl(pT+€172/2)dT7 (39)

for V'e ¥4 U ¥,

The next propagation estimate for V% along the modified time evolution by ¢S Mp(t)
when V! € 77 is one of the main techniques in this report, and is also one of the improvements
on the previous work.

Proposition 3.3. Let v and ®, be as in Theorem 2.2. Then

£K%H{V%x)—V“@t+eﬁ%@ﬂe*“ﬁﬂﬁﬂﬂ®Ah#::OQM‘U (3.10)

holds as |[v] — oo for VS € ¥* and V' € ¥},

In [AFI, Lemma 4.4], when p = 0 of (2.5), the estimate of (3.10) was O(|v|®0r(¥)+¢) with
any small ¢ > 0 and
o(l -«
Oop(@) = —a— i_—ga)

The number (13—1+/41)/16 in (3.6) comes from the inequality O¢p(a) < —1/2. Our key ideas
for this improvement are the efficient use of the propagation estimate of the free Schrédinger
dynamics (2.12) and the Hoélder inequality as with Proposition 2.3.

(3.11)

There are several other studies concerning the uniqueness of the interaction potentials
in the external electric fields. Nicoleau [N2] considered the time-periodic electric field and
obtained the same result given in [N1]. Valencia and Weder [VW] applied the result obtained
in [AM] to the N-body case (see also [We]). Adachi, Kamada, Kazuno, and Toratani [AKKT]
also treated the time-dependent electric field, which is the same as in (2.5), however, the case
where p = 0, that is, the constant electric field (1.2) was not included.
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