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ABSTRACT. This note gives a summary of the paper [5]. For a nonzero integer
n, a set of m positive integers is called a D(n)-m-tuple if the product of any
two distinct elements increased by n is a perfect square. Let A, K be positive
integers and ¢ € {—2,—1,1,2}. The main theorem of this note asserts that
each of the D(e?)-triples {K, A?K + 2¢A, (A +1)?K + 2¢(A + 1)} has unique
extension to a D(g?)-quadruple.

1. MAIN THEOREM

Let n be a nonzero integer. A set {a1,...,an,} of m distinct positive integers is
called a D(n)-m-tuple if a;a;+n is a perfect square for all ¢, j with 1 <i < j < m.
In the case where n = 1, it is also called a Diophantine m-tuple. The first example
of a Diophantine quadruple, viz., {1,3,8,120}, was found by Fermat. Euler
generalized it to get the Diophantine quadruple {a,b,a+ b+ 2r,4r(r+a)(r+0)},
where {a,b} is an arbitrary Diophantine pair with r = y/ab+ 1. Thus, any
Diophantine pair can be extended to a Diophantine quadruple. Note that the
second largest element a 4+ b + 2r in the quadruple is known to be the smallest
among all the possible elements ¢ > max{a, b} extending a fixed Diophantine pair
{a,b} into a Diophantine triple (cf. [16, Lemma 4]).

While there exist infinitely many Diophantine quadruples, a folklore conjecture
states that there exists no Diophantine quintuple. Very recently, He, Togbé and
Ziegler announced that they settled this conjecture (cf. [15]).

There is a stronger conjecture than the folklore one, which is still open. Arkin,
Hoggatt and Strauss (cf. [1]), and independently Gibbs (cf. [12]), found that for
any Diophantine triple {a,b,c} with r = vab+ 1, s = vac+ 1 and t = vbc+ 1,
the set {a,b,c,d;} is always a Diophantine quadruple, where d; = a+ b+ c+
2(abc + rst). Such a quadruple is called regular, and it is conjectured that any
Diophantine quadruple is regular (cf. [1], [12]). Note that the largest element
d4+ in the quadruple is known to be the smallest among all the possible elements
d > max{a, b, c} extending a fixed Diophantine triple {a, b, ¢} into a Diophantine
quadruple (cf. [7, Proposition 1]).

In 1969, Baker and Davenport showed that if {1,3,8,d} is a Diophantine
quadruple, then d = 120, which is d4 in the above notation. Thus, their re-
sult supports the validity of the stronger conjecture. There are various kinds of
generalizations of this result. For example, it is shown by He and Toghé that if
{K,A2K 4+2A,(A+1)2K +2(A+1),d} is a Diophantine quadruple with positive
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integers K and A satisfying either A < 10 or A > 52330, then d = d4 (cf. [13],
14)).

The case where n = 4 can be discussed analogously to the case where n = 1.
There are conjectures saying that there exists no D(4)-quintuple and that if
{a,b,c,d} is a D(4)-quadruple with r = v/ab+ 4, s = vac+ 4 and t = v/bc + 4,
then d = dy, where dy = a + b+ ¢+ (abc + rst)/2. Such a quadruple is called
also regular. Moreover, it is shown by Filipin, He and Togbé in [10] that if
{K,A2K +4A, (A+1)2 +4(A+1),d} is a D(4)-quadruple with positive integers
K and A satisfying A <22 and A > 51767, then d = d .

Other generalizations and exhaustive references can be seen on Dujella’s web-
page ([8]).

Our main theorem below generalizes the above results on the extensibilities of
both families of D(1)- and D(4)-triples.

Main Theorem. (cf. [5, Theoren 1)) Let A, K be positive integers. If { K, A2 K +
2e A, (A+1)°K +2e(A+1),d} is a D(£?)-quadruple with € € {—2,—1,1,2}, then
it is reqular, in other words, we have

(1.1) d=dy =e 2(24% + 2A)°K3 + 71164 4 24 A% + 8A) K>
+ (20A4% + 20A + 4)K + £(8A + 4).

Note that it suffices to show the theorem for ¢ € {£2}, since for any D(1)-triple
{k, A2k £2A, (A+1)%k+2(A+1)}, the set {K, A2K +4A, (A+1)?K+4(A+1)} is
a D(4)-triple with K = 2k, which is obtained from our triple { K, A2K +2¢ A, (A+
1)2K + 2e(A + 1)} by substituting & = £2.

The key to proving Main Theorem is to optimize Rickert’s theorem (cf. [19])
on simultaneous rational approximations to irrationals with consideration for the
peculiarities of the two parametric families.

Main Theorem has the following immediate corollary.

Corollary 1. (cf. [5, Corollary 2]) Let 7 € {1,2}. Let {a,b,c,d} be a D(7?)-
quadruple with a < b < c and ¢ = a + b+ 2r, where r = Vab+712. Ifr = &7

(mod a), then d = dy. In particular, if a has either of the forms 41, p° and 2p°©
with p an odd prime and e a non-negative integer, then d = d;..

The proof of Corollary 1 will be given at the end of this note. The remaining
part of this note will be devoted to proving Main Theorem on the assumption

that , since the case € = 2 can be treated similarly.

2. APPLICATION OF LAURENT’S THEOREM

Leta=K,b=A?K —4A and c = (A+1)2K —4(A+1). Then, r = AK — 2,
s=(A+1)K—-2andt = A(A+ 1)K — 2(2A + 1). Assume that {a,b,c,d} is
a D(4)-quadruple with d > d;. Let x, y and z be positive integers satisfying
ad +4 = 22, bd + 4 = y? and cd + 4 = 2%. Eliminating d from these equalities
leads us to the following system of Pellian equations:

(2.1) ay? — bz? = 4(a —b),
(2.2) az® — cx® = 4(a — c),
(2.3) bz? — ey = 4(b —c).
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As is well-known, any positive solution to each of Pellian equations (2.1) to (2.3)
can be expressed as a linear recurrence sequence whose initial term has only
finitely may possibilities. More precisely, e.g., all positive solutions to (2.2) and
(2.3) are respectively described as z = vy, and z = w,, where

vy = 20, V1 = 5(820 +¢T0), Vm42 = SUmt1 — Um,

1
wo = 21, W1 = 5(7521 +cy1), Wpio = tWpt1 — W,

for some integers m, n and some solutions (2o, zo), (21,y1) (called fundamental
solutions) to (2.2), (2.3), respectively, with

(2.4) 20] < a”VASA 2| < bT/AS/A

(cf. [6, Lemma 1]). Considering the congruence v, = w,, (mod 2¢) together with
inequalities (2.4), we see that m =n =0 (mod 2), xop = y1 =2 and z9 = 213 = +2
(cf. [5, Lemma 9]). Then, a similar argument gives the fundamental solutions to
(2.1), (2.3) and the attached sequences {u;}, {u]'} with y = u;, = ] explicitly
(cf. [5, Lemma 10]). Finally, we deduce that any positive solutions to (2.1), (2.2)
can be expressed as x = Vo = W, for some integers [, m (note that we replaced
I, m by 2l, 2m since [ =m =0 (mod 2) can be proved), where
‘/0227 ‘/].:T—'_aa W+2:Tw+1_W7
W() = 2, W1 =s+ a, Wm+2 = SWm_H — Wm.
The standard technique (see, e.g., [2]) allows us to transform the equation
Vor = W, into the estimates

(2.5) 0< A:=2llogp—2mloga+logx < al™4m,

where

_r++Vab ~ Vbe+ ac
2 X7 Vet vab

Putting v := [ — m, which can be shown to be positive, we may rewrite A as
(2.6) A =1log(8%x) — 2mlog(a/B).

Since o and S are similar in size, we obtain the following strong lower bound for
m.

= B

s+ y/ac
2 9

Lemma 2. (cf. [5, Lemma 17]) m > (A — 1)vlog 5.

Proof. By (2.5) and (2.6), we have mlog(a/f3) > vlog 8. Since the mean value
theorem tells us that log(a/B) = f/(§)(s — r) for some { € R with r < £ < s

(where f(u) :=log((u+ vu? —4)/2)), s —r = a and

o1 (|
f(g)_\/§2—4<\/7”2—4_\/%7
we obtain log(a/B) < \/a/b < 1/(A—1). O

Now we appeal to Laurent’s theorem on linear forms in two logarithms of
algebraic numbers.
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Lemma 3. (cf. [17, Theorem 2|) Let 1 and 72 be multiplicatively independent
algebraic numbers with |y1| > 1 and |y2] > 1. Let by and by be positive integers.
Consider the linear form in two logarithms:

A = bylogy2 — b1 log 1,

where log v1,logve are any determinations of the logarithms of v1,va respectively.
Let p and p be real numbers with p > 1 and 1/3 < pu < 1. Set

B 1+ 2p — p?
-

Let a1, as be real numbers such that

A =ologp.

a; > max{ 1, p[logv;| —log|vi| +2Dh(v;)} (i=1,2),
araz > N2,

where D = [Q(y1,72) : Q] / [R(y1,72) : R]. Let h be a real number such that

b b Dlog?2
h > max {D (log (1 + 2) tlog A\ + 1.75) £0.06, A, =28 } :
a9 al 2

Then we have

2 2
log |A] > C (h + )\) aras + vVwl <h + A) + log (C' <h + A) a1a2> ,
g g g

where
14 2u — p?
:M7 A = ologp,
2
—o (1414 6= /14— 4+t
v 4H? | 402 T oH”
h 1
H="4>
)\+U’
2
po[w 1 [w?2  8AWA/4OVA 4 (1 1\ \w
C=|zts/mt e+ [~ +— :
Ao 6 2 9 31/CL1(L2H1/2 3 al as H
Caw9
!/
C'= N

Proposition 4. (cf. [5, Proposition 28]) Let a = K, b = A’K —4A, ¢ = (A +
1)2K — 4(A + 1) with positive integers A, K. Suppose that {a,b,c,d} is a D(4)-
quadruple with d > 2 not given by (1.1). Then, we have A < 2800.
Proof. Applying Lemma 3 to A with by = 2m, by = 1, 1 = o/ and vy, = %Y,
we obtain

m

2.7 69.88
27) (40v + 0.058) log 3 < ’

which together with Lemma 2 yields A < 2800. g
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3. APPLICATION OF RICKERT’S THEOREM

Consider equations (2.2) and (2.3). Put N = (A% + A)K/2 — 24, 6, =
V1+2A/N and 6, = /1 —2/N.

Lemma 5. (cf. [5, Lemma 26])
{ (A+1)x
max —

Proof. Use the equalities

A+1 /b
91:(A+1)\/Z, 02:T E,

and the fact that \/a/c, \/b/c are similar in size to x/z, y/z, respectively, in view
of equations (2.2), (2.3). O

(A+ 1)y

2\ 2
61 — e ’}<2(A+1)<A+1+K>z .

Os —

Y

The following is a version of Rickert’s theorem (cf. [19]).

Theorem 6. (cf. [5, Theorem 5]) Let A, K be integers satisfying A > 2 and K >
240.24(A+1). Put N = (A2 4+ A)K/2—2A. Then the numbers 01 = \/1+ 2A/N

and 03 = \/1 —2/N satisfy

max {

for all integers p1, pa, ¢ with ¢ > 0, where
log(20(A +1)N)
log (i%%%?ﬁ?%)
Note that in [10], where the family with e = 2 is considered, in order to apply
a version of Rickert’s theorem ([10, Theorem 3|) with A < 2 it is necessary to
assume K > 0.64A(A+1)3, which is in general much stronger than the assumption

K > 240.24(A+1) in Theorem 6. Such an improvement comes from the following
facts:

e N=0 (mod A);

e N+2A=N-2=0 (mod (A+1)).
These divisibility properties largely reduce the denominators of coefficients of
a Padé approximation to 6;(z) and 62(z) valued at x = 1/N, where 0;(z) =

V14 2Az and 63(z) = V1 — 2.

Proposition 7. (cf. [5, Proposition 27]) On the assumptions in Proposition 4, if
A > Ag, then K < 240.24(A + 1) + Ko, where

(Ao, Ko) € {(1326,0), (454, 1000), (3, 23000), (2, 210000)}.

Proof. Suppose that K > 240.24(A+1). Applying Lemma 5 and Theorem 6 with
p1=A(A+ 1Dz, po = (A+ 1)y, ¢ = Az, we have

(3.1) 22 <20 AMAF ) (A+ 1+ 2K7Y),

where C~! = 2.838 - 10%2(A + 1)N. Since A < 2, the assertion follows from
inequality (3.1) with the inequality

(3.2) log z > 2mlog((A + 1)K — 4),

which is obtained from z = vy, in the same way as [10, Lemma 5. g

)

6, -2
q

6, — 22
q

} > (2.838-10B(A+1)N) g

A=1+ < 2.
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4. PROOFS OF MAIN THEOREM AND COROLLARY 1

Since Propositions 4 and 7 give absolute upper bounds for K and A, it remains
to apply the reduction lemma ([9, Lemma 5 a)]) due to Dujella and Peth6 based
on [2, Lemmal. However, since the reduction method is expensive, we will apply
it after making the bounds smaller.

Lemma 8. (cf. [5, Lemma 29]) Suppose that Voy = Way, for some integers | and
m with m > 2. Ifv=1—m, thenv > 11.

Proof. Note that m can be expressed as

B Vﬁlogﬁ + 0.5log XJ
B log(a/B)

It can be checked by a computer that inequalities (2.5) do not hold for each v
with 1 < v < 10 and for each (K, A) in the ranges obtained from Propositions 4
and 7. H

Proposition 9. (cf. [5, Proposition 30]) On the assumptions in Proposition 4,
we have A <2796 and K < 240.24(A + 1) + 740.

Proof. Inequality (2.7) with v > 11 implies A < 2796. The other inequality
K < 240.24(A+1) + 740 follows from (3.1), (3.2) and Lemma 2 with v > 11. O

Proof of Main Theorem (in the case where ¢ = —2). Applying Matveev’s theorem
(cf. [18]) to the linear form A in three logarithms, one can obtain m < 3.4 - 1016,
Starting with this upper bound, we can reduce m by applying the reduction
method for each K and A in the ranges obtained in Proposition 9 to get a con-
tradiction. ]

Proof of Corollary 1. Note that it always holds 72 = 72 (mod a), which proves
the last assertion. Assume that » = £7 (mod a) and put » = ka £ 7. Then,
b=k?a+ 27k and ¢ = (k + 1)%a &+ 27(k + 1). Substituting K = a, A = k and
€ = +7, we see that the assertion follows from Main Theorem. [l
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