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1 Introduction

Navier-Stokes equations are given by

ou—Au+ (u-Viu+Vr=f >0, v,

V. -u=0, t>0, x €
u(0,2) = a, x €€, (NS)
u(t,x) =0, t>0, z €0,

where the fluid vector fields u = u(t,z) = (ui(t,x),...,u,(t,x)) and the pressure = =

7(t,z) are unknown function, the external force f = f(¢,x) is a given vector function,
the initial data a is a given solenoidal function and €2 is some bounded domain ( see
section 2 for detail ). Equations (NS) are the partial differential equations which describe
the motion of the viscous fluid flows and one of the most important equations in view
of both mathematical analysis and engineering. However Equations (NS) are unsolved
for a long time. One of the difficulty of analysis for (NS) is the pressure term Vr( and
incompressible condition V- u =0 ).

In order to overcome this difficulty, in real analysis, we often use the Helmholtz de-
composition given by

LP(Q)n = Lp,U(Q) b Gp(Q)

for 1 < p < oo, where L, ,(Q) = {u|u; € C°(Q), V- -u= O}II'”L” and G,(R2) = {Vr €
L))" | m € Lpic(2)}. We remark that whether the Helmholtz decomposition holds
depends on the shape of the region in the case where p # 2 (see Galdi [6] for detail).

On the other hand, in numerical analysis, some penalty methods (quasi-compressibility
methods) are employed as the method to overcome this difficulty. They are methods that
eliminate the pressure by using approximated incompressible condition. For example,
setting o > 0 as a perturbation parameter, we use V - u = —7/« in the penalty method,
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V -u = An/a in the pressure stabilization method and V - v = —0;w/« in the pseudo-
compressible method (see [10] for other cases).

In this article, we consider the Navier-Stokes equations with incompressible condition
approximated by pressure stabilization method. Namely we consider the approximated
incompressible condition

(U, Vi) = 0”1 (Va, Vi)a (Vip € W(22)) (1.1)

for 1 < ¢ < oo in stead of incompressible condition and the following Navier-Stokes
equations under the approximated incompressible condition (1.1):

O, — At + (U - V)ug + Vg = f, t>0, ze,
ua(0,2) = aq, x € €, (NSa)
uq(t,z) =0, t>0, zeo

Pressure stabilization method was first introduced by Brezzi and Pitkédranta [1]. They
considered the approximated stationary Stokes equations which are linearized Navier-
Stokes equations. They obtained the following error estimate by using the energy methods:

e — ull i) + [1Ta — Tllr2i@) < Ca™2|| fll 2. (1.2)

Nazarov and Specovius-Neugebauer [7] considered the same approximated Stokes problem
and derived asymptotically precise estimates for solution to the approximated problem as
a — 0o by using the parameter-dependent Sobolev norms.

There are many results concerning the stationary Stokes equations and Navier-Stokes
equations approximated by using the pressure stabilization method. However there are few
results concerning the non-stationary Stokes equations and Navier-Stokes equations. As
far as the authors know, only the result due to Prohl [10] is known as the results concerning
the non-stationary problem. In [10], Prohl considered the sharp a priori estimate for the
pressure stabilization method under some assumptions and showed the following error
estimates:

e — ullL= (o), La@)) + 1T (Ta = ™)l oyt @) < Ca
e = ull oo, rrwic) + VT (T = 1)l o1, L2(0)) < Ca™/2, (1.3)

where 7 = 7(¢) = min(¢,1). He proved a priori error estimate by using energy method.
In other words, he proved that if we can prove the existence of the local in time solution
to (NSa), the solution to (NSa) satisfies (1.3). So the goal of this article is to show the
existence theorem for (NSa) and the error estimates.

In our method, we shall use the maximal regularity theorem in order to prove the local
in time existence theorem and the error estimates in the L, in time and the L, in space
framework with n/2 < ¢ < oo and max{1,n/q} < p < oc.

2 Local in time existence theorem and error estimates

Before we describe main theorem, we shall introduce some functional spaces and notations
throughout this article. The letter C' denotes generic constants and the constant Cgy,
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depends on a,b,.... The values of constants C' and C,; . may change from line to line.
For 1 < ¢ < o0, let ¢ = q/(q¢ — 1). As the complex domain where a resolvent parameter
belongs, we use ¥, = {A € C\{0} | |argA\| < m —¢} and X.,, = {) € Z. | |\| > Ao} for
0 <e<m/2and Ay > 0. For any domain D, Banach space X and 1 < ¢ < oo, L,(D, X)
denotes the usual Lebesgue space of X-valued functions defined on D and || - ||z, x)
denotes its norm. We use the notation Ly(D) = Ly(D,R), || - [|,0) = || - |z (p,») and for
a, b, ..., CcE Lq(D), ||(CL, b, N 7C)||Lq(D) = ||a||Lq(D) + ||b||Lq(D) +-- 4 ||C||Lq(D)- In a similar
way, for 1 < ¢ < oo and a positive integer m, W;"(D, X) denotes the Sobolev spaces of
X-valued functions of defined on D. We often use the same symbols for denoting the
vector and scalar function spaces if there is no confusion. For 1 < p,q < oo, Bq27(,.}_1/ b )(D)
denotes the real interpolation space defined by B;(pl_l/p)(D) = (Ly(D), W2(D))1-1/p,p- For
a Banach space X and some vy € R, we set

Lpao(R, X) = {f(t) € Lpsoc®R, X) | e fllL,mx) < 00, (v = 70)}

Ly o) (R, X) = {f(t) € Ly, (R, X) | f(t) =0 (t < 0)},
W00 (B, X) = {f(t) € Lyro0)(R, X) | f/(t) € Lp(R, X)}.

In order to deal with the pressure term, we use the following functional spaces:
Lyioe(D) ={f| flx € Ly(K), K is any compact set in D},
WD) = {6 € Lyie(D) | VO € Ly(D)"}.

Since our proof is based on Fourier analysis, we next introduce the Fourier transform
and the Laplace transform. We define the Fourier transform, its inverse Fourier transform,
the Laplace transform and its inverse Laplace transform by

f(¢) = = e (2 dx 1 (x) = ! it
FO=FN©O = [ @i FAW = o [ s
LA = Fle " 0)(7), LA = F )

respectively, where z,£ € R", A = v+ 47 € C and x - £ is usual inner product: z - & =
>y 7;&;. Furthermore, we define the Fourier-Laplace transform by

L[ Flo(t, 2)]J(N, &) = Frale o(t, 2)](N, &) = /OO (/n e‘(”“'xf)v(t,:c)da:) dt.

—0o0

By using Fourier transform and Laplace transform, we define the operator A7 as

(AS)(E) = L IAPLLANIE) = e F (7 + 222 Rle " F(0)(7)](2)

for A =~y +r.
In this paper, we assume next assumption for our domain Q.

Assumption 2.1. Letn/2 < g < oo andn <1 < co. Let Q be a uniform W2 " domain
introduced in [5] and L,(Q) has the Helmholtz decomposition.



Here the assumption on a uniformly W27 domain is used when we reduce the prob-
lem on the bounded domain to one on the bent half-space and on the whole space. The
possibility of Helmholtz decomposition is used in the processing of pressure terms. Ac-
cording to Galdi [6], that “L,(€2) has the Helmholtz decomposition” is equivalent that the
following weak Neumann problem is uniquely solvable: for f € L,(2),

(V6,Vy) = (f, Vo) (Vo € Wh(Q)).

(L2(©2) has the Helmholtz decomposition for any €2.) Let 6 be the solution to the above
weak Neumann problem for f € L,(€2) and the maps P, and Qq be defined by Qqf =0
and Pof = f—VQqf. Py is called the Helmholtz projection. By (1.1) and the map Qq,
we see that Vr, = aVQaqu,.

First main result is concerned with the local in time existence theorem for (NSa) under
(1.1).
Theorem 2.1. Let n > 2, n/2 < ¢ < oo and max{l,n/q} < p < oco. Let a > 0 and
Ty € (0,00). For any M > 0, assume that the initial data a, € B;(pl_l/p)(ﬂ) and the
external force f € L,((0,T0), Ly(S2)) satisfy

laall g2a-1/m gy + I 1Ly (0.70), Lot < M- (2.1)

Then, there ezists T* € (0,1y) depending on only M such that (NSa) under (1.1) has a
unique solution (uq,ms) of the following class:

o € W, ((0,T7), Ly(Q)) N Ly((0,T7), W7 (), ma € Lp((0,77), Wy ().
Moreover the following estimate holds:

[l Lo ((0.7%),La(2)) + [[(Frtiar, VU, VTTa) || 10,07 Lo(2)) + Vel Lo (07),Lo(@)) < Cripgre
for1/p—1/r <1/2.

Here we state the outline of the proof of main theorem (Theorem 2.1). We can prove
Theorem 2.1 by using the contraction mapping principle with two type maximal regularity
theorems (Theorem 2.2 and Theorem 2.5). In order to prove Theorem 2.2, we use the
Weis’ operator valued Fourier multiplier theorem. For this purpose, we have to show the
existence of R-bouned solution operator to the generalized resolvent problem of (NSa). In
order to prove Theorem 2.5, we need the some estimate of semigroup 7,(t) for linearlized
problem of (NSa) (See [8] and [9] for the detail proof).

From here we shall introduce the two type maximal L,-L, regularity theorems for the
following linearized problems corresponding to (NSa):

Oty — At + Vg, = f, t >0,z €€,
uq(t,z) =0, x € 09, (2.2)
e (0,2) = aq, z € ()

under the approximated incompressible condition
(ta, Vi) = 0~ (Va, Vi)a + (9, Vio)o o € Wy(S). (23)

First result is concerned with the maximal L,-L, regularity theorem for (2.2) with
a,, = 0 under (2.3) .



Theorem 2.2. Let 1 < p,q < oo and o > 0. Then there exists a positive number vy such
that the following assertion holds: for any f,g € Ly ,.0)(R, Ly(2)), (2.2) under (2.3) with
aq = 0 has a unique solution:

Ua € Lp>’707(0) (R, WqZ(Q)) nw, (0)(R, Lq(Q))a Ta € Lpﬁo,(O)(Ra qu(Q))

P70,

Moreover, the following estimate holds:
1
||6_’Yt(atu0u YUa, A’?/ vua; A»lyfa(v : ua), VZUO” V7Ta) ||Lp(R7Lq(Q))
< Crpalle™ " (f, ag) || L, @1,

for any v = .

Remark 2.3. By the property of Helmholtz decomposition, we can solve (2.3) for uq, g €
L,(Q) and we see my = aQq(uq — g).

In order to prove the maximal L,-L, regularity theorem for (2.2) with f = 0 under
(2.3), we consider the following generalized resolvent problem concerning with (2.2):

/\Ua_Ava+Vpa:fa I‘EQ,
{ vy =0, x € 0f) (2.4)
under
(Vas Vo)o = @ (Vpa, Vio)a + (9, V) p e WH(Q), (2.5)

where the resolvent parameter A\ varies in X.,, (0 < ¢ < 7/2). Then the following
resolvent estimate holds:

Proposition 2.4. Let « > 0, 1 < g < o0 and 0 < & < w/2. There exists a positive
constant Ao such that for f,g € L,(Q) and N\ € X.,,, there exists a unique solution
(Va, Pa) to (2.4) under (2.5) which satisfies the following inequality:

H()‘UOH /\I/QVUOH VQUOH <)‘ + Oz)l/Q(V ) Ua)? vpa)HLq(Q) < CH(f? Oég)HLq(Q)-

Let A, be the linear operator defined by A,u, = Au, — aVQqu, and D(A,) =
{u € W2(Q) | ulso = 0}. By Proposition 2.4 with g = 0, we see that A, generates the
semigroup {74, (f)}i>0 on L,(£2). Moreover there exists a positive constant C' > 0 such
that for any a, € L,(2), u(t) = To(t)a, satisfies

| (ta, tl/QVumtV2ua,t6tua)||Lq(Q) < Ce’\°t||aa||Lq(Q) (t >0),
IVQauallz,@ < Ce™*laallr @)

By the equations (2.2), we have

IVTallg@ < 0uallL,@ + | = Auallr, @) < Ct e a1, @), (2.6)



which means that the pressure term V7, has the singularity at ¢ = 0. On the other hands,
since V1, = aVQqua, (ta, T) enjoys (2.2) under (2.3) and Vr, satisfies the following
estimate:

IVTallzy0) = ol VQatallLye) < Cae™laallz, @),

which implies that Vm, does not have the singularity at ¢ = 0. We think that this
advantage may be the reason for using the pressure stabilization method in numerical
simulations.

By real interpolation, we can see the following maximal L,-L, regularity theorem for
(2.2) with f =g =0.

Theorem 2.5. Let o >0 and 1 < p,q < oco. Let \g be a number obtained in Proposition
2.4. For ay € B2 7YP(Q), ua = Talt)an satisfy
e (Dptir, V) | 1, ((0,00), L () < Cn,p,qHaa||B§5;—1/p>(9),
(v = M) P lle ™ ua |1, (0,000,242 < Crpall@allLyceys
(7 = 20) [ Vta Ly .00 Lyt@) < Cnpallall gza-17m
for any v > X.

Next we consider the error estimate between the solution (u,7) to (NS) under the
weak incompressible condition

(0, Vp)a=0  (p € WQ)) (2.7)

and solution (uy, ) to (NSa) under (1.1). To this end, setting ug = u — u, and 7p =
T — Ta, We see that (up, 7g) enjoys that

Oup — Aug + Vg + N(ug,u,) =0, t>0, z €Q,
ug(0,2) = ag, x € €, (2.8)
ug(t,z) =0, t>0, z €0,

where N(ug,uy) = (ug - V)ug + (ug - V)u, + (uq - V)ug and ag = a — a, under the
approximated weak incompressible condition

(ug, Vo)g = a1 (Vrg, Vo)g + a1 (Vr, Vi) € qu,(ﬂ) (2.9)

for 1 < ¢ < oco. In a similar way to Theorem 2.1, we consider (2.8) under (2.9) for
Qo = Ag.

Theorem 2.6. Letn > 2, n/2 < ¢ < oo, max{l,n/q} <p < oo and o > 0. Let T* be a
positive constant obtained in Theorem 2.1 and (uq, T,) be a solution obtained in Theorem

2.1. For any M > 0, assume that ap € B;(pl_l/p)(ﬂ) satisfies

||aE||B§§;—1/p)(Q) < Ma™. (2.10)



Then there exists T° € (0,T*) such that (2.8) has a unique solution (ug, 7g) which satisfies

uell Lo o),y T IVUEllL (01),0,00)
‘I‘H (VQUE, 8tuE, Vﬂ'E) ||Lp((0,Tb),Lq(Q)) S Cn,nq’TbOz_l (211)

for1/p—1/r <1/2.
Remark 2.7. (2.11) means the following error estimates for the Navier-Stokes equations:

1w — vallLo012), L0 < Ca™',
(72— ), Bt = 1), 95 = 7)) 019 iy < O

In comparison with the result due to Prohl [10], we can extend Lo framework to L, frame-
work with respect to the error estimate.

3 Analysis of the resolvent Stokes problem

In order to show the global in time solution, it is necessary to analyze when the resolve
parameter is near the origin. In this section, we introduce the recent results obtained
when the resolve parameter is near the origin.

The resolvent problem for the approximated Stokes equation which is linearized prob-
lem for (NSa) is given by

/\UQ_AUQ_I'Vpa:fa x €}
[P Bt o=t r e, 1)
under the approximated incompressible condition:
1 —
(Ve V)o = =(Vpa, Vip)a, (€ Wy). (3-2)

Lemma 3.1. Let 1 < q < 0o and o > 1/C3, where Cy is the optimal constant in the
Poincaré inequality. Then for any f € L,(Q) and X € C\ (—oo, —Cy ], there exists the
unique solution (Va, po) to (3.1) under (3.2). Moreover (v, pa) satisfies

| (Avas A2 Vo) |y + [vallwzie) + 1Vl < CllfllL,@)-

Remark 3.2. (i) It is well-known that for a smooth bounded domain 2, Cy is the min-
imal eigenvalue of the Laplace operator in the space H}.

(ii) For usual resolvent Stokes problem, the same result holds as Lemma 3.1. From this
lemma, when using the pressure stabilization method in numerical simulations, we
suggest that o should satisfy o > 1/CZ at least .

The key to show Lemma 3.1 is the following lemma concerning uniqueness:
Proposition 3.3. Let 1 < g < 00, a > 1/CZ and X\ € C\(—o0, —1/C3]. If (Vo pa) €
W2(Q) x W(Q) is the solution to (3.1) with f =0 under (3.2), then v, =0 and p, = 0.
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Proof. We remark Vp, = aVQu, by Helmholtz decomposition and that (3.1) is equivalent
to the following equations:

Ay — Avg +aVQu, =0, x €,
Vo = 0, x € 0.

We first consider the case where 2 < ¢ < oo. By Holder inequality, (va, po) € W3(Q) x
W4 (£2). By divergence theorem, we have

0= ()‘Ua - Ava + anQ'Uon 'Uoz)Q
= Mvallzz + [VvallZe + a(VQqva, va)a.

By vq = Pavs + VQqu, and (Povs, VQavs)a = 0, we see
0 = Avall7z + IValzz + ol VQava|7:-
Taking the real part and the imaginary part, we obtain

(ReA)[[Pavall7: + (ReA + a)l| VQquallZ: + IV vall72 = 0,
(ImA)||va|[72 = 0.

In the case where ImA # 0, we obtain ||v,||z2 = 0. Therefore by Vp, = aVQqu,, we
have v, =0 and Vp, = 0.

In the case where ImA = 0 and A > 0, we obtain v, = 0 and Vp, = 0 by ReA >
0,ReA+a > 0. . .

In the case where Im\ = 0 and —Cy? < Rel < 0, set A = =\ (0 < A < C;?). Since
a > Cy?, we have Red +a = =X +a > 0.

By || Povallzz < ||[vallzz and ||val|zz < Col|Vug||L2, we have

0> —A[|Pavall7z + | Vvall72
> —Alvall7z + [IVoall72
> —AC3lIVval72 + [ Vealliz = (1= ACH) Va7
Therefore when 1 — S\C’g > 0, namely \ < C; %, we have ||[Vug|z2 = 0. By valaq = 0, we
obtain v, = 0 and Vp, = 0.

In the case where 1 < ¢ < 2, by using duality argument, we can obtain the uniqueness.
O
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