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Abstract
This is a report of the recent work [13], which is a joint work with Yoshihiro Shibata from Waseda
University. In [13], we established the L,-L, decay estimate of some model problem of the compress-
ible flow with the free boundary condition in the exterior domain in R (N > 3). Furthermore, our
proof in [13] followed the local energy approach.

1 Introduction

In this note, we consider the following model problem * in some smooth exterior domain
Q CRY(N > 3):

Op+ydivv =0 in QxR,,

710pv — Div (S(v) — 72pI) =0 in QxR (1)
(S(v) = y2pI)nr =0 on I'x Ry,

(P V)li=0 = (po, Vo) in €.

In (1.1), the constants v1, 72, u, v > 0, S(v) = u(Vv+(Vv)") + (v — p)div vI, the (i, j)th
entry of the matrix Vv is d;v;, and I is the N x N identity matrix. In addition, M" is
the transposed matrix of M = [M;;], Div M denotes an N-vector of functions whose i-th
component is Zjvzl 0;M;;, divv = Zjvzl O;jv;, and v -V = Zjvzl v;0; with 0; = 0/0;.
Moreover, nr stands for the unit normal vector to the boundary I' of Q.

The system (1.1) comes from the study of the motion the barotropic viscous gases in
some moving exterior domain €; C RY (N > 3), described by the following compressible
Navier-Stokes equations with the free boundary conditions:

(ﬁtp +div ((pe + p)v) =0 in U Q, x {t},
0<t<T
(pe +p)(Ov +v - Vv) —Div (S(v) — P(pe + p)I) =0 in U Q x {t},
0<t<T (1.2)
(S(V) - P(pe + p)I)nFt = _P(pe)nFtv VFt = Vv-nr, on U Ft X {t}
o<t<T

\(P:V7 Q) i=0 = (po, Vo, ).

*In [13], we treated some model problem like (1.1) with variable coefficients.




In (1.2), the reference mass density p, > 0, the unknown mass density is p + p., and the
unknown velocity field is v = (vy,...,vy)". Moreover, nr, is the outer unit normal vector
to the boundary I'; of €, and Vr, stands for the normal velocity of the moving surface
[';. In the next section, we shall see that (1.1) can be regarded as the linearized model
of (1.2) via the partial Lagrangian coordinates. Here, let us emphasize that the linear
theory on (1.1) is fundamental to the (local or global) solvability of (1.2).

In [13], we established the L,-L, decay property of (1.1), which originates from the
theory of the parabolic equations. For simplicity, let us review the heat equation in the
whole space RV (N > 3):

v —Av =0 in RY xRy,
N (1.3)
U|t:0 = Vo in RY.
In view of the explicit solution formula of (1.3), namely,
@t = [ Glo—yl) s, Gilz) = ——exp (= 121)
VT = xr — v Tr) = —ex [ S
) BN t Y)vol\y) ay, t (47Tt>N/2 p At )
it is not hard to verify that v admits the L,-L, decay estimate
107 0( ), @yy S t_(N/q_N/p)/Q_IaVQHUOHLq(RN)7 (1.4)

for any 1 < ¢ < p < oo, a € N, and t > 0. Here Ny denotes the set of all nonnegative
integers, and A < B stands for A < C'B for some harmless constant C.

The L,-L, decay theory plays a vital role in the solvability of the model in fluid dynam-
ics. For example, the extension of (1.4) for the incompressible flow in the exterior domain
was done in [7, 8]. Let us write A, for the Stokes operator associated to the Dirichlet
boundary condition in the smooth exterior domain  C RY (N > 3). Then the results in
7, 8] yield that

< 4=N(1/a-1/p)/2

le"s ol 1Voll Ly

(1.5)
Ve s vl St PN Vol Ly @),
fort>1,1<qg<p<ooand

(N/¢q—N/p)/2+1/2 for 1 <p <N,

o1(p.q¢; N) =
' N/(2q) for N <p < o0.

Moreover, the gradient estimate of e''s in (1.5) is also sharp for p > N (see [8]).

On the other hand, for the compressible Navier-Stokes equations, Matsumura and
Nishida in [10] proved the global wellposedness whenever the initial data were give small



in H3(R?). Moreover, the authors in [9] obtained the Ly-L; type decay property of the
solutions near the equilibrium (p,, 0),

1(p = pes V)| 1amey < Cot ™ (> 1), (1.6)
for some constant Cy depending on the small quantity ||(po — pe, Vo)||, &3)n#3(rs)- For the

further discussion in Besov regularity framework, one may refer to [1, 2, 3, 4, 6, 11].

To state our main result on the L,-L, decay estimate of (1.1), we introduce some notion.
Let {T'(t)}+>0 be the Cy-semigroup generated by the operator

Aa(p,v) = (71div v, —7; 'Div (S(v) - “/2PI)>

in the space H)°(Q) = H}(Q) x L,(Q)" for 1 < p < oo (see Theorem 4.2). Denote the
solution of (1.1) by (p,v) = T'(t)(po, vo) and v = P,T(t)(po, Vo). Then our main result
reads as follows.

Theorem 1.1. (L,-L, decay estimate) Let Q be a C® exterior domain in RN with N > 3.
Assume that (po,vo) € Lg(Q)'"™N N HYO(Q) with H)°(Q) = H(Q) x Ly(QN for 1 <
q <2< p < oo, and {T(t)}=0 is the semigroup associated to (1.1) in H)°(Q). For
convenience, we set

(o0, vo)lll, 4 = Nl (P05 Vo)l gty + 10, Vo)l 10 -

Then fort > 1, there exists a positive constant C' such that

I7(t) (00, Vo)l 1,0 < CE~ NP2 (pg, wo)|

IVT () (po, Vo)l Ly < CE P (po, o)l
IV2P.T () (0, Vo)llz,0) < Ct=7 N[ (pg, vo) |

P9’

P
where the indices o1(p,q, N) and o2(p,q, N) are given by

(N/g—N/p)/2+1/2 for 2<p <N,

o1(p, ¢, N) =
N/(2q) for N < p < o0,
3/(2q) for N =3,

o2(p,¢, N) = (N/g— N/p)/2+1 for N>4 and 2<p < N/2,
N/(2q) for N >4 and N/2 < p < oc.

To establish the L,-L, estimates in Theorem 1.1, we use the so-called local energy
approach. Assume that  C RY is an exterior domain such that RM\Q C Bpg, and Bpg
denotes the ball centred at origin with radius R > 1. Then we can prove



Theorem 1.2. (local energy estimate) Let Q be a C? exterior domain in RN for N > 3.
Let 1 < p < oo and L > 2R. Denote that |

QL:QHBL, H;’Z(QL) :H;(QL) X HS(QL)N,
Xp.0(Q) = {(d,f) € H)°(Q) : suppd, suppf C Q }.

Then for any (po,vo) € Xp(Q) and k € Ng = NU {0}, there exists a positive constant
Cp.k,1 such that

105T(1) (0, v0) sy < Gt (00 Vo)l gy ¥ 2 1.

We will have Theorem 1.1 so long as Theorem 1.2 is established. To prove Theorem

1.2, we consider the resolvent problem of (1.1):

AN+ mdiva =d in Q,
Y1Au — Div (S(u) — yonl) = f in Q, (1.7)
(S(u) — yenI)ny =0 on I

The analysis of (1.7) is the main concern of this note. One difficulty is to describe the
behaviour of the solution of (1.7) if A locates near the origin. This is contained in the
result of section 3. On the other hand, it is easy to study (1.7) whenever A is sufficient
large (see Theorem 4.1 in section 4). The case A is uniformly bounded from above is more

involved (see Theorem 4.3).

Notation

For convenience, we introduce some useful notation. For any domain G in RY, 1 <
p<ooand k €N, L,(G) (L (G)) stands for the (local) Lebesgue space, and HJ(G)

(H} . (G)) for the (local) Sobolev space. Moreover, we write
H]I)€7Z(G) = H]IS(G) X H;;(G)N7 H;;Ij;ll;)c (G) = Hzlj.loc (G) X H[iloc (G)N

For any Banach spaces X, Y, the total of the bounded linear transformations from X to
Y is denoted by £(X;Y'). We also write £(X) for short if X =Y. In addition, Hol (A; X)
denotes the set of X-valued analytic mappings defined on the domain A C C. To study
the resolvent problem (1.7), we introduce that
Y.={AeC\{0}: |arg\| <m—¢e}, Z.p={NeX. |\ >0},
K={reC:(m+- 12y o> (1) (1.8)
w+v n+v
Vep =Ses NI, Uy ={d € C\(—00,0] : |A| < b}

for any 0 < e < w/2 and b > 0.

TE stands for the closesure of E for any subset £ C RY.



2 Formulation via partial Lagrangian coordinates

In this section, we will introduce the partial Lagrangian coordinates, and we will also see
that the linearized form of (1.2)is (1.1). Let x = k(z) be a smooth functions which equals
to 1 for x € B and vanishes outside of Byg. Define the partial Lagrangian transformation
as follows:

t
r=Xuly,t) =y +/ k(y)u(y,s)ds € Q U, Yye QUT, (2.1)
0

for some smooth vector u = u(-, s) and 0 < ¢ <7 By assuming the condition

[ ROt oy s <6 < 172 22)

for small constant 6 > 0, we denote X '(-, ¢) for the inverse of X, (-, ¢) in (2.1). Suppose
that

p(x,t) = n(X;l(x,t),t), v(z,t) = u(X;l(x,t),t), Q= {x = Xu(y,t) |y € Q},

solve (1.2) for some function n defined in €. We will derive the equations formally satisfied
by (p,u) in © in what follows.

Assume that T is a compact hypersurface of C? class. The kinematic (non-slip) condition
Vr, = v - n; is automatically satisfied under the transformation X, because x = 1 near
the boundary I'. Denote that

t
V,Xa =T+ [V (uty. ) ds
and J, = det(V,Xy). Then by the assumption (2.2), there exists the inverse of V,X,,
that is,
¢
(V)" =1 Vo9, k= [ 9, (st)uly.s) ds
0

where V(k) = [Vo;; (k)| nxn Is a matrix-valued function given by

j=1
In particular, Vo(0) = 0. By the chain rule, we introduce the gradient, divergence and
stress tensor operators with respect to the transformation (2.1),

Va = (T4 Vo(K)V,,  divyu = (T+Vo(k)) : Vyu = J div,, (J(T+ Vo(k)) u),

Dy(u) = (I+ Vy(k))Vu+ (Vu) " (T4 Vo(k)) " = D(u) + Vo(k)Vu + (Vo(k)Vu) ',
(2.3)

Su(1) = uDu(u) + (v — p)(divyu)l, Div,A = J;lDivy(JuA(I + Vo(k))>.



In addition, the ith component of Div ;A can be also written via

N
(DivyA); = Y [+ Vo], Ay, Vi=1,... N (2.4)

J.k=1

In particular, Div ;A = 0 if A is a constant matrix. Then according to (2.3), (p, u) fulfils

Om~+ (1= r)u-Vyn+ (pe +n)div,u=0 in Qx(0,7),
(pe +1)(Gu+ (1 — K)u- Vyu) — Div 4 (Su(u) — P(p. +n)I) =0 in Qx(0,7),
(Su(w) = P(p. +mT)ny = —P(pe)n, on T x (0,7),
(n,9) =0 = (po, Vo) in €,
(2.5)
where nr denotes for the unit normal vector to I', and n, is defined by
(T4 Vo(k))np
(T Volo)ne |
It is clear that the boundary condition in (2.5) is equivalent to
(Sulw) = (P(pe + 1) = P(p))T) (1+ Vo (k))mr = 0. (2.6)

On the other hand, as P(-) is smooth, we infer from Taylor’s theorem that

2

P(pe-+ 1) = Plpe) = Ploon + L / P"(p. + 0m)(1 — 6) db. (2.7)

0
Thus (2.6) and (2.7) yield that the principal terms of (2.5) are given as in the left-hand
side of (1.1) by setting (v1,72) = (pe, P'(pe))-

3 Resolvent problem for )\ near zero

In this section, we will give the behaviour of the solution of the system (1.7) whenever
A lies near the origin. This situation is the most significant part of this work.

Theorem 3.1. Let (d,f) € X, () for 1 < p <7 and L > 2R > 0. Then there exist
a constant \; > 0 and two families of the operators (M, V) for any A € U,\l ={\ e
C\(—00,0] : [\| < A1} with

M, € Hol (UAI;[,(X (Q)), V, € Hol (UAI,E(X Q) Hjloc(Q)N)),

p loc

so that (n,u) = (M, V,)(d, f) solves (1.7). Moreover, there exist families of the operators
Q) ploc( ))) (Z: 172)7
Q) ploc( ) )> (]:07172)

M, € Hol (UM, (X1
V! € Hol (UM, (X



such that

M, = (A\V"2log \)M, + M3,

Vy = (A2 1og A" M) V8 + (AN 2 log \) V3, + V3,
for any X\ € Uy, and o(N) = (=D +1)/2.

In the following, we outline the main strategy of the proof of Theorem 3.1. Without loss
of generality, we shall prove Theorem 3.1 for L = 5R. To construct the solution mapping
of (1.7), we consider the auxiliary problem:

(’yldivu =d in Qsg,
— Div (S(u) — onl) = £ in Qsp, (3.1)
(S(u) — 72771) nr =20 on T,

\ (S(u) — 12nl) n, =0 on Sig,

Here, ng_ denotes the unit outer normal to Ssr = {z € RY | |x| = 5R}.

The homogeneous system (3.1) lacks of the uniqueness in general. So we need some
trick to fix it. Let 3R < by < by < by < b3 < 4R and set

Dy by = {2 € RY [ by < |z < b}, Df, ={w €Dy |a;>0 (j=1,...,N)}.
Now, we introduce the vectors of the rigid motion. Set

e;=(0,..., 1 ,...,0) for j=1,...,N,
I'j (.L) = jth component (32)

xpep —axpey, (k=1,....N) for j=N+1,..., M.

Above, M is a constant only depending of the dimension N. For any vector u satisfying

D(u) = 0, u is represented by a linear combination of {r;}}’,, namely u = Zj\il a;r;

with some a; € R. Let ¢ € C5°(RY) such that supp ) C Dy, 5,, and ¢ = 1 on some ball
B C Dy ,,. We introduce a family of vectors Q, = {q,}},, the normalization of {r;}}/,

in such a way that

(e = e = [ 0@ ay(0) - (o) do = b (33
Moreover, for simplicity we write
o £ 1 Qpif (f,q;)q,, =0 for any q; € Qy;
o f 19, if (f q;), =0 for any q; € Qy.

With the notations above, we can prove the following elliptic estimates for (3.1).

7



Theorem 3.2. Let 1 < p < r. Let (d,f) € H;’O(Qg,R) with £ L Qpr. Then there exist
operators

(T W) € LIH, (1), Hy? (Qsr))
such that (n,u) = (J,W)(d,f) is a unique solution of (3.1) with u L Qg. Moreover, the
following estimate holds,
1l 105 + Illizz 050 < Cldlmysn) + 1€l @5m)
for some constant C' > 0.

The proof of Theorem 3.2 is one core but technical result in our work [13]. Here, we
admit such result and proceed with the proof of Theorem 3.1. Let ¢, 9y, and 9, be the
cut-off functions such that 0 < ¢, 1y, Ve < 1, 0, 1, s € C®(RY), and

1 for |x| < by, 1 for |z| < by, 1 for |z| > by,
p(x) = wo(z) = Yoo(z) =
0 for |z| > b, 0 for |x| > b, 0 for |z| < by.
(3.4)

For any (d,f) € H)?(Qsp), we have

[$ocdll mp vy + Yoo, @y) < CUldllge) + £z, @)- (3.5)

Then, by the theory in [12, Subsection 3.1] and (3.5), there exists a Ay > 0 such that
(M, 1) = (M, V)) (¥eod, oo f) solves the following equations:

My 4 divuy, = Yeod in RY, 36)
nAuy — Div (S(uy) — yomI) = ¥uf  in RY, '
and satisfies the estimate:
Il (Bor) + lunll 285y < Cldl 1) + [1EllL,0)- (3.7)
Moreover, we set (19, ug) = (Mo, Vo)(¥od, Poof) € H;foc (RN) fulfilling that
divuy = sod in RY,
gt 0=1 N (3.8)
— Div (S(uo) — ’727701) = l/Joof in R s
and
Hm ({[nx = moll a3 (Ber) + [[ar — Vol m2(Bsg)) = 0. (3.9)
EU)\O
[A|—0
On the other hand, let us set
M
fr, = > (vof qp)asptbay.  £1 = vof — fr, € Ly(Qsr)".
j=1



Obviously, f| 1 k. Then, Theorem 3.2 yields that there exists a (unique) solution
(m3,wy) € H)?(Qsr) with uy L Qg of the following equations:

(71div Wy = Yod in Qsg,
— Div (S(uﬁ) — vgnﬂI) =f in Qsg, (3.10)
(S(ug) — yon:I)nr =0 on T,
L (S(uﬂ) - 7277111) n, =0 on Ssr,
possessing the estimate
17l 2 (05) + 10cl 2 0050) < CUIdl 2 (0) + [1El]2,(0)- (3.11)

We now introduce parametrices:
M =Cad. 1) = (1 —@)m +en,  wy=Ux(d 1) = (1 - p)uy+ ou

for A € Uy, U{0}. Then the couple (7, 1,) plays a vital role in constructing the solution
mapping of (1.7) whenever X is near the zero. For more details, see [13].

4 Resolvent problem for A\ away from zero

According to Theorem 3.1, it suffices to study (1.7) whenever A is uniformly bounded
from below. In this section, we first give the result when X is far away from the origin.

Then we consider (1.7) whenever A lies in some ring-shaped region.

4.1 Resolvent problem for large A

Recall the notion in (1.8). The following result can be regarded as the simplified version
of [5, Theorem 2.4]:

Theorem 4.1. Let 1 < p <71 < oo, and 0 < ¢ < w/2. Assume that Q is a C* exterior
domain in RN for N > 3. Then there exist Ay > 0 and two families of operators

(PclV), Vac(N)) € Hol (Vos £(HE(Q); HEA(2)) ),

such that (n,u) = (Pw(A), Vs (V) (d, £) € HY2(Q) is a unique solution of (1.7) for any
A€ Ve, and any (d,f) € H°(2). Moreover, we have

1l sy + lullaze) < C(Idlla@) + [I£ll,w) (4.1)

for some constant C' depending solely on s, £, p, p, v, V1, V2, IN.



The existence of the semigroup {7'(t) };>0 associated to (1.1) is immediate from Theorem
4.1. For 1 < p,q < oo, we define

Dy(Ag) = {(n,u) € Hy'(Q) [u e HY(Q)Y, (S(u) —nl)nr = 0},
Dpq(2) = (H;O(Q)app(“‘lﬂ))

1-1/q,9°

Theorem 4.2. The operator Aq generates a Co-semigroup {T(t)}i>0 in H;7O(Q) for
any 1 < p < r < oo, which is analytic as well. Denote the solution of (1.1) by
(p,v)(t) = T(t)(po, Vo). Then there exists positive constants vy and C such that the fol-
lowing assertions hold.

1. For (po, vo) € H)°(Q), we have
1o 9) () oy + (180 O oy + 10V O pyaer) < CE 00, v0) 30y
2. For (po, Vo) € D,(Aq), we have
10:(0, V() 200y + 1 V) (B) D, a0) < C€™ [[(p0. Vo)l (-

3. For (po, Vo) € D, 4(2), we have

1™ 0ep, P gy sz i) + 1€ OV | Ly isLp0y) + eV Ly @y 12 0))

< C(llpollmye + Vol gza-1/0 q) -

4.2 Resolvent problem for )\ in some compact subset

Thanks to Theorem 4.1 and Theorem 3.1, it remains to study (1.7) whenever A is
uniformly bounded from above and also from below. To this end, let us take some suitable
positive constants A} and A, such that

O< =M<l 0<M-X<l,

with Ay and Ay given by Theorem 3.1 and Theorem 4.1 respectively. For fixed constants
1, v, 71,72 > 0, we set

Y17 7Y
K.={rec\{o}: (RA+ = te) N > (12 o))

ptv (4.2)

D=\ eS.NK.: N <[\ <M.

Now, we address the resolvent problem (1.7) whenever A lies in D’ above.

10



Theorem 4.3. Suppose that Q) is a C? exterior domain in RN for N > 3. Let 0 < e < 7/
2, N<r<oo,1<p<r and A\ € D.. Then there exist two families of operators

(Punia(N); Vinia(V)) € Hol (DL £(HE(9); HY*($2))),

such that (n,u) = (Pmia(A), Vimia(N)) (d,£) € H*(Q) is a unique solution of (1.7) for any
A € DL and for any (d,f) € H}°(Q). Moreover, we have

1l () + allmze) < C (@ + I£]L@)
for some constant C' depending solely on Nj, Ny, e, p, 7, u, v, 71, v2, N.

The proof of Theorem 4.3 relies on the compactness of the set D.. In [13], we first
study (1.7) for any fixed A € D., where the elliptic estimates depend on A. Then, using
the finite covering property of DL, we can remove such dependence of A and obtain the

uniform estimates as in Theorem 4.3.
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